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Abstract 

Here in we report a novel silver nitrate-promoted oxidative pathway for the efficient synthesis of tetra 
substituted aryl derivatives (homodimers) and diaryl ketones. The oxidation of sp3 C-H bond has been 
extensively studied by tuning the amount of the silver nitrate to afford the tetraphenyl or diaryl ketone, 
respectively with good selectivity under mild and simple conditions. This developed protocol offers a facile and 
general route to access a variety of value of tetraphenyl and diaryl ketones derivatives with moderate to good 
yield. 
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Introduction 

 

The selection of carbon-carbon (C-C) bond formation is indispensable in organic synthetic chemistry, being 

extensively utilized for the synthesis of numerous derivatives in various applications. Despite the array of 

methods available for C-C bond formations, C(sp3)-H bond activation is still a rare occurrence in synthetic 

transformations. The di-benzyl core structure is a highly versatile scaffold, offering the potential for the 

synthesis of a range of compounds in natural products and pharmaceuticals. 1-4 The most conventional 

method for obtaining di-benzyl derivatives is reducing carbon-carbon multiple bonds. 5, 6 The oxidative homo 

coupling reaction imposes valuable tools, and the use of oxidizing reagents triggered the transformation of 

toluene derivatives into dibenzylic compounds. 7 Given their significance, various metal-catalyzed methods 

(Rh, Cu, Pt, Pd ) have been developed utilizing benzyl magnesium halide, benzyl boronic acid, phenyl acetic 

acid, benzyl zinc bromide  through a homocoupling approach (Scheme 1a). 8-11 In recent years, the rapid 

advancement of Ag-catalyzed transformations in organic synthesis has overcome the early idea that silver 

impeded catalytic activity. Silver catalysts combined with K2S2O8 allow for various oxidative C-H bond 

functionalizations to generate distinct C-C, C-O, and C-N bonds. 12-14 Herein, a novel silver-mediated oxidative 

homocoupling strategy is presented, facilitating the coupling of two molecules of the same substrate. In 

contrast, diarylketones are well known compounds that are widely employed in the synthesis of various 

applications. 15, 16 The oxidation of sp3 C-H bonds has been extensively studied as an effective way to convert 

alkylarenes into their respective ketones, yet it remains largely underexplored. However, several methods 

have been known for the synthesis of aromatic ketones such as Friedel Crafts acylation, 17 transition-metal 

catalyzed coupling reactions, 18 or by oxidation of alcohols into ketones. 19 Tremendous progress has been 

made through the use of catalytic amounts of transition metal complexes, and various oxidants (Scheme 1b). 
20-23 In addition, the Xu group developed potassium tert-butoxide promoted oxidative process by using 

molecular oxygen. 24 Based on the literature mentioned above, there are certain drawbacks, such as toxic, 

expansive catalysts, explosive oxidants, and hostile environments. We have successfully overcome and 

uncovered an effective way to achieve oxidation of benzylic C(sp3)-H via a silver-catalyzed reaction. Based on 

the above literature precedent, we show that the oxidation of benzylic C(sp3)-H can be achieved through a 

silver-catalyzed reaction. By controlling the equivalence of silver nitrate in the oxidative process, two selective 

products were obtained under mild conditions (Scheme 1c).  
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Scheme 1. Previous and this work. 

 

 

Results and Discussion 
 

At the outset, we assessed the viability of the oxidative reaction of diphenylmethane (1a, 0.2mmol) and 

AgNO3 ( 0.04 mmol), K2S2O8 (0.2 mmol) in acetonitrile and water (1:1) ratio at 60 ֯ C for 12 h which afforded a 

homocoupling dimer of tetaphenyl product 2a in 38%. With this result in hand, we prepared a number of 

derivatives of benzylic substrates (Table 1). Bis (4-fluorophenyl) methane was tolerated under this condition to 

get the dimer product 2b. Next, cyclic benzylic substrates were examined. The reaction of fluorene was a 

useful substrate and yielded the bisfluorene 2c in 40% yield. In addition, 9H – xanthene could also be 

employed to give the desired bixanthene 2d in 45% yield.  
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Table 1. Tetraphenyl derivatives 2 

 
 

Table 2. Diaryl ketones 3 

 
 

Next, we embarked on the study of oxidative processes to extend our strategy by selecting silver nitrate 

equivalence and observing selective oxidation to give diaryl ketones (Table 2). Diphenylmethane 1a (0.2 

mmol), silver nitrate (0.4 mmol), potassium persulfate (0.2 mmol) in acetonitrile and water (1:1) ratio at 60 ֯ C 

for 12-24 h reaction was performed. The yield of product 3a was found to be 70% yield. We assessed the 

broad applicability of the oxidative transformation by utilizing a range of diaryl methane compounds. The 

introduction of fluoro group 3b was tolerated. Electron-deficient diaryl methane derivative was employed as 

starting substrate, resulting of 3c in a 48% yield. Moreover, the incorporation of a dimethylamine moiety on a 

diaryl methane substrate was also evaluated, yielding 3d with moderate results. The reaction progressed 

smoothly for the cyclic derivatives of fluorene, and 9H-xanthene substrates to give the corresponding ketone 

derivatives (3e-f). The oxidation of 9, 10-dihydroanthracene to anthracne-9, 10-dione 3g was observed upon 
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reaction. The process was further demonstrated through its application to the synthesis of a hydrazine 

derivative from benzophenone, thus illustrating its synthetic utility (Scheme 2).  

 

 
 

Scheme 2. Synthetic transformations. 

 

 

Conclusions 
 

We have developed a selective and efficient single protocol for the synthesis of symmetrical tetraphenyl and 

diaryl ketone derivatives by controlling the equivalence of silver nitrate. The oxidative silver-catalyzed 

homocoupling was successfully implemented with both acyclic and cyclic substrates, thus extending the scope 

of the oxidation reaction for the effective production of diaryl ketones. The versatility of synthetic 

transformations has been made evident through their practical applications.  

 

 

Experimental Section 
 

General. All chemicals were purchased from commercial vendors (Sigma Aldrich, Alfa Aesar, TCI, and matrix 

scientific) and used directly without further purification unless otherwise noted. Well-cleaned and oven-dried 

glassware was used for the experiments. The reaction was monitored by thin layer chromatography (TLC), 

purchased as pre-coated with silica gel 60 F254 from Merck. Column chromatography was performed using 

the  MACHEREY-NAGEL silica gel 60 mit  with a mixture of ethyl acetate/hexane or hexane as an eluent. 1H 

NMR spectra were recorded on 400 MHz & 600 MHz, 13C-NMR spectra were recorded on 100 MHz & 151 MHz, 

and Varian Mercury spectrometer using CDCl3 as solvent. The spectra were recorded and presented as 

chemical shifts (ppm). The multipliers were provided in s (singlet), d (doublet), t (triplet), q (quartet), br (broad 

singlet), m (multiplet), and dd (doublet of doublet). The coupling constants (J) were reported in Hz. 

 

General procedure for synthesis of tetraphenyl derivatives. A 15 mL vial was charged with 1a-d (0.2 mmol), 

silver nitrate (0.04 mmol), potassium persulfate (0.2 mmol) in acetonitrile and water (1:1) ratio were added. 

The resulting mixture was stirred under nitrogen atmosphere at 60 °C for 12-24 h and the reaction was carried 

out. After completion of the reaction extracted with ethyl acetate (3 mL x 5), the organic layer was combined 

and washed with brine solution (5 mL). The organic layer was dried over anhydrous MgSO4, filtered and 

concentrated under vacuum. The crude product was purified by column chromatography (Hexane, silica gel) 

and obtained as solid 2a-2d. Furthermore, the obtained desired products were characterized by NMR, the 

data are shown given below and the 1H-NMR and 13C-NMR spectra of the products were matched with the 

literature data. 25, 26 
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General procedure for synthesis of aryl ketones derivatives. A 15 mL vial was charged with 1a-g (0.2 mmol), 

silver nitrate (0.4 mmol), potassium persulfate (0.2 mmol) in the acetonitrile and water (1:1) ratio were added. 

The resulting mixture was stirred under nitrogen atmosphere at 60 °C for 12-24 h and the reaction was carried 

out. After completion of the reaction extracted with ethyl acetate (3 mL x 5), organic layer combined and 

washed with brine solution (5 mL). The organic layer was dried over anhydrous MgSO4, filtered and 

concentrated under vacuum. The crude product was purified by column chromatography (Hexane, silica gel) 

and obtained as solid 3a-3g. Furthermore, the obtained desired products were characterized by NMR, the data 

are shown below and the 1H-NMR & 13C-NMR spectra of the products were matched with the previous 

literatures. 24, 27-29  

1,1,2,2-Tetraphenylethane (2a).30 After the reaction based on the general procedure: Diphenyl methane (0.2 

mmol), silver nitrate (0.04 mmol), potassium persulfate (0.2 mmol) in acetonitrile and water (1:1) ratio were 

added. The resulting mixture was stirred under nitrogen atmosphere at 60 °C for 12 h. The crude mixture was 

purified by column chromatography (silica gel) using hexane as solvent and obtained as white solid (26 mg, 

38%); mp 225-226 °C ; 1H-NMR (400 MHz, CDCl3) δ 7.18-7.16 (m, 8H), 7.13-7.09 (m, 8H), 7.03-7.00 (m, 4H), 

4.78 (s, 2H); 13C-NMR (100 MHz, CDCl3) δ143.6, 128.7, 128.3, 126.0, 56.5. 

1,1,2,2-Tetrakis(4-fluorophenyl)ethane (2b).30 After the reaction according to the general procedure: bis(4-

fluorophenyl)methane (0.2 mmol), silver nitrate (0.04 mmol), potassium persulfate (0.2 mmol) in acetonitrile 

and water (1:1) ratio were added. The resulting mixture was stirred under nitrogen atmosphere at 60 °C for 12 

h. The crude mixture was purified by column chromatography (silica gel) using hexane as solvent and obtained 

as white solid (25 mg, 30%); mp 312-313 °C ;1H-NMR (600 MHz, CDCl3) δ 7.05-7.03 (m, 8H),6.84-6.81 (m, 8H), 

4.62 (s, 2H); 13C-NMR (151 MHz, CDCl3) δ 161.3 (d, JC-F = 246.5 Hz), 138.7 (d, JC-F = 3 Hz), 129.8 (d, JC-F = 8.0 Hz), 

115.5 (d, JC-F = 21 Hz), 55.3. 

9H,9'H-9,9'-Bifluorene (2c).7 After the reaction according to the general procedure: 9H-fluorene (0.2 mmol), 

silver nitrate (0.04 mmol), potassium persulfate (0.2 mmol) in the acetonitrile and water (1:1) ratio were 

added. The resulting mixture was stirred under nitrogen atmosphere at 60 °C for 24 h. The crude mixture was 

purified by column chromatography (silica gel) using hexane as solvent and obtained as white solid (26.5 mg, 

40%); mp 241-242 °C ; 1H-NMR (400 MHz, CDCl3) δ 7.65 (d, J = 8.0 Hz, 4H), 7.29 (d, J = 8.0 Hz, 4H),7.10 (t, J = 

8.0 Hz, 4H), 6.96 (d, J = 8.0 Hz, 4H), 4.85(s,2H); 13C-NMR (100 MHz, CDCl3) δ 144.6, 141.5, 127.3, 126.7, 124.0, 

119.6, 49.8 

9H,9'H-9,9'-Bixanthene (2d).31 After the reaction according to the general procedure: 9H-xanthene (0.2 

mmol), silver nitrate (0.04 mmol), potassium persulfate (0.2 mmol) in the ratio of acetonitrile and water (1:1). 

The resulting mixture was stirred under nitrogen atmosphere at 60 °C for 24 h. The crude mixture was purified 

by column chromatography (silica gel) using hexane as solvent and obtained as white solid (33 mg, 45%); mp 

201-202 °C ; 1H-NMR (400 MHz, CDCl3) δ 7.24-7.20 (m, 4H), 6.96-6.88 (m, 8H), 6.68 (dd, J = 8.0 Hz, 4.0 Hz, 4H), 

4.21(s, 2H); 13C-NMR (100 MHz, CDCl3) δ 153.0, 129.1, 128.1, 122.6, 121.8, 115.8, 49.5 

Benzophenone (3a).32 After the reaction based on the general procedure: Diphenyl methane (0.2 mmol), silver 

nitrate (0.4 mmol), potassium persulfate (0.2 mmol) was added in acetonitrile and water (1: 1) ratio. The 

resulting mixture was stirred under nitrogen atmosphere at 60 °C for 24 h. The crude mixture was purified by 

column chromatography (silica gel) using hexane as solvent and obtained as white solid (25 mg, 70%); mp 48-

49 °C ; 1H-NMR (400 MHz, CDCl3) δ 7.82-7.80 (m, 4H), 7.61-7.58 (m, 2H), 7.51-7.47 (m,4H); 13C-NMR (100 MHz, 

CDCl3) δ 196.9, 137.7, 132.6, 130.2, 128.4. 

Bis(4-fluorophenyl)methanone (3b).33 After the reaction according to the general procedure: bis(4-

fluorophenyl)methane (0.2 mmol), silver nitrate (0.4 mmol), potassium persulfate (0.2 mmol) in the 

acetonitrile and water (1:1) ratio were added. The resulting mixture was stirred under nitrogen atmosphere at 
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60 °C for 24 h. The crude mixture was purified by column chromatography (silica gel) using hexane as solvent 

and obtained as white solid (22 mg, 50%); mp 101-102 °C ; 1H-NMR (400 MHz, CDCl3) δ 7.84-7.80 (m, 4H), 

7.19-7.15 (m, 4H); 13C-NMR (100 MHz, CDCl3) δ 193.8, 165.3 (d, JC-F 254 Hz), 133.7 (d, JC-F 3 Hz), 132.5 (d, JC-F 8 

Hz), 115.5 (d, JC-F 22 Hz) 

Phenyl(2-(trifluoromethyl)phenyl)methanone (3c).34After the reaction according to the general procedure: 1-

benzyl-2-(trifluoromethyl)benzene (0.2 mmol), silver nitrate (0.4 mmol), potassium persulfate (0.2 mmol) in 

acetonitrile and water (1:1) ratio were added. The resulting mixture was stirred under nitrogen atmosphere at 

60 °C for 24 h. The crude mixture was purified by column chromatography (silica gel) using hexane as solvent 

and obtained as white solid (24 mg, 48%); mp 60-61 °C ;1H-NMR (400 MHz, CDCl3) δ 7.79-7.77 (m, 3H), 7.64-

7.58 (m, 3H), 7.47-7.43 (m, 2H), 7.40-7.37 (m, 1H); 13C-NMR (100 MHz, CDCl3) δ 198.9, 138.4, 136.5, 134.0, 

131.5, 130.3, 129.9, 128.6, 128.2, 126.8  (q, JC-F =4.6 Hz), 123.7 (d, JC-F 272.2Hz)   

(4-(Dimethylamino)phenyl)(phenyl)methanone (3d).32 After the reaction according to the general procedure: 

4-benzyl-N,N-dimethylaniline (0.2 mmol), silver nitrate (0.4 mmol), potassium persulfate (0.2 mmol) in 

acetonitrile and water (1:1) ratio were added. The resulting mixture was stirred under nitrogen atmosphere at 

60 °C for 12 h. The crude mixture was purified by column chromatography (silica gel) using hexane as solvent 

and obtained as white solid (21 mg, 46%); mp 89-90 °C ;1H-NMR (400 MHz, CDCl3) δ 7.80 (d, J 8.0 Hz, 2H), 7.73 

(d, J 4.0 Hz, 2H), 7.53-7.473 (m, 3H), 6.68 (d, J 8.0 Hz, 2H); 13C-NMR (100 MHz, CDCl3) δ 195.3, 153.4, 139.4, 

132.9, 131.2, 129.6, 128.1, 124.9, 110.7, 40.2. 

9H-Fluoren-9-one (3e).35 After the reaction according to the general procedure: 9H-fluorene (0.2 mmol), silver 

nitrate (0.4 mmol), potassium persulfate (0.2 mmol) in acetonitrile and water (1:1) ratio were added. The 

resulting mixture was stirred under nitrogen atmosphere at 60 °C for 12 h. The crude mixture was purified by 

column chromatography (silica gel) using hexane as solvent and obtained as white solid (21 mg, 58%); mp 82-

83 °C ;1H-NMR (400 MHz, CDCl3) δ 7.76 (d, J 7.4 Hz, 2H), 7.54-7.47 (m, 4H), 7.30 (td, J 7.36 Hz, J 1.24Hz, 2H); 
13C-NMR (100 MHz, CDCl3) δ 192.4, 144.6, 134.8, 134.3, 129.2, 124.5, 120.4. 

9H-Xanthen-9-one (3f).36 After the reaction according to the general procedure: 9H-xanthene (0.2 mmol), 

silver nitrate (0.4 mmol), potassium persulfate (0.2 mmol) was added in acetonitrile and water (1: 1) ratio. The 

resulting mixture was stirred under nitrogen atmosphere at 60 °C for 24 h. The crude mixture was purified by 

column chromatography (silica gel) using hexane as solvent and obtained as white solid (22 mg, 56%); mp 171-

172 °C ; 1H-NMR (600 MHz, CDCl3) δ 8.36-8.35 (m, 2H), 7.75-7.72 (m, 2H), 7.52-7.50 (m, 2H), 7.41-7.38 (m, 2H); 

13C-NMR (151 MHz, CDCl3) δ177.4, 156.4, 135.0, 126.9, 124.1, 118.1, 116.7. 

Anthracene-9,10-dione (3g).37 After the reaction according to the general procedure: 9,10-dihydroanthracene 

(0.2 mmol), silver nitrate (0.4 mmol), potassium persulfate (0.2 mmol) in acetonitrile and water (1:1) ratio 

were added. The resulting mixture was stirred under nitrogen atmosphere at 60 °C for 24 h. The crude mixture 

was purified by column chromatography (silica gel) using hexane as solvent and obtained as white solid (22 

mg, 52%); mp 283-285 °C ; 1H-NMR (600 MHz, CDCl3) δ 8.33 (q, J 6.0 Hz, 4H), 7.82 (q, J 6.0 Hz, 4H); 13C-NMR 

(151 MHz, CDCl3) δ 183.3, 134.3, 133.7, 127.4. 

(Diphenylmethylene)hydrazine (4a).38 A mixture of benzophenone (0.2 mmol), hydrazine monohydrate (2.0 

equiv.), and acetic acid (0.06 mmol) was stirred at 100 °C for 21 h. After cooled to room temperature, solvent 

and volatile materials were removed under reduced pressure to afford corresponding product as a white solid 

(35 mg, 90%) ; mp 94-95 °C ; 1H-NMR (400 MHz, CDCl3) δ 7.52-7.44 (m, 5H), 7.29-7.26 (m, 5H), 5.42 (bs, 2H); 

13C-NMR (100 MHz, CDCl3) δ 149.2, 138.5, 133.1, 129.5, 128.2, 126.6.  
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