Supplementary Material

Trisodium citrate dihydrate catalyzed one-pot four component synthesis of spiropyran-indenoquinoxaline derivatives and their molecular docking analysis on the anti-cancer efficacies

Bubun Banerjee,1,2* Aditi Sharma,1 Pooja A. Chawla,3 Keshav Taruneshwar Jha,3 Kinkar Biswas,4 Mayukh Deb,5 Manmeet Kaur,1 Anu Priya,1 and Arvind Singh1

1Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab-151302, India, Email: banerjeebubun@gmail.com. 2Visiting Researcher, Eternal University, Baru Sahib, Himachal Pradesh - 173101, India. 3Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab-142001, India. 4Associate Professor, Department of Chemistry, University of North Bengal, West Bengal-734014. 5Micro-Analyst, Department of Chemistry, University of North Bengal, West Bengal-734014

Email: banerjeebubun@gmail.com

Table of Contents

FTIR, 1H-NMR, 13C-NMR and HRMS spectra .. S2
Characterization data of all the synthesized compounds are given below:

2-Amino-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydrospiro[chromene-4,11'-indenophenol][1,2-b]quinoxaline]-3-carbonitrile (5a). Orange solid; yield 92%; mp 295-297 °C, (lit. 282 °C); FTIR (cm⁻¹): 3429, 3310, 3172, 2960, 2197, 1671, 1471, 1354, 1208, 765, 705; ¹H NMR (500 MHz, DMSO-d₆): δH/ppm: 8.12 (dd, 1H, J = 8.25 Hz, aromatic H), 8.06 (d, 1H, J = 7.5 Hz, aromatic H), 8.00 (t, 1H, J = 7 Hz, aromatic H) 7.81-7.78 (m, 1H, aromatic H), 7.75-7.71 (m, 1H, aromatic H), 7.59-7.56 (m, 1H, aromatic H), 7.53-7.48 (m, 2H, aromatic H), 7.26 (s, 2H, -NH₂), 2.65 (q, 2H, J = 17.5 Hz, -CH₂-), 1.99 (q, 2H, J = 16 Hz, -CH₂-), 1.00 (s, 3H, -CH₃), 0.98 (s, 3H, -CH₃); ¹³C NMR (125 MHz, DMSO-d₆): δc/ppm: 195.49, 166.05, 165.38, 159.44, 154.67, 152.42, 142.18, 141.52, 132.85 (2C), 130.18 (2C), 129.58, 129.36 (2C), 124.99, 122.5 (2C), 118.01, 112.45, 59.21, 50.69, 47.67, 32.49, 28.14, 27.56; MS (ESI-TOF) m/z: 419.1146.
Figure S1. FTIR spectrum of 5a
Figure S2. 1H NMR spectrum of 5a
Figure S3. 13C NMR spectrum of 5a
Figure S4. HRMS spectrum of 5a
2-Amino-5-oxo-5,6,7,8-tetrahydrospiro[chromene-4,11'-indenophthalidin]-3-carbonitrile (5b). Orange solid; yield 88% mp 287-290 °C, (lit. 282 °C)\(^1\); FTIR (cm\(^{-1}\)): 3353, 3288, 3123, 2960, 2233, 1667, 1462, 1346, 1205, 764, 708; \(^1\)H NMR (500 MHz, DMSO\(_d_6\)): \(\delta_H/\text{ppm}: 8.12\ (d, 1H, J = 8\ Hz, \text{aromatic H}), 8.04\ (t, 2H, J = 8\ Hz, \text{aromatic H}), 7.79\ (t, 1H, J = 8\ Hz, \text{aromatic H}), 7.73\ (t, 1H, J = 7.5\ Hz, \text{aromatic H}), 7.56\ (t, 1H, J = 7.5\ Hz, \text{aromatic H}), 7.51\ (t, 2H, J = 7.5\ Hz, \text{aromatic H}), 7.25\ (s, 2H, -NH\(_2\)), 2.75\ (q, 2H, J = 11.75\ Hz, -CH\(_2\)-), 2.08\ (q, 2H, J = 10.75\ Hz, -CH\(_2\)-); \(^{13}\)C NMR (125 MHz, DMSO\(_d_6\)): \(\delta_C/\text{ppm}: 195.60, 167.21, 166.15, 159.30, 154.70, 152.59, 142.15, 141.45, 136.63, 132.82, 130.14, 129.53, 129.42, 129.34, 129.31, 125.16, 121.94, 118.04, 113.54, 59.29, 47.74, 37.12, 27.51, 20.29; MS (ESI-TOF) \(m/z\): 391.0892.
Figure S5. FTIR spectrum of 5b
Figure S6. 1H NMR spectrum of 5b
Figure S7. 13C NMR spectrum of 5b
Figure S8. HRMS spectrum of 5b
7'-Amino-1',3'-dimethyl-2',4'-dioxo-1',2',3',4'-tetrahydrospiro[indeno[1,2-b]quinoxaline-11,5'-pyrano[2,3-d]pyrimidine]-6'-carbonitrile (5c) Orange solid; yield 85% mp 317-318 °C; FTIR (cm⁻¹): 3548, 3161, 3023, 2879, 2226, 1556, 1343, 1202, 765, 703; ¹H NMR (500 MHz, DMSO-d₆): δH/ppm: 8.41 (d, 1H, J = 9 Hz, aromatic H), 8.14 (q, 3H, J = 8 Hz, aromatic H), 8.07 (d, 1H, J = 7 Hz, aromatic H), 7.92-7.81 (m, 4H, aromatic 2H & -NH₂), 7.71-7.67 (m, 1H, aromatic H), 2.60 (s, 3H, -CH₃), 2.33 (s, 3H, -CH₃); ¹³C NMR (125 MHz, CDCl₃): δC/ppm: 153.53 (2C), 143.42, 136.04, 135.41, 135.13, 132.82, 132.55, 131.31, 130.45, 130.31, 129.71, 127.09 (2C), 126.79 (2C), 123.20 (2C), 119.28, 113.20, 111.53, 87.87, 57.68 (2C); MS (ESI-TOF) m/z: 437.2362.
Figure S9. FTIR spectrum of 5c
Figure S10. 1H NMR spectrum of 5c
Figure S11. 13C NMR spectrum of 5c (Due to the low solubility of the molecule, the 13C NMR date was collected with ns = 10K in CDCl$_3$ as solvent. With DMSO-d$_6$ as solvent we couldn’t recognize all the peaks even with ns = 10K)
Figure S12. HRMS spectrum of 5c
7'-Amino-2',2'-dimethyl-4'-oxo-4'H-spiro[indeno[1,2-b]quinoxaline-11,5'-pyrano[2,3-d]1,3]dioxine]-6'-carbonitrile (5d) Orange solid; yield 87% mp 312-315 °C; FTIR (cm⁻¹): 3377, 3208, 2958, 2880, 2226, 1557, 1462, 1343, 1200, 764, 698; ¹H NMR (500 MHz, DMSO-d₆): δH/ppm: 8.17-8.12 (m, 3H, aromatic H), 8.07 (d, 1H, J = 7.5 Hz, aromatic H), 7.91-7.81 (m, 5H, aromatic 3H & -NH₂), 7.69 (t, 1H, J = 7.5 Hz, aromatic H), 2.43 (s, 6H, -CH₃); ¹³C NMR (125 MHz, CDCl₃): δc/ppm: 155.52, 143.30, 141.92, 138.63, 136.04, 135.41, 132.82, 132.55, 131.31 (2C), 130.51 (2C), 129.69 (2C), 126.79 (2C), 123.22 (2C), 111.53, 103.91, 90.21, 89.95, 29.71 (2C); MS (ESI-TOF) m/z: 424.3493.

Figure S13. FTIR spectrum of 5d
Figure S14. 1H NMR spectrum of 5d
Figure S15. 13C NMR spectrum of 5d (Due to the low solubility of the molecule, the 13C NMR date was collected with ns = 10K in CDCl$_3$ as solvent. With DMSO-d$_6$ as solvent we couldn’t recognize all the peaks even with ns = 10K)
Figure S16. HRMS spectrum of 5d
2'-Amino-5'-oxo-5'H-spiro[indeno[1,2-b]quinoxaline-11,4'-pyrano[3,2-c]chromene]-3'-carbonitrile (5e) Orange solid; yield 86% mp 312 °C, (lit. 299 °C)1; FTIR (cm-1): 3418, 3023, 2963, 2226, 1622, 1415, 1346, 1248, 764, 700; 1H NMR (500 MHz, DMSO-d\textsubscript{6}): \(\delta_H/\text{ppm}\): 8.41 (d, 1H, \(J = 6\) Hz, aromatic H), 8.18-8.07 (m, 4H, aromatic 2H & \(\text{-NH}_2\)), 8.03 (dd, 1H, \(J = 8\), 7 Hz, aromatic H), 7.88-7.82 (m, 3H, aromatic H) 7.77 (t, 3H, \(J = 9\), 7 Hz, aromatic H), 7.60-7.57 (m, 1H, aromatic H), 7.43 (d, 1H, \(J = 8\) Hz, aromatic H). 13C NMR (125 MHz, CDCl\textsubscript{3}): \(\delta_C/\text{ppm}\): 167.21, 153.73, 151.34, 151.03, 136.20 (2C), 136.06 (2C), 132.84 (2C), 132.57 (2C), 132.47 (2C), 131.31 (2C), 130.54 (2C), 129.93 (2C), 129.69 (2C), 123.22, 121.40, 120.88, 54.16, 50.03. MS (ESI-TOF) m/z: 441.0979.
Figure S17. FTIR spectrum of 5e
Figure S18. 1H NMR spectrum of 5e
Figure S19. 13C NMR spectrum of 5e (Due to the low solubility of the molecule, the 13C NMR date was collected with ns = 10K in CDCl$_3$ as solvent. With DMSO-d$_6$ as solvent we couldn’t recognize all the peaks even with ns = 10K)
Display Report

<table>
<thead>
<tr>
<th>Analysis Info</th>
<th>Acquisition Date 5/19/2023 12:23:43 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis Name</td>
<td>D:\Data\User Data\External Samples\Bubun\BB-AD-S17-7-NEG.d</td>
</tr>
<tr>
<td>Method</td>
<td>Tune_neg_Standard.m</td>
</tr>
<tr>
<td>Sample Name</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>Source Type</td>
<td>ESI</td>
</tr>
<tr>
<td>Focus</td>
<td>Active</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>50 m/z</td>
</tr>
<tr>
<td>Scan End</td>
<td>3000 m/z</td>
</tr>
<tr>
<td>Ion Polarity</td>
<td>Negative</td>
</tr>
<tr>
<td>Set Capillary</td>
<td>4000 V</td>
</tr>
<tr>
<td>Set End Plate Offset</td>
<td>-500 V</td>
</tr>
<tr>
<td>Set Charging Voltage</td>
<td>2000 V</td>
</tr>
<tr>
<td>Set Corona</td>
<td>0 nA</td>
</tr>
<tr>
<td>Set Nebulizer</td>
<td>0.3 Bar</td>
</tr>
<tr>
<td>Set Dry Heater</td>
<td>200 °C</td>
</tr>
<tr>
<td>Set Dry Gas</td>
<td>4.0 l/min</td>
</tr>
<tr>
<td>Set Divert Valve</td>
<td>Source</td>
</tr>
<tr>
<td>Set APCI Heater</td>
<td>0 °C</td>
</tr>
</tbody>
</table>

Figure S20. HRMS spectrum of 5e
2-Amino-5-oxo-5H-spiro[indeno[1,2-b]pyran-4,11'-indenophen-1,2-b]quinoline-3-carbonitrile (5f) Orange solid; yield 87% mp 315-320 °C; FTIR (cm⁻¹): 3413, 3156, 2967, 2226, 1617, 1463, 1347, 1248, 764, 700; ¹H NMR (500 MHz, DMSO): δH/ppm: 8.55 (d, 1H, J = 7.5 Hz, aromatic H), 8.22 (d, 1H, aromatic 1H), 8.14-8.09 (m, 3H, aromatic 1H & -NH₂), 7.83 (t, 1H, J = 8 Hz, aromatic H), 7.76 (q, 3H, J = 8, 7.5 Hz, aromatic H), 7.63 (t, 1H, J = 8 Hz, aromatic H), 7.25 (d, 4H, J = 3.5 Hz, aromatic H). ¹³C NMR (125 MHz, CDCl₃): δc/ppm: 187.62, 153.57, 149.69, 143.25, 141.90, 140.95, 138.90, 136.06, 135.40, 132.84 (2C), 132.57 (2C), 131.31 (2C), 130.51 (2C), 129.69 (2C), 126.79 (2C), 123.22 (2C), 113.21, 111.55, 88.80, 78.57. MS (ESI-TOF) m/z: 427.2750.
Figure S21. FTIR spectrum of 5f
Figure S22. 1H NMR spectrum of 5f
Figure S23. 13C NMR spectrum of 5f (Due to the low solubility of the molecule, the 13C NMR date was collected with ns = 10K in CDCl$_3$ as solvent. With DMSO-d$_6$ as solvent we couldn’t recognize all the peaks even with ns = 10K)
Figure S24. HRMS spectrum of 5f
2'-Amino-7'-methyl-5'-oxo-5'H-spiro[indenol1,2-b]quinoxaline-11,4'-pyrano[4,3-b]pyran-3'-carbonitrile (5g) Orange solid; yield 86% mp 316-317 °C; FTIR (cm⁻¹): 3483, 3017, 2957, 2226, 1614, 1557, 1344, 1200, 764, 703; ¹H NMR (500 MHz, DMSO-d₆): δH/ppm: 8.14 (q, 3H, J = 8.5, 7.5 Hz, aromatic H), 8.07 (d, 1H, J = 7 Hz, aromatic H), 7.92-7.81 (m, 6H, aromatic 4H & -NH₂), 7.69 (t, 1H, J = 7.5 Hz, aromatic H), 2.60 (s, 3H, -CH₃). ¹³C NMR (125 MHz, CDCl₃): δc/ppm: 195.54, 171.42, 155.60, 153.79, 141.98, 138.76, 136.18, 135.36, 132.80 (2C), 132.55 (2C), 131.31, 130.49, 129.69, 126.79, 123.20 (2C), 120.52, 113.13, 106.32, 83.58, 78.60, 29.71. MS (ESI-TOF) m/z: 430.2016.
Figure S25. FTIR spectrum of 5g
Figure S26. 1H NMR spectrum of 5g
Figure S27. 13C NMR spectrum of 5g (Due to the low solubility of the molecule, the 13C NMR date was collected with ns = 10K in CDCl$_3$ as solvent. With DMSO-d$_6$ as solvent we couldn’t recognize all the peaks even with ns = 10K)
Figure S28. HRMS spectrum of 5g
7'-Amino-4'-oxo-2'-thioxo-1',2',3',4'-tetrahydrospiro[indeno[1,2-b]quinoxaline-11,5'-pyrano[2,3-d]pyrimidine]-6'-carbonitrile (5h) Orange solid; yield 85% mp >300 °C; FTIR (cm⁻¹): 3415, 3230, 3016, 2955, 2226, 1618, 1557, 1345, 1248, 764, 702; ¹H NMR (500 MHz, DMSO-d₆): δH/ppm: 8.41 (d, 1H, J = 7.5 Hz, aromatic H), 8.14, (br s, 2H, NH), 8.75 (d, 2H, J = 6.5 Hz, aromatic 4H), 7.90-7.81 (m, 6H, 4 x aromatic H & -NH₂), 7.70-7.67 (m, 1H, aromatic H); ¹³C NMR (125 MHz, CDCl₃): δC/ppm: 212.31, 203.16, 158.63, 154.59, 142.14, 138.176, 135.03, 131.77, 131.48, 130.26 (2C), 129.44, 129.13, 128.64 (2C), 125.73 (2C), 122.26, 122.14, 115.33, 112.06, 93.21; MS (ESI-TOF) m/z: 425.2723.

Figure S29. FTIR spectrum of 5h
Figure S30. 1H NMR spectrum of $5h$
Figure S31. 13C NMR spectrum of 5h (Due to the low solubility of the molecule, the 13C NMR date was collected with ns = 10K in CDCl$_3$ as solvent. With DMSO-d$_6$ as solvent we couldn’t recognize all the peaks even with ns = 10K)
Figure S32. HRMS spectrum of 5h
2-Amino-5,10-dioxo-5,10-dihydrospiro[benzo[g]chromene-4,11’-indenol1,2-b]quinoxaline]-3-carbonitrile (5i) Orange solid; yield 90% mp 318-319 °C; FTIR (cm\(^{-1}\)): 3413, 3014, 2949, 2226, 1617, 1558, 1345, 1199, 764, 705; \(^1\)H NMR (500 MHz, DMSO-d\(_6\)): \(\delta_H/\text{ppm}: \)

- 8.41 (d, 1H, \(J = 8\) Hz, aromatic H),
- 8.16-8.12 (m, 3H, aromatic 1H & -NH\(_2\)),
- 8.08 (dd, 2H, \(J = 7.5\) Hz, aromatic H),
- 7.95-7.90 (m, 2H, aromatic H),
- 7.86 (t, 4H, \(J = 8\) Hz, aromatic H),
- 7.79 (t, 1H, \(J = 7.5\) Hz, aromatic H),
- 7.69 (t, 1H, \(J = 7.5\) Hz, aromatic H).

\(^{13}\)C NMR (125 MHz, DMSO-d\(_6\)): \(\delta_C/\text{ppm}: 195.79\) (2C), 158.10, 147.24, 146.77, 141.92, 141.49, 141.16, 138.13, 137.53, 137.30, 134.99, 133.72, 133.54, 133.07, 131.63, 131.26, 130.35, 129.63, 129.55, 129.24, 127.89, 126.44, 125.73, 123.55, 103.98, 103.76, 89.07; MS (ESI-TOF) m/z: 455.5160.
Figure S33. FTIR spectrum of 5i
Figure S34. 1H NMR spectrum of 5i
Figure S35. 13C NMR spectrum of 5i (Due to the low solubility of the molecule, the 13C NMR date was collected with ns = 10K in DMSO-d$_6$ as solvent)
Figure S36. HRMS spectrum of 5i
3-Aminospiro[benzo[f]chromene-1,11'-indenolo[1,2-b]quinoxaline]-2-carbonitrile (5j) Orange solid; yield 89% mp 303-305 °C; FTIR (cm⁻¹): 3413, 3020, 2880, 2226, 1614, 1556, 1342, 1200, 825, 764; ¹H NMR (500 MHz, DMSO-d₆): δH/ppm: 8.17-8.12 (m, 4H, aromatic 2H & -NH₂), 8.07 (d, 2H, J = 7.5 Hz, aromatic H), 7.90-7.83 (m, 8H, aromatic H), 7.69 (t, 2H, J = 7.5 Hz, aromatic H); ¹³C NMR (125 MHz, CDCl₃): δC/ppm: 143.31, 141.92, 141.57 (2C), 138.73 (2C), 136.79 (2C), 136.13 (2C), 132.82 (2C), 132.54 (2C), 131.63 (2C), 131.31 (2C), 130.49 (2C), 129.69 (2C), 126.79, 123.20, 117.486, 114.31, 113.20, 89.66; MS (ESI-TOF) m/z: 425.2837.

Figure S37. FTIR spectrum of 5j
Figure S38. 1H NMR spectrum of 5j
Figure S39. 13C NMR spectrum of 5j (Due to the low solubility of the molecule, the 13C NMR data was collected with ns = 10K in CDCl$_3$ as solvent. With DMSO-d$_6$ as solvent we couldn’t recognize all the peaks even with ns = 10K)
Figure S40. HRMS spectrum of 5j
2-Amino-7'-chloro-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydrospiro[chromene-4,11'-indenophthal[1,2-b]quinolizine]-3-carbonitrile (5aa) Brown solid; yield 80% mp 289 °C; FTIR (cm⁻¹): 3321, 3081, 2952, 2178, 1659, 1593, 1466, 1310, 1211, 750, 711; ¹H NMR (500 MHz, DMSO-d₆): δH/ppm: 8.19-8.02 (m, 3H, aromatic H), 7.83-7.75 (m, 1H, aromatic H), 7.59 (s, 1H, aromatic H), 7.51 (s, 2H, aromatic H), 7.30 (s, 2H, -NH₂), 2.65 (q, 2H, -CH₂), 2.00 (q, 2H, -CH₂), 0.99 (t, 6H, J = 5.5, 4.5 Hz, -CH₃); ¹³C NMR (125 MHz, DMSO-d₆): δC/ppm: 195.54, 166.60, 165.50, 159.46, 155.62, 152.65, 142.67, 134.51, 133.36, 131.11, 130.03 (2C), 129.51 (2C), 128.13 (2C), 125.08 (2C), 122.32 (2C), 117.94, 112.29, 58.89, 50.61, 47.73, 32.50, 28.13, 27.55; MS (ESI-TOF) m/z: 454.0525.
Figure S41. FTIR spectrum of 5aa

Figure S42. 1H NMR spectrum of 5aa
Figure S43. 13C NMR spectrum of 5aa
Figure S44. HRMS spectrum of 5aa
2-Amino-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydrosso[chromene-4,6'-indenof1,2-b]pyrido[3,2-e]pyrazine]-3-carbonitrile (5bb) Brown solid; yield 78% mp 277-280 °C; FTIR (cm⁻¹): 3389, 3290, 3175, 2959, 2193, 1651, 1591, 1317, 1214, 861, 783; ¹H NMR (500 MHz, DMSO-d₆): δH/ppm: 9.04 (br s, 1H, aromatic H), 8.47 (d, 1H, J = 7 Hz, aromatic H), 8.12 (d, 1H, J = 7.5 Hz, aromatic H), 7.77 (t, 1H, J = 4, 3.5 Hz, aromatic H), 7.62 (d, 1H, J = 7 Hz, aromatic H), 7.55 (q, 2H, J = 7, 7.5 Hz, aromatic H), 7.33 (s, 2H, -NH₂), 2.66 (q, 2H, -CH₂), 2.00 (q, 2H, -CH₂), 0.99 (s, 6H, -CH₃); ¹³C NMR (125 MHz, DMSO-d₆): δC/ppm: 195.58, 167.03, 165.58, 159.51, 157.64, 153.50, 153.03, 151.49, 138.42, 136.25, 133.68, 129.63, 125.12, 122.71, 122.29, 119.85, 117.92, 112.24, 111.63, 58.76, 50.58, 47.59, 32.50, 28.15, 27.54; MS (ESI-TOF) m/z: 444.1320.
Figure S45. FTIR spectrum of 5bb

Figure S46. 1H NMR spectrum of 5bb
Figure S47. 13C NMR spectrum of 5bb
Figure S48. HRMS spectrum of 5bb
DOCKING POSES WITH (PDB: 5JRS): BREAST CANCER

Compound 5a
Compound 5b
Compound 5c

Compound 5d

Compound 5e
Compound 5f

Compound 5g
Compound 5j

Compound 5aa
Compound 5bb
DOCKING POSES WITH (PDB: 1PMV): HEPATIC CANCER

Compound 5a

Compound 5b
Compound 5c

Compound 5d
Compound 5h

Compound 5i
Compound 5j
DOCKING POSES WITH (PDB: 3I5Z): LUNG CANCER

Compound 5a

Compound 5b

Compound 5c
Compound 5d

Compound 5e
Compound 5f

Compound 5g
Compound 5j

Compound 5aa

Compound 5bb
References