
Cite as Arkivoc 2025 (4) 199912370 
DOI: https://doi.org/10.24820/ark.5550190.p012.370 Page 1 of 11 ©AUTHOR(S) 

 

A Platinum Open Access Journal 

for Organic Chemistry 
Review 

Free to Authors and Readers DOAJ Seal Arkivoc 2025 (4) 199912370 

 

Recent progress in hypervalent iodine chemistry 
 

Ravi Kumara,* and Viktor V. Zhdankinb,* 

 
aDepartment of Chemistry, J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006 (Haryana) India 

bDepartment of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, USA 

Email: ravi.dhamija@rediffmail.com, vzhdanki@d.umn.edu  

 
 

Received   01-22-2025 Accepted   01-31-2025 Published on line   02-01-2025 

 

Abstract 

Hypervalent iodine compounds are associated with unique and environmentally friendly properties and have 

been intensively utilized as verstaile reagents and catalysts in modern organic synthesis. In many cases, the 

hypervalent iodine promoted reactions are quite distinctive and cannot be performed by using any other, non-

iodine-based reagent. The importance of hypervalent iodine reagents in modern chemistry is exemplified by 

the ever-increasing number of research articles and reviews in this area. This short overview presents a brief 

introduction to Part 4 of the Arkivoc series on hypervalent iodine chemistry. This introductory article provides 

a summary of major review papers on hypervalent iodine that were published in 2023-2024 following the 

publication of Part 3 of this series. 
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1. Introduction: Hypervalency and Hypervalent Iodine 

 

A main group element compound that possesses a number of formally assignable electrons exceeding the 

octet in the valence shell around its central atom is generally termed as ‘hypervalent’.1–4 This expansion of the 

electronic valence shell beyond the classical Lewis–Langmuir octet, particularly in the non-metallic elements, 

gave birth to a new and important era in the chemistry of these elements. Jeremy I. Musher,3 in 1969, 

primarily defined hypervalent molecules as those formed by the non-metals of groups 15-18 in any of their 

stable valence states higher than 3, 2, 1, and 0, respectively. However, in the recent times, this terminology 

has also been extended to the group 13 and 14 elements.5 Hypervalent molecules display certain special 

structural features and reactivity pattern that can be attributed to the hypervalent bonding, which involves a 

3c-4e bond.5–7 Organohypervalent iodine compounds are amongst the most widely utilized hypervalent 

molecules. Rundel8 and Pimentel9 developed the molecular description of the 3c-4e bond, that involves 

formation of three molecular orbitals by the combination of p-orbital on the central atom and one atomic 

orbital from each of the two ligands. The three molecular orbitals obtained through the combination of these 

atomic orbitals are bonding (BMOs), non-bonding (NBMOs), and anti-bonding molecular orbitals (ABMOs) in 

which bonding and non-bonding molecular orbitals each contain one pair of electrons. A representative 

example of such presentation from ‘10-I-3’ is given in Figure 1. The ‘5p’ orbital of the iodine interacts with the 

half-filled orbitals of the two ligands ‘L’ thus forming three molecular orbitals (MOs). Further, the node present 

in the non-bonding molecular orbitals (NBMOs) results in the charge distribution of almost +1.0 on the iodine 

atom and -0.5 on each ligand. A normal covalent bond exists between the carbon substituent and the iodine 

atom. Both ligands are attached by the hypervalent bond and occupy the apical positions leading to distorted 

trigonal bipyramidal geometry, while the carbon substituent occupies the equatorial position. Besides, the ‘12-

I-5’ species, has overall either a square bipyramidal or pseudooctahedral geometry.   

 

 
 

Figure 1. Description of the ‘3c-4e’ in hypervalent iodine ‘10-I-3’ species. 

 

Hypervalent iodine compounds have been intensively utilized as reagents/catalysts in organic synthesis 

due to their unique and environmentally friendly properties. Certain features of hypervalent iodine 

compounds are similar to that of transition metals, such as Ag(I), Hg(II) and Tl(III), and further investigation of 
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these similarities augmented into the invention of new reagents and important synthetic methodologies. The 

low toxicity, easy handling and high-bench stability associated with these compounds make them valuable 

alternatives to these heavy metals to access diverse organic transformations. These compounds have shown 

paramount significance in organic synthesis for the development of organic transformations that include 

couplings,10 oxidative rearrangements,11 oxidations,12 cyclizations,13 atom-transfer reactions,14 alkene 

functionalization,15 C–H bond functionalization,16 photochemical transformations,17 α-functionalization of 

carbonyl compounds,18 and organocatalysis.19 A range of hypervalent iodine(III) (λ3-iodanes) and 

hypervalent(V) (λ5-iodanes) compounds was reported in the literature, and some representative examples are 

shown in Figure 2. It is pertinent to highlight that in many cases the hypervalent iodine-based transformations 

are quite unique and cannot be performed by using any other, non-iodine-based reagent.  

 

 
 

Figure 2. Representative examples of acyclic and cyclic hypervalent iodine(III) (λ3-iodanes) and hypervalent(V) 

(λ5-iodanes) compounds. 

 

2. Recent Developments and Future Perspectives  
 

Polyvalent iodine plays a pivotal role in the modern organic synthesis that can be realized by a vast number of 

recently published books and reviews covering several hot areas of hypervalent iodine chemistry. Since the 

beginning of the 21st century, six books20-25 and several hundred review articles have appeared in the 

literature highlighting the extensive utilization of these compounds. Till date, seven international conferences 

dedicated to hypervalent iodine chemistry have been organized through the globe and this series is still 

continuing with the 8th conference to be held in 2025 in China. Current surging interest in the hypervalent 

iodine chemistry and development of new synthetic methodologies based on hypervalent iodine compounds 
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inspired us for the publication of Part 4 of the hypervalent iodine (HI) series. Previously published parts 1-3 of 

the HI series were phenomenal that cover numerous synthetic applications of hypervalent iodine compounds. 

Parts 1-3 of the series contain total twenty seven papers covering wide range of diverse applications of 

hypervalent iodine compounds. Part 3 of the series, specifically includes selective aryl transfer from 

(mesityl)iodonium(III) salts,26 computational study on the iodobenzene-catalyzed oxidative cyclization,27 

nucleophilic fluorination of 1-arylbenziodoxolones,28 synthesis and properties of liquid phenyliodine 

dicarboxylates,29 etc. Numerous recent reviews have been dedicated to the hypervalent iodine compounds 

and their applications in organic synthesis. Since 2022, after the publication of Part 3 of the HI series, more 

than forty major review articles have appeared in the literature covering different aspects of hypervalent 

iodine compounds.30-66,68-72 Recently, hypervalent iodine (III) based chemical transformations published mainly 

in the last 7−8 years, between 2016 and spring 2024 have been comprehensively presented by Yoshimura and 

Zhdankin.30 Collection on recent synthetic applications of hypervalent iodine reagents has been covered in 

three installments by Aneja et al.31-33 

In addition to the acyclic iodanes, diverse range of cyclic hypervalent iodine compounds have been 

explored in modern organic synthesis.39 The enhanced stability of the cyclic derivatives is particularly 

significant for hypervalent iodine, allowing the preparation and broad synthetic application of numerous 

valuable reagents. Numerous benziodoxole derivatives have been utilized as reagents for transfer of the 

substituent on hypervalent iodine to organic substrate. Transformations of these reagents with organic 

substrates can be performed under metal-free conditions, in the presence of transition metal catalysts, or 

using photocatalysts under photoirradiation conditions. Cyclic hypervalent iodine (III) reagents with the 

ligands, N3, NHR, CN, CF3, SCF3, OR, OAc, ONO2, and C(=N2)CO2R can be easily utilized for the transfer of these 

ligands to organic substrates.40 As well, aryl-, alkenyl-, and alkynylbenziodoxoles have recently received wide 

synthetic applications as efficient reagents for direct arylation, alkenylation, and alkynylation under mild 

reaction conditions that include metal-free conditions as well as photoredox and transition metal catalysis.41 

Synthesis of wide range of  valuable and structurally diverse complex molecules can be achieved using these 

reagents. Ethynylbenziodoxolone (EBX) reagents are among the most verstaile electrophilic alkynylation 

reagents42 An extended structural analysis of EBX reagents and their analogues based on X-Rays, MEP and 1H- 

and 13C-NMR has been recently revealed.43 The merger of pseudocyclic hypervalent iodine reagents with 

carbenes or carbenoids enables disconnections that are almost impossible using classical reactivity.44 

Hypervalent iodine compounds have been exceptionally useful as partners in reactions with metal carbenes 

and as reagents combining the reactivity of iodine(III) and carbenes in a single molecule giving carbyne 

equivalents.44 Cyclic hypervalent fluoro-iodane, has been known for various alkene functionalizations enabling 

the synthesis of fluoro-benzoxazepines, indoles, and ketones, wherein the unexpected non-covalent 

interaction between the nucleophile, substrate, and iodane played a key role in deciding the product 

formation.45  

Cyclic diaryliodonium salts represent another important class of hypervalent iodine reagents that have 

been widely explored for the synthesis of numereous axially chiral biaryls and biaryl compounds. Mono- and 

difunctionalizations of cyclic diaryliodoniums and their applications for the synthesis of fused ring systems and 

as organocatalysts is well documented by Cheng et al.46 Besides, one-pot double functionalization of carbon–

iodine(III) and ortho carbon–hydrogen bonds using diaryliodonium(III) salts involving arylation/intramolecular 

rearrangement, arylation followed by electrophilic aromatic substitution, three-component [2+2+2] cascade 

annulation, sequential metal-catalyzed arylations, and double functionalization via aryne formation has 

emerged out as verstaile method in modern organic synthesis.47  
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Numereous specific reports highlighting the role of hypervalent iodine reagents towards various 

valuable transformations, such as, azidation,48-49 vicinal diamination50 and trifluoromethylthiolation,51 have 

been judiciously documented by different researchers. Waser reported initially some selected examples of 

azidations through in-situ generated unstable non-cyclic iodanes and then discussed some stable cyclic 

iodanes for azidation in detail.48 Another seminal report dealing with the azidation using unstable 

azidoiodinanes generated in-situ from commonly used hypervalent iodine reagents (such as diacetoxy- 

iodobenzene or iodosylbenzene) and azide anion source (TMSN3 or NaN3) as well as application of stable 

azidobenziodoxoles for selective direct azidation of C−H bonds or double carbon-carbon bonds was recently 

presented.49 Oxidative amination of alkenes or related molecules has emerged out as a sustainable method 

that can be utilized for the construction of two C–N bonds in an efficient manner. The major breakthroughs in 

this area, involving iodine-based reagents/catalysts, especially the inter/intra-molecular vicinal diamination of 

alkenes with electron-rich or deficient diverse nitrogen sources reported in 2015-2022 has been reviewed 

recently.50 Proposed mechanistic pathways have been given emphasis in this report to get insights into the key 

factors governing the issues of regioselectivity, enantioselectivity, and diastereoselectivity ratios. Electrophilic 

sources of nitrogen-based groups have been known for many decades, but with limited examples only. 

However, hypervalent iodine reagents bearing transferable N-based groups gave a boost to this area with 

increasing opportunity in this area.52  

Certain other recent reviews have been dedicated to other synthetic applications of specific classes of 

hypervalent iodine compounds. Vittal et al have systematically presented the various applications of 

(diacetoxyiodo)benzene (PhI(OAc)2, PIDA) in organic synthesis involving C−C, C-hetero, hetero-hetero and 

multiple bond forms from the summer of 2015 to the present.53 Certain representative developed procedures 

using different iodine(III) reagents for the functionalization of aryls and heteroaryls by introducing halogens 

have been summarized.54 Another important aspect is the utilization of iodanes for the rapid formation of 

natural products or related complex architectures. A plethora of synthetic strategies based on several key 

steps mediated by iodanes to produce complex natural products has been presented recently.55  

The use of hypervalent iodine compounds in combination with transition metals or metal-catalysis has 

been another area of interest in organic synthesis.56-57 One elobrative approach of metal-catalyzed  

hypervalent iodine mediated reactions is trifluoromethylation that allows access to wide range of valuable 

trifluoromethylated products.56 Combination of hypervalent iodine reagents and transition metals such as 

palladium, nickel, iridium, gold, rhodium, copper, iron, ruthenium, platinum, silver, zinc, rhenium and cobalt 

has been successfully executed for many synthetically useful organic reactions viz. oxidation, rearrangement, 

amination, halogenation, amidation, ring-opening, cyclization and C−H and C−C functionalization reactions.57 

Furthermore, the development of NH transfer reactions utilizing hypervalent iodine in combination with 

simple sources of ammonia has expedited the synthesis of sulfoximines and sulfonimidamides.58 Iodonitrenes 

(ArI=NR), are powerful reactive species, broadly used for single-nitrogen-atom insertion reaction, and skeletal 

editing for the construction of N-heterocycles.59 These compounds have been considerably used to produce 

biologically relevant heterocycles as well as functionalized molecular architectures. 

Iodonium ylides are important class of hypervalent iodine (HVI) reagents, first reported in 1957 by 

Neiland. In addition to traditional cycloaddition or metallocarbene-based transformations, scope of the 

iodonium ylides has been expanded to single electron transfer (SET) based X–H insertion reactions and 

radiofluorinations. Mechanistic proposal and recent reports/theories of reactions between iodonium ylides an 

dLewis basic nucleophiles explicitly invoke halogen bonding.60 

Diazo compounds have well justified their position as indispensable reagents in the synthetic toolbox 

due to the broad spectrum of chemical transformations that they can promote. α-Diazo-λ3-iodanes combine 
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on the same carbon atom two exceptional functionalities; namely, an excellent leaving group and a masked 

carbene moiety.61 These compounds with electron-withdrawing groups coupled to diazo methyl center have 

similar reactivity pattern as that of ordinary diazo compounds.62 In the presence of rhodium catalyst, 

photocatalyst, or nucleophiles, these compounds can be converted into corresponding rhodium-carbenes, 

diazomethyl radicals, ester radicals or nucleophilic intermediates, which can be utilized as key intermediates in 

organic synthesis. 

Asymmetric oxidative transfromations have led to a magnificient development in the last years in 

which establishment of chiral hypervalent iodines(III/V) have played an important role.63-64 Many different 

catalytic versions have provided a fundamental advance in this area with the findings of new chiral 

hypervalent iodine catalysts and their applications in developing stereoselective reactions with high 

enantiomeric excess.63 Besides, chiral hypoiodite species derived from onium iodites, such as, ammonium and 

guanidinium salts have emerged as excellent catalysts in diverse enantioselective oxidative bond-forming 

reactions.65 

Photochemical transfromations of HIRs that can be achieved with or without the use of photo/metal 

catalysts have been another important area in the synthetic community, one such example involves, 

photocatalytic decarboxylation of carboxylic acids.66 Further, hypervalent iodine reagents do absorb in the 

apparently non-absorbing region at higher wavelengths. This low absorbtion arises from direct spin-forbidden 

electronic transition from the ground state to the triplet excited state.67 The main advantages of direct 

excitation approach of HIRs may involve further control over selectivity as compared to purely outer sphere 

radical species formation and operational simplicity.68  

Besides, the utilization of hypervalent iodine compounds in the functionalization of carbohydrates 

including C–H or N–H insertion reactions, O-arylations, glycal functionalization, C-2 deoxy-2-iodoglyco-

conjugates, iminosugars, and C-3-oxo-glycals, have been widely explored.69  

Hypervalent iodine reagents can be regenerated using various external chemical oxidants, such as, 

mCPBA70, while electrochemical regeneration71-72 has emerged out as a sustainable approach as the 

requirement of chemical oxidants is eliminated with limited byproduct waste. Recently, a large number of 

oxidative transformations involving electrochemical regeneration of catalytic hypervalent iodine eliminating 

any stochiometric redox reagents for the I(I)/I(III) or (I(I)/I(V) redox cycle has been developed.71-72  

 

 

3. Conclusions 
 

In conclusion, this overview of recently published review articles witnesses intensifying research interest in the 

hypervalent iodine chemistry and synthetic applications of these compounds as reagents or as catalysts. We 

anticipate that utilization of these compounds as versatile synthetic tools not only in simple oxidative 

transformations instead in asymmetric synthesis/catalysis will show immense growth in coming years. It is also 

expected that the industrial/practical use of HIRs will also attract noteworthy interest in future. 
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