The Diels-Alder reaction of 1,4-quinones in hexafluoroisopropanol

Loïc Jeanmarta, Kalina Mambourga, Gilles Hanquetb*, and Steve Lannersa**

aLaboratoire de Chimie Organique de Synthèse (COS), Namur Medicine and Drugs Innovation Center (NAMEDIC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium

bCNRS, UMR 7042-LIMA, ECPM, University of Strasbourg, University of Haute-Alsace, 25 rue Becquerel, 67087 Strasbourg, France

Email: steve.lanners@unamur.be; ghanquet@unistra.fr

We dedicate this work to Professor Léon Ghosez, an inspiring mentor, in recognition of his important contributions to organic synthesis

Received 12-01-2023 Accepted Manuscript 01-04-2024 Published on line 01-12-2024

Abstract

The Diels-Alder reaction of quinones is both of historical and current importance, and numerous asymmetric and catalytic versions have been described. Herein we describe the dramatic rate enhancement observed in the Diels-Alder reactions of a large variety of quinones with moderately activated dienes when hexafluoroisopropanol is used as a solvent, even allowing reactions that are not observed in dichloromethane. When chiral sulfinylquinones are used, hexafluoroisopropanol has a marked effect on stereoselectivity. Since the Diels-Alder reactions of sulfinylquinones are known to be an entry into several classes of natural products, and many other quinone cycloadditions have found wide-spread use in synthesis, the findings described will further facilitate their application.

Keywords: Diels-Alder reaction, quinones, hexafluoroisopropanol, sulfinylquinones, asymmetric synthesis

Cite as Arkivoc 2024 (5) 202312140 DOI: https://doi.org/10.24820/ark.5550190.p012.140
Introduction

The ability of the Diels-Alder [4+2]-cycloaddition to generate molecular complexity rapidly via the simultaneous formation of two carbon-carbon bonds in chemo-, regio- and stereoselective manner is almost unrivalled, and is illustrated by the numerous reported applications of this reaction for the preparation of six-membered rings, including natural products. Historically, the use of quinones as dienophiles is highly significant, being the very first example investigated by Diels and Alder.\(^1\) 1,4-Benzooquinone and various quinone derivatives have been used in numerous well-known syntheses of natural products.\(^1,2\) In addition to their electron-deficient nature, which leads them to react with electron-rich or electron-neutral dienes, 1,4-quinones incorporate functional groups which can be transformed after the Diels–Alder reaction,\(^2\) and therefore facilitate the synthesis of complex molecules.\(^3-8\) Controlling the regioselectivity of cycloadditions with quinones is an essential task en route to the synthesis of these targets.\(^1\) Lewis\(^3\) and Brønsted\(^8\) acid catalysts are known to improve the regioselectivity of cycloadditions with unsymmetrical quinones by coordination (or protonation) with the least sterically hindered or the most basic carbonyl group of the quinones.\(^7\) Some asymmetric catalysts have been reported to promote highly enantio- and regioselective reactions with quinones.\(^9-11\) The regioselectivity of the Diels–Alder reaction can also be controlled by remote substituents in benzo-, naphtho- and 1,4-phenanthrenequinones.\(^5,8,12,13\) In those cases, Lewis acid catalysts are also used to improve the regioselectivity. The introduction of Cl or Br atoms (X) at the quinone’s dienophilic double bond has been used with the double aim of controlling regioselectivity and recovering the quinone skeleton after the cycloaddition by elimination of HX.\(^14\) Sulfoxides\(^15,16\) and boronic acids\(^8\) have also been used to this end. With enantiomerically pure sulfinylquinones, we have reached excellent regio- and stereochemical control in the cycloadditions, en route to salvinorin A.\(^17,18\) The group of C. Carreño successfully applied this strategy to the synthesis of a number of complex molecules.\(^19-21\)

Solvents play a crucial role in Diels-Alder reactions. They greatly influence the reaction rates, the regioselectivity as well as the endo/exo selectivity of cycloadditions.\(^22-25\) Solvents with a high hydrogen-bond-donating (HBD) ability, namely fluorinated alcohols, lead to selectivities that are comparable to those obtained when Lewis acids are used as catalysts.\(^26\) In fact, 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) is widely used as a reaction medium since it is a strong hydrogen bonding donor, but a weak acceptor and nucleophile. It has been shown to accelerate a variety of transformations,\(^27-31\) and has emerged as a remarkable solvent for [4 + 2] cycloaddition reactions.\(^23,32-34\)

To our knowledge, only few examples have been reported in which HFIP facilitates a cycloaddition using 1,4-quinones,\(^32,35\) among which one describes exclusive endo- and very high regioselectivity.\(^32,36\)

Results and Discussion

In the context of a total synthesis, we set out to explore the reactivity of sulfinylquinone 1a, which had already been shown to be a convenient chiral starting material for the enantioselective synthesis of terpene natural products, towards moderately reactive dienes (Figure 1).\(^18\)
Figure 1. General strategy towards the synthesis of natural products.

We screened a variety of solvents in order to determine the optimal conditions in terms of reaction rate and stereoselectivity (Table 1). This screening is similar to the one performed by Carreño’s group on a less substituted sulfinylquinone.37

Table 1. Time, conversions, yields and products ratios for the Diels-Alder reaction between sulfinylquinone 1a and cyclopentadiene 2a in different solvents at room temperature

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Time</th>
<th>Conversion[a] (%)</th>
<th>α:β[b]</th>
<th>Isolated Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Benzene</td>
<td>10d</td>
<td>80</td>
<td>21:79</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>CHCl₃</td>
<td>5d</td>
<td>Quant.</td>
<td>32:68</td>
<td>74</td>
</tr>
<tr>
<td>3</td>
<td>CH₂Cl₂</td>
<td>5d</td>
<td>Quant.</td>
<td>35:65</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>THF</td>
<td>18h</td>
<td>Quant.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>Acetone</td>
<td>5d</td>
<td>Quant.</td>
<td>28:72</td>
<td>69</td>
</tr>
<tr>
<td>6</td>
<td>DMF</td>
<td>26h</td>
<td>Quant.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>MeCN</td>
<td>5d</td>
<td>Quant.</td>
<td>30:70</td>
<td>70</td>
</tr>
<tr>
<td>8</td>
<td>DMSO</td>
<td>10h</td>
<td>Quant.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>9</td>
<td>AcOH</td>
<td>2d</td>
<td>Quant.</td>
<td>64:36</td>
<td>75</td>
</tr>
<tr>
<td>10</td>
<td>HFIP</td>
<td>35 min</td>
<td>Quant.</td>
<td>88:12</td>
<td>66</td>
</tr>
<tr>
<td>11</td>
<td>EtOH</td>
<td>3d</td>
<td>Quant.</td>
<td>42:58</td>
<td>85</td>
</tr>
<tr>
<td>12</td>
<td>H₂O</td>
<td>5d</td>
<td>Quant.</td>
<td>93:7</td>
<td>86</td>
</tr>
</tbody>
</table>

aBased on the ¹H NMR ratio of the starting material and the products. bBased on the ¹H NMR ratio of the products.

The first trials were run in aprotic solvents and the major cycloadduct was β-3a, corresponding to an approach of the diene 2a on the C3-Si face of the sulfinylquinone. The best stereoselectivity was observed in benzene (entry 1). More polar aprotic solvents gave less good stereoselectivities (entries 2, 3, 5 and 7).

On the other hand, when protic solvents were used (entries 9-12), the major isomer was the α-adduct (with the exception of ethanol, entry 11). This inversion of selectivity was also accompanied by a decrease of the reaction time. This phenomenon had been described in Carreño’s work.37 Although they insisted on the
importance of the solvent polarity, we hypothesized that the hydrogen bond between the solvent and the dienophile best explains this change of selectivity. The stronger a hydrogen bond donor the solvent is, the better the selectivity towards α-$3a$ and the lower the reaction times. Among those results, we noticed that HFIP and water gave the highest diastereoselectivities (entries 10 and 12). Even though water gave the best selectivity, HFIP offered both a good selectivity and a very high reaction rate compared to the other solvents.

Among the screened solvents, THF, DMF, and DMSO (entries 4, 6, and 8) did not afford the expected cycloadducts but gave rise to the formation of addition products whose structure is so far elusive.

Given the remarkable results obtained in HFIP, we decided to further study its use as a solvent in Diels-Alder reaction of other quinones.

Study of the influence of HFIP as solvent on the reaction rate and selectivity of Diels-Alder reactions

In order to assess the effect of HFIP in those cycloadditions, differently substituted quinones (Figure 2) were engaged in Diels-Alder reactions.

![Figure 2. Structures of the quinones studied in this work.](image)

We planned to make these quinones react with three different model dienes (cyclopentadiene 2a, piperylene (penta-1,3-diene) 2b, and 2,3-dimethybutadiene 2c) in both dichloromethane and HFIP. The different expected products are presented in Scheme 1.
Scheme 1. Diels-Alder reactions between quinones 1a-l and dienes 2a-c and cycloadducts thereof. Presentation of the possible products with sulfinylquinones 1a,k-m.

In the case of the quinones 1b-j, standard endo-selective Diel-Alder reactions are expected. However, when a sulfoxide is present in R¹ (1a,k-m), a sulfoxide elimination can occur after the cycloaddition. Indeed, some of the sulfinyl-containing cycloadducts are not stable at room temperature and may undergo a β-syn elimination if a hydrogen atom is properly placed on the same face as the sulfoxide moiety. The results obtained with quinones 1b-g are presented in Table 2.

At first glance, it can be noted that the use of HFIP greatly decreased the reaction time for every reaction compared to the ones run in dichloromethane (from days to hours or minutes in some of the cases). The use of HFIP allowed for rather hindered quinones to reach a total conversion, as opposed to partial conversions (entries 11, 13, 15, 21, and 29) or total absence of reaction (entries 17, 23, and 27) observed in dichloromethane. However, the reaction of quinone 1g with diene 2c (entry 32), two very hindered partners, never reached completion, even in HFIP.
Table 2. Reaction times, products, conversions and yields for the Diels-Alder reactions between quinones 1b-g and dienes 2a-c (equivalents of diene in parentheses) in dichloromethane and HFIP at room temperature

<table>
<thead>
<tr>
<th>Entry</th>
<th>Quinone</th>
<th>Diene (eq.)</th>
<th>Solvent</th>
<th>Time</th>
<th>Products</th>
<th>Conversiona (%)</th>
<th>Isolated yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1b</td>
<td>2a (2)</td>
<td>CH$_2$Cl$_2$</td>
<td>30 min</td>
<td>3b</td>
<td>Quant.</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>1b</td>
<td>2a (1)</td>
<td>HFIP</td>
<td>< 1 min</td>
<td>3b</td>
<td>Quant.</td>
<td>>98</td>
</tr>
<tr>
<td>3</td>
<td>1b</td>
<td>2b (2)</td>
<td>CH$_2$Cl$_2$</td>
<td>6 d</td>
<td>5b</td>
<td>Quant.</td>
<td>92</td>
</tr>
<tr>
<td>4</td>
<td>1b</td>
<td>2b (2)</td>
<td>HFIP</td>
<td>< 1 min</td>
<td>5b</td>
<td>Quant.</td>
<td>97</td>
</tr>
<tr>
<td>5</td>
<td>1b</td>
<td>2c (2)</td>
<td>CH$_2$Cl$_2$</td>
<td>8 d</td>
<td>6b</td>
<td>Quant.</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>1b</td>
<td>2c (2)</td>
<td>HFIP</td>
<td>5 min</td>
<td>6b</td>
<td>Quant.</td>
<td>96</td>
</tr>
<tr>
<td>7</td>
<td>1c</td>
<td>2a (2)</td>
<td>CH$_2$Cl$_2$</td>
<td>3 h</td>
<td>3c</td>
<td>Quant.</td>
<td>93</td>
</tr>
<tr>
<td>8</td>
<td>1c</td>
<td>2a (2)</td>
<td>HFIP</td>
<td>< 1 min</td>
<td>3c</td>
<td>Quant.</td>
<td>>98</td>
</tr>
<tr>
<td>9</td>
<td>1c</td>
<td>2b (2)</td>
<td>CH$_2$Cl$_2$</td>
<td>14 d</td>
<td>5c</td>
<td>Quant.</td>
<td>>98</td>
</tr>
<tr>
<td>10</td>
<td>1c</td>
<td>2c (2)</td>
<td>HFIP</td>
<td>30 min</td>
<td>5c</td>
<td>Quant.</td>
<td>>98</td>
</tr>
<tr>
<td>11</td>
<td>1c</td>
<td>2c (2)</td>
<td>CH$_2$Cl$_2$</td>
<td>>15 d</td>
<td>6c</td>
<td>68</td>
<td>59</td>
</tr>
<tr>
<td>12</td>
<td>1c</td>
<td>2c (2)</td>
<td>HFIP</td>
<td>40 min</td>
<td>6c</td>
<td>Quant.</td>
<td>95</td>
</tr>
<tr>
<td>13</td>
<td>1d</td>
<td>2a (2)</td>
<td>CH$_2$Cl$_2$</td>
<td>>15 d</td>
<td>3d</td>
<td>Quant.</td>
<td>>98</td>
</tr>
<tr>
<td>14</td>
<td>1d</td>
<td>2a (2)</td>
<td>HFIP</td>
<td>2 h</td>
<td>3d</td>
<td>68</td>
<td>60</td>
</tr>
<tr>
<td>15</td>
<td>1d</td>
<td>2b (2)</td>
<td>CH$_2$Cl$_2$</td>
<td>>15 d</td>
<td>5d</td>
<td>40</td>
<td>31</td>
</tr>
<tr>
<td>16</td>
<td>1d</td>
<td>2b (2)</td>
<td>HFIP</td>
<td>31 h</td>
<td>5d</td>
<td>Quant.</td>
<td>>98</td>
</tr>
<tr>
<td>17</td>
<td>1d</td>
<td>2c (2)</td>
<td>CH$_2$Cl$_2$</td>
<td>>15 d</td>
<td>—</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>18</td>
<td>1d</td>
<td>2c (2)</td>
<td>HFIP</td>
<td>35 h</td>
<td>6d</td>
<td>Quant.</td>
<td>>98</td>
</tr>
<tr>
<td>19</td>
<td>1e</td>
<td>2a (2)</td>
<td>CH$_2$Cl$_2$</td>
<td>10 d</td>
<td>3e</td>
<td>Quant.</td>
<td>98</td>
</tr>
<tr>
<td>20</td>
<td>1e</td>
<td>2a (2)</td>
<td>HFIP</td>
<td>1 h</td>
<td>3e</td>
<td>Quant.</td>
<td>>98</td>
</tr>
<tr>
<td>21</td>
<td>1e</td>
<td>2b (2)</td>
<td>CH$_2$Cl$_2$</td>
<td>>15 d</td>
<td>5e</td>
<td>35</td>
<td>23</td>
</tr>
<tr>
<td>22</td>
<td>1e</td>
<td>2b (2)</td>
<td>HFIP</td>
<td>19 h</td>
<td>5e</td>
<td>Quant.</td>
<td>95</td>
</tr>
<tr>
<td>23</td>
<td>1e</td>
<td>2c (2)</td>
<td>CH$_2$Cl$_2$</td>
<td>>15 d</td>
<td>—</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>24</td>
<td>1e</td>
<td>2c (2)</td>
<td>HFIP</td>
<td>24 h</td>
<td>6e</td>
<td>Quant.</td>
<td>70</td>
</tr>
<tr>
<td>25</td>
<td>1f</td>
<td>2a (2)</td>
<td>CH$_2$Cl$_2$</td>
<td>2 h</td>
<td>3f</td>
<td>Quant.</td>
<td>>98</td>
</tr>
<tr>
<td>26</td>
<td>1f</td>
<td>2a (2)</td>
<td>HFIP</td>
<td>< 1 min</td>
<td>3f</td>
<td>Quant.</td>
<td>>98</td>
</tr>
<tr>
<td>27</td>
<td>1g</td>
<td>2a (2)</td>
<td>CH$_2$Cl$_2$</td>
<td>>15 d</td>
<td>—</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>28</td>
<td>1g</td>
<td>2a (2)</td>
<td>HFIP</td>
<td>22 h</td>
<td>3g</td>
<td>Quant.</td>
<td>>98</td>
</tr>
<tr>
<td>29</td>
<td>1g</td>
<td>2b (2)</td>
<td>CH$_2$Cl$_2$</td>
<td>>15 d</td>
<td>5g</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>30</td>
<td>1g</td>
<td>2b (2)</td>
<td>HFIP</td>
<td>20 h</td>
<td>5g</td>
<td>Quant.</td>
<td>>98</td>
</tr>
<tr>
<td>31</td>
<td>1g</td>
<td>2c (2)</td>
<td>CH$_2$Cl$_2$</td>
<td>>15 d</td>
<td>—</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>32</td>
<td>1g</td>
<td>2c (2)</td>
<td>HFIP</td>
<td>>15d</td>
<td>6g</td>
<td>55</td>
<td>36</td>
</tr>
</tbody>
</table>

aBased on the 1H NMR ratio of the starting material and the products in the crude mixture.

Unsurprisingly, the substituents on the quinone substrates greatly influence their reactivity. Compared to 1,4-benzoquinone 1b, the addition of methyl or methoxy groups (1d-g) decreases the reaction rate due to both their electron-donating character and steric hindrance. Both are known to be major factors in Diels-Alder reactions.
On the other hand, when electron withdrawing groups are added (1h-j), the reactivity of the quinone is generally strongly increased (Table 3). For example, when quinone 1h reacts with cyclopentadiene, the reaction is complete within a minute, even in dichloromethane.

Table 3. Reaction times, products, conversions and yields for the Diels-Alder reactions between quinones 1h-j and dienes 2a-c (equivalents of diene in parentheses) in dichloromethane and HFIP at room temperature

<table>
<thead>
<tr>
<th>Entry</th>
<th>Quinone</th>
<th>Diene (eq.)</th>
<th>Solvent</th>
<th>Time</th>
<th>Products</th>
<th>Conversiona (%)</th>
<th>Isolated yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1h</td>
<td>2a (2)</td>
<td>CH₂Cl₂</td>
<td><1 min</td>
<td>3h</td>
<td>Quant.</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>1h</td>
<td>2a (2)</td>
<td>HFIP</td>
<td><1 min</td>
<td>3h</td>
<td>Quant.</td>
<td>92</td>
</tr>
<tr>
<td>3</td>
<td>1h</td>
<td>2b (2)</td>
<td>CH₂Cl₂</td>
<td>1h</td>
<td>5h</td>
<td>Quant.</td>
<td>>98</td>
</tr>
<tr>
<td>4</td>
<td>1h</td>
<td>2b (2)</td>
<td>HFIP</td>
<td><1 min</td>
<td>5h</td>
<td>Quant.</td>
<td>>98</td>
</tr>
<tr>
<td>5</td>
<td>1h</td>
<td>2c (2)</td>
<td>CH₂Cl₂</td>
<td>100 min</td>
<td>6h</td>
<td>Quant.</td>
<td>>98</td>
</tr>
<tr>
<td>6</td>
<td>1h</td>
<td>2c (2)</td>
<td>HFIP</td>
<td><1 min</td>
<td>6h</td>
<td>Quant.</td>
<td>98</td>
</tr>
<tr>
<td>7</td>
<td>1i</td>
<td>2a (2)</td>
<td>CH₂Cl₂</td>
<td>10 min</td>
<td>3i</td>
<td>Quant.</td>
<td>95</td>
</tr>
<tr>
<td>8</td>
<td>1i</td>
<td>2a (2)</td>
<td>HFIP</td>
<td><1 min</td>
<td>3i</td>
<td>Quant.</td>
<td>97</td>
</tr>
<tr>
<td>9</td>
<td>1i</td>
<td>2b (2)</td>
<td>CH₂Cl₂</td>
<td>6h</td>
<td>5i</td>
<td>Quant.</td>
<td>>98</td>
</tr>
<tr>
<td>10</td>
<td>1i</td>
<td>2b (2)</td>
<td>HFIP</td>
<td><1 min</td>
<td>5i</td>
<td>Quant.</td>
<td>>98</td>
</tr>
<tr>
<td>11</td>
<td>1i</td>
<td>2c (2)</td>
<td>CH₂Cl₂</td>
<td>18h</td>
<td>6i</td>
<td>Quant.</td>
<td>>98</td>
</tr>
<tr>
<td>12</td>
<td>1i</td>
<td>2c (2)</td>
<td>HFIP</td>
<td><1 min</td>
<td>6i</td>
<td>Quant.</td>
<td>>98</td>
</tr>
<tr>
<td>13</td>
<td>1j</td>
<td>2a (2)</td>
<td>CH₂Cl₂</td>
<td>15 d</td>
<td>3j</td>
<td>Quant.</td>
<td>85</td>
</tr>
<tr>
<td>14</td>
<td>1j</td>
<td>2a (2)</td>
<td>HFIP</td>
<td>7h</td>
<td>3j</td>
<td>Quant.</td>
<td>82</td>
</tr>
<tr>
<td>15</td>
<td>1j</td>
<td>2b (2)</td>
<td>HFIP</td>
<td>8h</td>
<td>5j</td>
<td>Quant.</td>
<td>79</td>
</tr>
<tr>
<td>16</td>
<td>1j</td>
<td>2c (2)</td>
<td>HFIP</td>
<td>14h</td>
<td>6j</td>
<td>Quant.</td>
<td>82</td>
</tr>
</tbody>
</table>

*aBased on the ¹H NMR ratio of the starting material and the products in the crude mixture

However, in that series, one example that caught our attention was the reactivity of quinone 1j (entries 13-16). It is the only case showing different double bond selectivities between the reaction run in dichloromethane and in HFIP with dienes 2b and 2c, but gave the same expected cycloadduct with cyclopentadiene (2a). Both unexpected products are presented in Table 5 and will be discussed in the next section.

In the case of sulfinylquinones 1a,k-m (Table 4), the relationship between their structure and their reactivity is less obvious as they possess a rather bulky electron-withdrawing group. The main factor in those cases seems to be steric hindrance, as less substituted sulfinylquinones (1k,l) react rapidly (less than 24h with every diene) while 1a needs days to achieve complete conversion in CH₂Cl₂. The reactivity of 1k, 1l and 1a in dichloromethane was already known and we compared those results to the ones in HFIP. For the cycloadditions involving quinones 1a and 1k, in dichloromethane, the β-adduct (either followed by the sulfoxide elimination or not) was the major one for all three dienes, when the latter reacted on the expected double bond (entries 1, 3, 5, and 7). A model explaining that selectivity with sulfinylquinones (invoking a specific orientation of the sulfinyl moiety, blocking one face or the other) had already been proposed by Carreño’s group and supported by Hanquet’s group. When the solvent is replaced by HFIP, with cyclopentadiene, the selectivity is inverted towards the α-adduct (entry 2).
We reasoned that a strong hydrogen bond between the solvent molecules and the solute might change the orientation of that sulfinyl group and, therefore, influence the approach of the diene. Surprisingly, acyclic dienes (2b and 2c) did not show the same inversion of selectivity. Instead, the same selectivity as in dichloromethane was observed (entries 4 and 6). Such observations had already been made by Carreño’s group by studying the reaction of diverse quinones with cyclopentadiene and piperylene in the presence of Lewis acids.39 When they used a chelating Lewis acid (ZnBr\textsubscript{2}), favoring the s-trans conformation and the approach of the diene on the opposite face of the quinone, an inversion of facial selectivity was observed compared to the reaction without catalyst or with a non-chelating Lewis acid (BF\textsubscript{3}•OEt\textsubscript{2}). However, with acyclic dienes, such as piperylene, the stereoselectivity was the same whether chelating or non-chelating Lewis acids were used. In order to rationalize those different behaviors, they postulated a significant difference in the transition state energies between cyclic and acyclic dienes, leading to the selection of one face or the other with sulfinylquinones in the presence of chelating Lewis acids.

Despite the presence of (p-tolyl) 4-methylbenzenesulfinothiolate in the crude mixture, suggesting the formation of the cycloadduct, followed by the sulfoxide elimination, we were not able to isolate and identify any Diels-Alder adduct from the reaction between quinone 1k and diene 2b, neither in HFIP nor by reproducing Carreño’s procedure,39 and therefore could not assess the effect of the solvent in this particular case.

Finally, we tested quinone 1m that was never described in Diels-Alder reactions so far. When it was reacted with diene 2a (entries 9 and 10), we obtained, after chromatography, product 4m, in both

Table 4. Reaction times, products, conversions, selectivities and yields for the Diels-Alder reactions between sulfinylquinones 1a,k,m and dienes 2a-c (equivalents of diene in parentheses) in dichloromethane and HFIP at room temperature

| Entry | Quinone | Diene (eq.) | Solvent | Time | Products | Conv.a (%) | α:β ratio | Isolated yield (%)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a</td>
<td>2a (2)</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>5d</td>
<td>3a</td>
<td>Quant.</td>
<td>35:65</td>
<td>93</td>
</tr>
<tr>
<td>2</td>
<td>1a</td>
<td>2a (2)</td>
<td>HFIP</td>
<td>35 min</td>
<td>3a</td>
<td>Quant.</td>
<td>88:12</td>
<td>66</td>
</tr>
<tr>
<td>317</td>
<td>1a</td>
<td>2b (2)</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>10d</td>
<td>9a</td>
<td>Quant.</td>
<td><2:98<</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>1a</td>
<td>2b (2)</td>
<td>HFIP</td>
<td>2h</td>
<td>9a</td>
<td>Quant.</td>
<td><3:95<b</td>
<td>79</td>
</tr>
<tr>
<td>517</td>
<td>1a</td>
<td>2c (2)</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>24h</td>
<td>α-10a + β-6a</td>
<td>Quant.</td>
<td>10:90</td>
<td>81</td>
</tr>
<tr>
<td>6</td>
<td>1a</td>
<td>2c (2)</td>
<td>HFIP</td>
<td>24h</td>
<td>α-10a + β-6a</td>
<td>Quant.</td>
<td>12:88c</td>
<td>81</td>
</tr>
<tr>
<td>739</td>
<td>1k</td>
<td>2b (1)</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>20h</td>
<td>7k</td>
<td>Quant.</td>
<td><3:97<</td>
<td>71</td>
</tr>
<tr>
<td>8</td>
<td>1k</td>
<td>2b (1)</td>
<td>HFIP</td>
<td>5 min</td>
<td>—</td>
<td>Quant.</td>
<td>—</td>
<td>—d</td>
</tr>
<tr>
<td>9</td>
<td>1m</td>
<td>2a (2)</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>20 min</td>
<td>4m</td>
<td>Quant.</td>
<td><3:95<b,e</td>
<td>36</td>
</tr>
<tr>
<td>10</td>
<td>1m</td>
<td>2a (2)</td>
<td>HFIP</td>
<td><1 min</td>
<td>4m</td>
<td>Quant.</td>
<td>>95:5b,e</td>
<td>46</td>
</tr>
<tr>
<td>11</td>
<td>1m</td>
<td>2b (2)</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>16 h</td>
<td>7m</td>
<td>Quant.</td>
<td>α << βe,f</td>
<td>59</td>
</tr>
<tr>
<td>12</td>
<td>1m</td>
<td>2b (2)</td>
<td>HFIP</td>
<td>3 min</td>
<td>7m</td>
<td>Quant.</td>
<td>α < βe,f</td>
<td>63</td>
</tr>
</tbody>
</table>

aBased on the 1H NMR ratio of the starting material and the products in the crude mixture. bBased on the 1H NMR ratio of the adducts still containing the sulfoxide in the crude mixture. cBased on the 1H NMR ratio of the α-adduct and the β-adduct (that underwent a sulfoxide elimination) in the crude mixture. dNo product could be isolated, although the presence of thiosulfinate in the crude mixture suggests the formation of a cycloadduct followed by the sulfoxide elimination. eAssignment of the structure based on the selectivity for 1a. fThe exact selectivity could not be determined.
dichloromethane and HFIP. The cycloaddition being quite fast in both solvents, we were able to analyze the cycloadducts by 1H NMR before they underwent the sulfoxide elimination. Each one of them possessed a different spectrum with the presence of only one diastereoisomer, leading us to the conclusion that we may have obtained both α- and β-adducts individually depending on the solvent we used. The opposite optical rotations for each sample after the sulfoxide elimination confirmed that hypothesis. We suspected that, as for quinone 1a, the product formed in dichloromethane is β-4m and the one obtained in HFIP is α-4m, corresponding to an inversion of selectivity, as observed for quinone 1a with cyclopentadiene. When the same quinone was reacted with diene 2b (entries 11 and 12), the cycloadduct 5m could not be observed, probably due to a rather fast sulfoxide elimination and we isolated 7m as product of that reaction. Although we did not assess the stereoselectivity obtained from both reactions, we measured the specific optical rotations of both samples; +100.9° for dichloromethane and +85.1° for HFIP. We assumed, for the same reasons as described earlier, that the major adduct obtained in dichloromethane was the β-isomer (possessing a positive optical rotation). The relatively high positive optical rotation measured for the HFIP sample, would indicate that, although the selectivity was slightly decreased, the β-adduct remained the major one, just as observed with quinone 1a.

Although the involvement of strong hydrogen bonds is consistent with the spectacular acceleration of the reactions, its influence on the diastereoselectivity of the Diels-Alder reactions with sulfinylquinones remains unclear.

Unexpected outcomes of the Diels-Alder reactions

Some of the cycloadducts and their elimination products (in the case of quinones 1k-m) are not stable or do not react as expected. The reactions that led to unexpected products are presented in Table 5.

When benzoquinone 1b was reacted with two equivalents of cyclopentadiene (2a) in HFIP at room temperature, the trans double cycloaddition was reached in forty minutes (entry 1). In dichloromethane, thirty minutes were needed to reach the mono-cycloaddition. In order to obtain a single addition with 1b in HFIP, only one equivalent of cyclopentadiene must be used (Table 2, entry 2). Next, when bromoquinone 1f was used with acyclic dienes 2b and 2c (entries 2-5), even though the reactions were much faster in HFIP than in dichloromethane, the cycloaddition products could not be isolated. Any attempt to dry the crude mixture led to the degradation of the products. We identified them as being naphthoquinone derivatives coming from the elimination of bromide followed by oxidative aromatization.

In order to obtain those products more cleanly, we treated the cycloadducts with Et$_3$N to control the elimination process (HFIP was removed and replaced by dichloromethane for that step). We were then able to isolate naphthoquinones 12 and 13 in acceptable yields. As explained for quinone 1j, the reactions in dichloromethane and HFIP did not give the same products for dienes 2b and 2c. In dichloromethane, not only the reaction did not occur on the expected double bond, but it also gave products which were not Diels-Alder cycloadducts. Through 1H-13C correlation NMR experiments, we determined the structure to be the result of a [2+2]-cycloaddition of the diene on the more electron-rich double bond of the quinone. The relative configurations were determined by a series of Nuclear Overhauser Effect (NOE) experiments (Figure 3).
Table 5. Results for the Diels-Alder reactions that did not lead to the standard cycloadducts and elimination products presented in Scheme 1

<table>
<thead>
<tr>
<th>Entry</th>
<th>Quin.</th>
<th>Diene (eq.)</th>
<th>Solv.</th>
<th>Time</th>
<th>Products</th>
<th>Conv.(^a) (%)</th>
<th>Ratio(^b)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1b</td>
<td>2a (2)</td>
<td>HFIP</td>
<td>40 min</td>
<td></td>
<td>Quant.</td>
<td>—</td>
<td>93</td>
</tr>
<tr>
<td>2</td>
<td>1f</td>
<td>2b (2)</td>
<td>CH(_2)Cl(_2)</td>
<td>24h</td>
<td></td>
<td>Quant.</td>
<td>—</td>
<td>74</td>
</tr>
<tr>
<td>3</td>
<td>1f</td>
<td>2b (2)</td>
<td>HFIP</td>
<td>3 min</td>
<td></td>
<td>Quant.</td>
<td>—</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>1f</td>
<td>2c (2)</td>
<td>CH(_2)Cl(_2)</td>
<td>42h</td>
<td></td>
<td>Quant.</td>
<td>—</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>1f</td>
<td>2c (2)</td>
<td>HFIP</td>
<td>10 min</td>
<td></td>
<td>Quant.</td>
<td>—</td>
<td>72</td>
</tr>
<tr>
<td>6</td>
<td>1j</td>
<td>2b (2)</td>
<td>CH(_2)Cl(_2)</td>
<td>>15 d</td>
<td></td>
<td>54</td>
<td>—</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>1j</td>
<td>2c (2)</td>
<td>CH(_2)Cl(_2)</td>
<td>>15 d</td>
<td></td>
<td>30</td>
<td>—</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td>1k</td>
<td>2a (1)</td>
<td>CH(_2)Cl(_2)</td>
<td>1h</td>
<td></td>
<td>Quant. 68:32(^c)</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1k</td>
<td>2a (1)</td>
<td>HFIP</td>
<td><1 min</td>
<td></td>
<td>Quant. 77:23(^c)</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1k</td>
<td>2c (1)</td>
<td>CH(_2)Cl(_2)</td>
<td>20h</td>
<td></td>
<td>Quant.</td>
<td>—</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>1k</td>
<td>2c (1)</td>
<td>HFIP</td>
<td>5 min</td>
<td></td>
<td>Quant.</td>
<td>—</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>1l</td>
<td>2a (2)</td>
<td>CH(_2)Cl(_2)</td>
<td>1h</td>
<td></td>
<td>Quant. 56:44(^c)</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1l</td>
<td>2a (2)</td>
<td>HFIP</td>
<td><1 min</td>
<td></td>
<td>Quant. 77:23(^c)</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1l</td>
<td>2b (2)</td>
<td>CH(_2)Cl(_2)</td>
<td>20h</td>
<td>Complex mixture</td>
<td>Quant.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>15</td>
<td>1l</td>
<td>2b (2)</td>
<td>HFIP</td>
<td>10 min</td>
<td>Complex mixture</td>
<td>Quant.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>16</td>
<td>1l</td>
<td>2c (2)</td>
<td>CH(_2)Cl(_2)</td>
<td>20h</td>
<td></td>
<td>Quant. 79:21(^c)</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1l</td>
<td>2c (2)</td>
<td>HFIP</td>
<td>10 min</td>
<td></td>
<td>Quant. 39:61(^c)</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1m</td>
<td>2c (2)</td>
<td>CH(_2)Cl(_2)</td>
<td>22h</td>
<td></td>
<td>Quant.</td>
<td>—</td>
<td>53</td>
</tr>
<tr>
<td>19</td>
<td>1m</td>
<td>2c (2)</td>
<td>HFIP</td>
<td>3 min</td>
<td></td>
<td>Quant.</td>
<td>—</td>
<td>56</td>
</tr>
</tbody>
</table>

\(^a\)Based on the \(^1\)H NMR ratio of the starting material and the products in the crude mixture. \(^b\)Based on the \(^1\)H NMR ratio of the products in the crude mixture. \(^c\)Assignment of the structure as proposed in Carreño’s work.
Even though this quinone presents a strong electron-withdrawing group, and should behave as 1h and 1i, it also presents a methoxy group and a methyl group, both of which disfavor the standard Diels-Alder reaction by electron donation and steric hindrance, respectively. As seen in its X-ray structure (Figure 4), the ester moiety of 1j is 53.98° out of the quinone plane, probably due to an electrostatic repulsion between both oxygen atoms of the quinone carbonyl and the ester group, as well as steric hindrance caused by the methyl group.

Assuming the conformation in apolar and aprotic solvent (such as dichloromethane) is similar to the one in the solid state, the out-of-plane conformation of the ester reduces its electron-withdrawing effect, decreasing the reactivity of that double bond in a Diels-Alder reaction. We also supposed that, being almost perpendicular to the quinone plane, the ester group, combined with the methyl group, causes a significant steric hindrance effect, disfavoring the approach of a diene on that double bond (Figure 4). However, as can be seen in Table 3, the expected Diels-Alder reaction with cyclopentadiene (2a) (entry 13) took place, albeit very slowly. We supposed that the forced s-cis conformation of 2a increases its reactivity enough to outweigh the steric hindrance.

Due to the strong hydrogen bond donation of HFIP, the ester group could be brought back into the quinone plane (as shown in Figure 4), increasing its electron-withdrawing effect, and decreasing the steric hindrance, thereby increasing the reactivity of the quinone double bond. Indeed, reactions with dienes 2b and 2c in HFIP gave the expected cycloadducts and the reactions for all three dienes 2a-c were complete within hours (Table 3, entries 14-16).

A similar phenomenon was observed with sulfinylquinone 1k and diene 2c (entries 10 and 11) as was observed for quinone 1f. As described by Carreño’s group, after formation of the cycloadduct, the latter undergoes sulfoxide elimination followed by aromatization. Unfortunately, the cycloadduct could not be
observed and the stereoselectivity could not be determined as an achiral product (17) was formed. Given the poor yields, this product may not be the major one, but no others were isolated.

The same observation was made for quinone 1m reacting with diene 2c (entries 18 and 19). After the cycloaddition, the sulfoxide elimination most probably occurred on the ring junction (leading to intermediate 8m), followed by an oxidative aromatization leading to compound 13 in moderate yields.

Other unusual observations were made with quinone 1k reacting with diene 2a (entries 8 and 9), and quinone 1l reacting with dienes 2a and 2c (entries 12, 13, 16 and 17). Counterintuitively, the Diels-Alder reaction occurred on the more electron-rich double bond. This phenomenon was already described in Carreño’s work which studied the effect of different parameters on the selectivity of those reactions.⁴⁰ In the case of quinone 1k, they observed a preference for the α-adduct that was reinforced when the reaction occurred in protic solvents. When the reaction is run in HFIP, not only the reaction rate, but also the selectivity towards the α-product increases, as was expected.

In the case of the reaction of quinone 1l with cyclopentadiene (2a), a similar selectivity was observed towards the α-adduct and reinforced in HFIP (based on the structural assignment proposed by Carreño’s group⁴⁰). When the same quinone was reacted with diene 2c, one diastereoisomer stood out and was assigned as the α-adduct in Carreño’s work, which is in agreement with the stereoselectivities observed so far for those particular examples.⁴⁰ When the reaction is run in HFIP, however, an inversion of selectivity, supposedly towards the β-adduct, occurred. These last results confirm that the stereoselectivities observed for sulfinylquinones are far from trivial. Even though the models proposed up to now seem to provide a rational explanation for the observed selectivity in aprotic solvents, the ones proposed for reactions in protic solvents do not apply to every example presented in this work.

Finally, the reaction between quinone 1l and diene 2b (entries 14 and 15) was rapidly finished in both dichloromethane (twenty hours) and HFIP (ten minutes), however, complex mixtures of isomers were obtained and we were not able to isolate the different constituents or identify them.

![Proposed structures of the products obtained from the reaction between quinone 1l and diene 2b.](image)

Figure 5. Proposed structures of the products obtained from the reaction between quinone 1l and diene 2b.

We supposed that the reaction occurred on the least hindered double bond (as for dienes 2a and 2c reacting with 1l), and that two regioisomers (20 and 21, Figure 5) were formed, as the regioselectivity on that bond is poorly controlled. This is supported by the observation of the mass of the expected cycloadducts by HRMS in the crude reaction mixtures (HRMS (ESI+) for [M+H]+ calc.: 349.0660, found: 349.0656).

Limitation of the use of HFIP

Although HFIP showed attractive properties in Diels-Alder reactions with quinones, its use cannot be extended to all dienes. One major limitation comes from its relatively high acidity. We tried to react sulfinylquinone 1a with oxygenated dienes, such as Danishefsky’s diene or 2-trimethylsilyloxybutadiene, but the only reaction which occurred was the cleavage of the silyl enol ether group, leading to the ketone. This does not represent a major drawback, however, since both dienes are quite reactive, even in apolar solvents.
Therefore, the sensitivity of the reactants to acidic media should be taken into account before attempting to use HFIP as solvent.

We also observed that, at a temperature of and above 30°C, a clear precipitate was forming, but the Diels-Alder reaction was not occurring. We suspected a polymerization of the diene. The sensitivity of the reactants to acidic media should then be then taken into account before attempting to use HFIP as solvent.

Conclusions

In summary, we have shown that the use of HFIP as solvent could greatly accelerate Diels-Alder reactions of quinones, thanks to its strong hydrogen bond donating ability. We could reach complete conversion in many cases at room temperature for reactions that otherwise needed higher temperatures and longer reaction times to complete in other solvents. Therefore, reactions that are inconveniently slow (or even not observed at all) in traditional solvents can be run in minutes or hours in HFIP. HFIP also showed the capacity to favor Diels-Alder reactions where other apolar and aprotic solvents gave other unexpected outcomes, such as [2+2]-cycladducts.

We could also highlight the impact of HFIP on the stereoselectivity observed for sulfinylquinones. Selectivities obtained with cyclopentadiene reacting on the sulfoxide-bearing double bond were inverted between dichloromethane and HFIP, whereas acyclic dienes conserved the same facial selectivity. It was then concluded that the models proposed so far to explain the selectivities obtained in apolar solvents were not sufficient in the case of protic solvents.

Finally, we have also shown that HFIP may change the selectivity between the double bonds of the quinone, restoring the expected reactivity. The above findings establish that HFIP is a solvent of choice to accelerate moderately or very slow Diels-Alder reactions whilst assuring high levels of regio- and diasteroselectivity.

Experimental Section

General. Reagents and solvents were purchased as reagent grade and used without further purification, with the exception of cyclopentadiene 2a, which is commercially available in its dimer form. The monomer was freshly distilled after the cracking of the dimer. THF and dichloromethane were purified and dried using an MBraun SPS Compact solvent purification system. Column chromatography: silica gel 60 (230-400 mesh, 0.040-0.063 mm). Demetallated silica gel was prepared according to a published procedure. Thin Layer Chromatography (TLC) was performed on aluminum sheets coated with silica gel 60 F254 Merck (unless otherwise stated), visualization by UV light, KMnO4 stain, or p-anisaldehyde stain followed by heating. NMR spectra (1H and 13C) were recorded on a Jeol JNM 400 MHz or 500 MHz (1H NMR at 400 MHz or 500 MHz and 13C NMR at 100 MHz or 125 MHz spectrometer). Chemical shifts are reported in ppm with the solvent resonance at δ 7.26 ppm for CDCl3 and 7.16 ppm for C6D6 in 1H spectra, and relative to the central CDCl3 resonance δ 77.16 ppm for CDCl3 and the central resonance at δ 128.06 ppm for C6D6 in 13C spectra, unless stated otherwise. NMR data are reported as (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad; coupling constant(s) in Hz; integration). Optical rotations were measured using a MCP200 Polarimeter (Anton Paar). The solutions were prepared using analytical grade solvents and concentrations (c) are given in g/100 mL.
Synthesis of quinones

(+)-(S)-5-Methoxy-2-methyl-3-(p-tolysulfinyl)cyclo-hexa-2,5-diene-1,4-dione (1a). Compound 1a was synthesized according to the procedure of Hanquet et al.17,18; R\textsubscript{f} (5/5 cyclohex./AcOEt): 0.43; m: 130-132°C; [α]D20 (c = 1.0, CH\textsubscript{2}Cl\textsubscript{2}): +469.4°; 1H NMR (500 MHz, CDCl\textsubscript{3}) δ 7.64 (2H, d, J = 8.1 Hz, 2 × CHp-tolyl), 7.29 (2H, d, J = 8.1 Hz, 2 × CHp-tolyl), 5.96 (1H, s, MeOCC\textsubscript{Me}), 3.79 (3H, s, MeO), 3.00 (2H, s, CH\textsubscript{Me}), 2.90 (3H, s, Me\textsubscript{quinone}), 2.39 (3H, s, ArMep-tolyl); 13C NMR (125 MHz, CDCl\textsubscript{3}) δ 185.37, 179.30, 157.96, 148.23, 144.67, 141.89, 139.48, 130.24, 125.02, 108.06, 56.68, 21.54, 9.55.

2,3,5-Trimethylcyclohexa-2,5-diene-1,4-dione (1d). A solution of CAN (27.9 g, 50.9 mmol) in water (150 mL) was added to solution of 2,3,5-trimethylhydroquinone (3.07 g, 20.2 mmol) in acetonitrile (300 mL). After ten minutes at room temperature, the acetonitrile was evaporated, and the aqueous residue was extracted with dichloromethane. The organic phase was washed with water and brine and dried over MgSO\textsubscript{4}. It was filtered and the solvents evaporated in vacuo to give 1d (2.00 g, 66%) as a yellow solid which was used without any further purifications; R\textsubscript{f} (6/4 cyclohex./AcOEt): 0.64; m\textsubscript{p}: 34-36°C; 1H NMR (500 MHz, CDCl\textsubscript{3}) δ 6.54 (1H, q, J = 1.6 Hz, MeCCH), 2.02 (3H, d, J = 1.6 Hz, MeCCH), 2.01 (3H, dd, J = 2.3, 1.2 Hz, MeCCMe), 1.99 (3H, dd, J = 2.3, 1.2 Hz, MeCCMe); 13C NMR (125 MHz, CDCl\textsubscript{3}) δ 188.01, 187.63, 145.45, 141.02, 133.19, 16.00, 12.47, 12.17.

2,3-Dimethoxy-5-methyl-cyclohexa-2,5-diene-1,4-dione (1e). A solution of CAN (6.63 g, 12.1 mmol) in water (75 mL) was added to a solution of 1,2,3,4-tetramethoxy-5-methylbenzene (1.01 g, 4.77 mmol) in acetonitrile (75 mL). After twenty minutes at room temperature the acetonitrile was evaporated and the aqueous residue was extracted with dichloromethane. The organic phase was washed with water and brine and dried over MgSO\textsubscript{4}. The solution was filtered and the solvents evaporated in vacuo to give 1e (815 mg, 94%) as a red solid which was used without any further purifications; R\textsubscript{f} (7/3 cyclohex./AcOEt): 0.56; m\textsubscript{p}: 58-60°C; 1H NMR (500 MHz, CDCl\textsubscript{3}) δ 6.43 (1H, q, J = 1.6 Hz, MeCCH), 4.02 (3H, s, MeO), 3.99 (3H, s, MeO), 2.03 (3H, d, J = 1.6 Hz, MeCCH); 13C NMR (500 MHz, CDCl\textsubscript{3}) δ 184.56, 184.34, 145.16, 144.98, 144.19, 131.43, 61.40, 61.33, 15.62.

2-Bromo-6-methoxycyclohexa-2,5-diene-1,4-dione (1f). A solution of CAN (12.7 g, 23.2 mmol) in water (150 mL) was added to a solution of 2-bromo-6-methoxybenzene-1,4-diol43 (2.01 g, 9.19 mmol) in acetonitrile (150 mL). After one hour at room temperature, the acetonitrile was evaporated and the aqueous residue was extracted with dichloromethane. The organic phase was washed with water and brine and dried over MgSO\textsubscript{4}. The solution was filtered and the solvent evaporated. The crude was recrystallized in boiling ethanol to give 1f (1.64 g, 72%) as orange needles; R\textsubscript{f} (6/4 cyclohex./AcOEt): 0.37; m\textsubscript{p}: 167-169°C; 1H NMR (500 MHz, CDCl\textsubscript{3}) δ 7.20 (1H, d, J = 2.3 Hz, BrCCH), 5.96 (1H, d, J = 2.3 Hz, MeOCC\textsubscript{H}), 3.85 (3H, s, MeO); 13C NMR (125 MHz, CDCl\textsubscript{3}) δ 184.76, 174.67, 158.38, 138.61, 134.39, 107.76, 56.95.

3-Bromo-5-methoxy-2-methylcyclohexa-2,5-diene-1,4-dione (1g). A solution of CAN (26.3 g, 48.2 mmol) in water (250 mL) was added to a solution of 3-bromo-1,2,5-trimethoxy-4-methylbenzene17 (5.00 g, 19.2 mmol) in acetonitrile (250 mL). After thirty minutes at room temperature, the acetonitrile was evaporated and the aqueous residue was extracted with dichloromethane. The organic phase was washed with water and brine and dried over MgSO\textsubscript{4}. The solution was filtered and the solvent evaporated. The crude was recrystallized in boiling ethanol to give 1g (4.06 g, 92%) as yellow needles; R\textsubscript{f} (5/5 cyclohex./AcOEt): 0.54; m\textsubscript{p}: 101-104°C; 1H NMR (500 MHz, CDCl\textsubscript{3}) δ 5.96 (1H, s, MeOCC\textsubscript{H}), 3.84 (3H, s, MeO), 2.23 (3H, s, MeCCBr); 13C NMR (125 MHz, CDCl\textsubscript{3}) δ 184.11, 174.74, 158.42, 146.78, 133.13, 107.39, 56.82, 17.23; HRMS (ESI+): for [M+H]+ calc.: 230.9657, found: 230.9651.

Methyl 3,6-dioxycyclohexa-1,4-diene-1-carboxylate (1h)
Methyl 2,5-dihydroxybenzoate. A solution of 2,5-dihydroxybenzoic acid (10.0, 65.1 mmol) and H\textsubscript{2}SO\textsubscript{4} (5 mL) in methanol (70 mL) was refluxed overnight. The methanol was removed and replaced by dichloromethane. The
organic phase was washed with water and a saturated solution of NaHCO₃ and dried over Na₂SO₄. The solution was filtered and the solvents evaporated to give methyl 2,5-dihydroxybenzoate (9.70 g, 89%) as a white solid; Rf (7/3 PhMe/AcOEt): 0.60; mř: 89-92°C; ¹H NMR (500 MHz, CDCl₃) δ 7.24 (1H, d, J = 3.3 Hz, MeO₂CCH), 6.99 (1H, dd, J = 9.0, 3.3 Hz, middle aromatic H), 6.84 (1H, d, J = 9.0 Hz, third aromatic H), 3.89 (3H, s, CO₂Me); ¹³C NMR (125 MHz, CDCl₃) δ 170.37, 155.34, 148.29, 124.26, 118.41, 114.85, 112.24, 52.47.

Methyl 3,6-dioxycyclohexa-1,4-diene-1-carboxylate (1h). A solution of methyl 2,5-dihydroxybenzoate (2.00 g, 11.9 mmol), MgSO₄ (4.10 g, 34.1 mmol) and Ag₂O (4.06 g, 17.5 mmol) in diethyl ether (20 mL) was stirred for four hours at room temperature. The solution was filtered over Celite® and the solvent evaporated to give 1h (1.88 g, 95%) as an orange solid which was used without any further purifications; Rf (7/3 PhMe/AcOEt): 0.65; mř: 51-52°C; ¹H NMR (500 MHz, CDCl₃) δ 7.11 (1H, dd, J = 2.0, 0.5 Hz, HCCH), 6.83 (1H, d, J = 2.0 Hz, HCCH), 6.82 (1H, d, J = 0.5 Hz, MeO₂CCH), 3.91 (3H, s, CO₂Me); ¹³C NMR (125 MHz, CDCl₃) δ 186.95, 183.11, 163.27, 137.14, 137.07, 137.60, 136.28, 135.51.

Methyl 1,4-dioxonaphthalene-2-carboxylate (1i). Compound 1i was synthesized according to the procedure of Lee et al.⁴⁴; Rf (7/3 cyclohex./AcOEt): 0.47; mř: 88-90°C; ¹H NMR (500 MHz, CDCl₃) δ 8.15-8.08 (1H, aromatic CH), 8.07-8.04 (1H, m, aromatic CH), 7.83-7.74 (2H, m, 2 × aromatic CH), 7.26 (1H, s, MeO₂CCH); ¹³C NMR (125 MHz, CDCl₃) δ 184.68, 181.24, 163.91, 139.54, 138.45, 134.70, 134.37, 131.88, 131.69, 127.14, 126.42, 53.27.

Methyl 5-methoxy-2-methyl-3,6-dioxycyclohexa-1,4-diene-1-carboxylate (1j)

Methyl 2,3,5-trimethoxy-6-methylbenzoate. A solution of hexyllithium (2.3 M in hexanes, 6.5 mL, 15.0 mmol) was added to a solution of 3-bromo-1,2,5-trimethoxy-4-methylbenzene¹⁷ (3.06 g, 11.7 mmol) in dry THF (100 mL) cooled down to -78°C. After ten minutes, methyl chloroformate (1.2 mL, 15.5 mmol) was added dropwise and the reaction mixture was allowed to warm up to room temperature. After one hour, the mixture was cooled down to 0°C, quenched with distilled water and diluted with diethyl ether. The phases were separated, the organic phase was dried over Na₂SO₄ and the solvents were evaporated. The crude mixture was purified by flash chromatography on silica gel (95/5 cyclohex./AcOEt) to give the title compound (2.33 g, 83%) as a white powder. Rf (8/2 cyclohex./AcOEt): 0.36; mř: 51-53°C; ¹H NMR (500 MHz, CDCl₃) δ 6.52 (1H, s, MeOCC₆H₄), 3.92 (3H, s, CO₂Me), 3.87 (3H, s, ArOMe), 3.81 (3H, s, ArOMe), 3.80 (3H, s, ArOMe), 2.06 (3H, s, ArMe); ¹³C NMR (125 MHz, CDCl₃) δ 168.46, 154.20, 151.00, 139.57, 130.39, 115.71, 98.92, 61.84, 56.53, 56.36, 52.39, 12.23.

Methyl 5-methoxy-2-methyl-3,6-dioxycyclohexa-1,4-diene-1-carboxylate (1j). A solution of CAN (12.91 g, 23.5 mmol) in water (100 mL) was added to a solution of Methyl 2,3,5-trimethoxy-6-methylbenzoate (2.24 g, 9.33 mmol) in acetonitrile (100 mL). After fifteen minutes, acetonitrile was evaporated and the aqueous phase was extracted with dichloromethane. The organic phase was then dried over Na₂SO₄ and the solvents were evaporated. The crude mixture was dissolved in a minimum of dichloromethane and the product was precipitated by the addition of pentane. The yellow precipitate was filtered, washed with pentane and dried under vacuum to give the title compound (1.62 g, 83%) as a bright yellow powder. Rf (7/3 cyclohex./AcOEt): 0.38; mř: 98-100°C; ¹H NMR (500 MHz, CDCl₃) δ 5.98 (1H, s, MeOCCH), 3.92 (3H, s, CO₂Me), 3.83 (3H, s, ArOMe), 2.06 (3H, s, MeO₂CMe); ¹³C NMR (125 MHz, CDCl₃) δ 186.42, 178.65, 164.48, 158.14, 143.44, 135.81, 107.71, 56.58, 53.00, 13.59; HRMS (ESI+): for [M+Na]+ calc.: 233.0420, found: 233.0420. Crystals for quinone 1j were obtained by slow evaporation from dichloromethane at room temperature.

(+)-(S)-2-(p-Tolylsulfinyl)cyclohexa-2,5-diene-1,4-dione (1k) was synthesized according to the procedure of Carreño et al.⁸; Rf (5/5 cyclohex./AcOEt): 0.63; mř: 124-126°C; [α]D²⁰ (c = 1.0, CHCl₃): +1011°; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (2H, d, J = 8.1 Hz, 2 × CH₃-tolyl), 7.43 (1H, d, J = 2.5 Hz, ArS(O)CC₆H₄quinone), 7.29 (2H, d, J = 8.1 Hz, 2 × CH₃-tolyl), 6.79 (1H, dd, J = 10.1, 2.5 Hz, HCCH₂quinone), 6.71 (1H, d, J = 10.1 Hz, HCCH₂quinone), 2.39 (3H, s,
ArMe\textsubscript{p-tolyl}); 13C NMR (100 MHz, CDCl\textsubscript{3}) δ 185.23, 183.71, 155.46, 143.09, 138.31, 137.53, 136.56, 131.69, 130.39, 125.94, 21.62.

(+)-(S)-2-Chloro-3-(p-tolylsulfinyl)cyclohexa-2,5-diene-1,4-dione (1I) was synthesized according to the procedure of Carreño et al.40; \textit{Rf (5/5 cyclohex./AcOEt): 0.41; m\textsubscript{p}: 138-140°C; [α]D\superscript{20} (c = 1.0, CHCl\textsubscript{3}): +638°; 1H NMR (500 MHz, CDCl\textsubscript{3}) δ 7.72 (2H, d, J = 8.2 Hz, 2 × CH\textsupscript{p-tolyl}), 7.33 (2H, d, J = 8.2 Hz, 2 × CH\textsupscript{p-tolyl}), 6.91 (1H, d, J = 10.1 Hz, CHquinone), 6.78 (1H, d, J = 10.1 Hz, CHquinone), 2.40 (3H, s, ArMe\textsubscript{p-tolyl}); 13C NMR (125 MHz, CDCl\textsubscript{3}) δ 181.27, 177.91, 146.28, 143.71, 142.61, 138.03, 130.34, 125.17, 21.63.

(+)-(S)-2-Methoxy-5-(p-tolylsulfinyl)cyclohexa-2,5-diene-1,4-dione (1m)

1-Bromo-2,5-bis(ethoxymethoxy)-4-methoxybenzene. To an ice bath (0°C) cooled down solution of 2-bromo-5-methoxybenzene-1,4-diol45 (2.50 g, 11.4 mmol) and BnEt\textsubscript{3}NCl (267 mg, 1.17 mmol) in dry THF (25 mL) was added NaOH (2.761 g, 69.0 mmol) and ethoxymethyl chloride (4.2 mL, 45.3 mmol). The solution was stirred one hour at 0°C and one hour at room temperature. It was then poured in water (25 mL). After ten minutes, the phases were separated, the organic layer was washed with brine and dried over MgSO\textsubscript{4}. It was filtered and the solvent was evaporated. The crude was chromatographed on silica gel (9/1 cyclohex./AcOEt) to give the title compound (2.81 g, 73%) as a yellowish oil; \textit{Rf (7/3 cyclohex./AcOEt): 0.57; 1H NMR (500 MHz, CDCl\textsubscript{3}) δ 7.32 (1H, s, BrCCH), 6.82 (1H, s, MeOCCH), 5.22 (2H, s, MeCH\textsubscript{2}OCH\textsubscript{2}OC), 5.18 (2H, s, MeCH\textsubscript{2}OCH\textsubscript{2}OAr), 3.84 (3H, s, MeO), 3.84 (2H, q, J = 7.1 Hz, MeCH\textsubscript{2}OCH\textsubscript{2}O), 3.80 (2H, q, J = 7.1 Hz, MeCH\textsubscript{2}OCH\textsubscript{2}O), 1.24 (3H, t, J = 7.1 Hz, MeCH\textsubscript{2}OCH\textsubscript{2}O); 13C NMR (125 MHz, CDCl\textsubscript{3}) δ 150.08, 149.57, 142.26, 121.41, 102.72, 102.60, 95.00, 94.92, 64.68, 64.57, 56.27, 15.22, 15.18.

(--)(S)-1,4-Bis(ethoxymethoxy)-2-methoxy-5-(p-tolylsulfinyl)benzene. A solution of Hexyllithium (2.3 M in hexane, 2.7 mL, 6.21 mmol) was added to a solution of 1-bromo-2,5-bis(ethoxymethoxy)-4-methoxybenzene (2.06 g, 6.15 mmol) in dry THF (60 mL) cooled down to -78°C. After thirty minutes at -78°C, the lithium solution was quickly cannulated over a solution of methyl (--)(S)-p-tolylsulfinate46 (1.88 g, 6.38 mmol) in dry THF (60 mL) cooled down to -78°C. The final mixture was stirred one hour at -78°C, one hour at room temperature and quenched with saturated NH\textsubscript{4}Cl. The phases were separated and the organic layer was washed with brine and dried over MgSO\textsubscript{4}. It was filtered and the solvent was evaporated. The crude was chromatographed over silica gel (8/2 to 6/4 cyclohex./AcOEt) to give the title compound (1.67 g, 69%) as a yellowish oil; \textit{Rf (7/3 cyclohex./AcOEt): 0.11; [α]D\superscript{20} (c = 1.0, CHCl\textsubscript{3}): -75.2°; 1H NMR (500 MHz, CDCl\textsubscript{3}) δ 7.57 (1H, s, ArSO(O)CCH), 7.55 (2H, d, J = 8.1 Hz, CHp-tolyl), 7.21 (2H, d, J = 8.1 Hz, CHp-tolyl), 6.73 (1H, s, MeOCCH), 5.21 (2H, dd, AB, J\textsubscript{AB} = 6.6 Hz, Δν\textsubscript{AB} = 10.7 Hz, MeCH\textsubscript{2}OCH\textsubscript{2}O), 5.14 (2H, dd, A′B′, J\textsubscript{A′B′} = 7.1 Hz, Δν\textsubscript{A′B′} = 19.2 Hz, MeCH\textsubscript{2}OCH\textsubscript{2}O), 3.84 (3H, s, MeO), 3.75 (2H, q, J = 7.1 Hz, MeCH\textsubscript{2}OCH\textsubscript{2}O), 3.58 (2H, ddq, CDX, J\textsubscript{CD} = 9.6 Hz, J\textsubscript{CX} = J\textsubscript{DX} = 7.1 Hz, Δν\textsubscript{CD} = 45.2 Hz, MeCH\textsubscript{2}OCH\textsubscript{2}O), 2.34 (3H, s, ArMe\textsubscript{o-tolyl}), 1.19 (3H, t, J = 7.1 Hz, MeCH\textsubscript{2}OCH\textsubscript{2}O), 1.15 (3H, dd, CDX, J\textsubscript{CX} = J\textsubscript{DX} = 7.1 Hz, MeCH\textsubscript{2}OCH\textsubscript{2}O); 13C NMR (125 MHz, CDCl\textsubscript{3}) δ 153.43, 149.68, 142.09 (two signals at the same shielding), 141.24, 129.74, 125.34 (two signals at the same shielding), 113.73, 100.24, 94.97, 93.95, 64.65, 64.53, 56.31, 21.50, 15.16, 15.13.

(+)-(S)-2-Methoxy-5-(p-tolylsulfinyl)cyclohexa-2,5-diene-1,4-dione (1m). A solution of CAN (5.27 g, 9.61 mmol) in water (25 mL) was added to a solution of (+)-(S)-1,4-bis(ethoxymethoxy)-2-methoxy-5-(p-tolylsulfinyl)benzene (1.50 g, 3.80 mmol) in acetonitrile (50 mL). After thirty minutes, the acetonitrile was evaporated and the aqueous residue was extracted with dichloromethane. The organic layer was washed with brine and dried over MgSO\textsubscript{4}. The solution was filtered and the solvents evaporated to give 1I (935 mg, 89%) as an orange powder which was used without any further purifications; \textit{Rf (5/5 cyclohex./TBME): 0.20; m\textsubscript{p}: 121-123°C; [α]D\superscript{20} (c = 1.0, CHCl\textsubscript{3}): +428.8°; 1H NMR (500 MHz, CDCl\textsubscript{3}) δ 7.65 (2H, d, J = 8.2 Hz, 2 × CHp-tolyl), 7.34 (1H, s, ArS(O)CCH), 7.29 (2H, d, J = 8.2 Hz, 2 × CHp-tolyl), 5.85 (1H, s, MeOCCH), 3.91 (3H, s, MeO), 2.38 (3H, s, ArMe\textsubscript{p-tolyl}).
Diels-Alder reactions and derived products

General procedure for the Diels-Alder reaction. The quinone was dissolved in dichloromethane or HFIP (10 ml/mmol of quinone). The diene (1 or 2 equivalents) was then added at room temperature. All reaction mixtures were homogeneous. Once the reaction reached complete or maximum conversion, the solvent was evaporated and the crude purified if necessary (otherwise it was pure enough to be analyzed without any further purification). See Tables 2-5 for times of reactions, equivalents of dienes, conversions and yields.

(-)-(1R,4S,4aS,8aR)-6-Methoxy-8a-methyl-4a-((S)-p-tolylsulfinyl)-1,4,4a,8a-tetrahydro-1,4-methanonaphthalene-5,8-dione (α-3a). Quinone 1a (257 mg, 0.885 mmol in CH₂Cl₂; 260 mg, 0.896 mmol in HFIP) and diene 2a (0.15 mL, 1.78 mmol in CH₂Cl₂; 0.15 mL, 1.78 mmol in HFIP) were reacted following general procedure. The crude product was purified by flash chromatography on silica gel (40/1/0.2 CH₂Cl₂/AcOEt/acetone) to isolate α-3a (103 mg, 33% in CH₂Cl₂; 186 mg, 58% in HFIP) in the first fraction as a brown powder; Rf (0.15 mL, 1.78 mmol in CH₂Cl₂; 0.15 mL, 1.78 mmol in HFIP) were reacted following general procedure. The same procedure as α-3a was followed to give β-3a (189 mg in CH₂Cl₂, 60%; 25 mg, 7.9% in HFIP) in the second fraction as a brown powder; Rf (40/5/1 CH₂Cl₂/acetone) to isolate β-3a (207 mg, 72%; 260 mg, 68% in HFIP) in the second fraction as a yellow oil that crystallizes in the fridge; Rf (7 mL) to let the sulfoxide none was dissolved in dichloromethane or HFIP (10 ml/mmol of quinone). The diene (1 or 2 equivalents) was then added at room temperature. All reaction mixtures were homogeneous. Once the reaction reached complete or maximum conversion, the solvent was evaporated and the crude purified if necessary (otherwise it was pure enough to be analyzed without any further purification). See Tables 2-5 for times of reactions, equivalents of dienes, conversions and yields.

(-)-(S)-4a,8a-tetrahydro-1,4-methanonaphthalene-5,8-dione (α-10a). Quinone 1a (198 mg, 0.682 mmol in HFIP) and diene 2c (0.16 mL, 1.41 mmol in HFIP) were reacted following the general procedure. The crude product was purified by flash chromatography on demetallated silica gel (9/1 to 8/2 cyclohex./AcOEt) to
isolate α-10a (HFIP: 15 mg, 9.7%) in the first fraction as a yellow oil; Rf (5/5 cyclohex./AcOEt): 0.56; [α]D^20 (c = 0.40, CHCl3): +12.8°; 1H NMR (500 MHz, CDCl3) δ 7.16 (1H, s, MeCH), 5.94 (1H, s, MeOCH), 3.84 (3H, s, MeO), 2.56-2.43 (2H, m, CH2), 1.92 (3H, sbr, MeCCMe), 1.89 (3H, sbr, MeCCMe), 1.21 (3H, s, Me^angular); 13C NMR (125 MHz, CDCl3) δ 201.14, 179.79, 163.67, 140.45, 138.82, 131.49, 125.18, 109.48, 56.52, 44.78, 39.42, 26.06, 20.86, 17.16.

(-)-(4aS,8aR)-2-Methoxy-4a,6,7-trimethyl-8a-(S)-p-tolylsulfinyl)-4a,5,8,8a-tetrahydronaphthalene-1,4-dione (B-6a). The same procedure as for α-10a was followed to isolate β-6a (181 mg, 71% in HFIP) as a light orange solid foam; Rf (5/5 cyclohex./AcOEt): 0.49; mp: 125-126°C; [α]D^20 (c = 1.0, CH2Cl2): -207.0°; 1H NMR (500 MHz, C6D6) δ 7.21 (2H, d, J = 7.7 Hz, 2 × CH^p-tolyl), 6.87 (2H, d, J = 7.7 Hz, 2 × CH^p-tolyl), 6.10 (1H, s, MeOCC), 2.97 (3H, s, Me^angular), 2.64 (1H, d, J = 17.4 Hz, ½ × ArS(O)CC2H), 2.20 (1H, d, J = 17.4 Hz, ½ × angularMeCC2H), 2.07 (1H, d, J = 17.4 Hz, ArS(O)CC2H), 1.89 (3H, s, ArMe^p-tolyl), 1.82 (1H, d, J = 17.4 Hz, angularMeCC2H), 1.78 (3H, s, Me^angular), 1.44 (3H, s, MeCCMe), 1.22 (3H, s, MeCCMe); 13C NMR (125 MHz, C6D6) δ 197.42, 186.31, 161.67, 142.50, 136.42, 129.94, 122.81, 122.81, 121.93, 113.32, 79.11, 55.27, 49.77, 45.21, 30.10, 21.19, 18.58, 18.50, 16.94.

(1R,4S,4aR,8aS)-1,4,4a,8a-Tetrahydro-1,4-methanonaaphthalene-5,8-dione (3b). Quinone 1b (208 mg, 1.92 mmol in CH2Cl2; 51 mg, 0.476 mmol in HFIP) and diene 2a (0.33 mL, 3.92 mmol in CH2Cl2; 0.04 mL, 0.476 mmol in HFIP) were reacted following the general procedure to give 1b (326 mg, 94% in CH2Cl2; 83 mg, >98% in HFIP) as a grey powder; Rf (8/2 cyclohex./AcOEt): 0.26; mp: 66-69°C; 1H NMR (500 MHz, CDCl3) δ 6.57 (2H, s, HCCH^quione), 6.06 (2H, dd, ABXZY, JAX = JAY = 1.8 Hz, HCC^diened), 3.54 (2H, m, ABXYZ, 2 × CH^bridge), 3.22 (2H, dd, ABXYZ, JYz = 2.3 Hz, JYz = 1.5 Hz, 2 × CH^angular), 1.48 (2H, dddd, ABXYZ, JAB = 8.8 Hz, JAX = 1.8 Hz, JBZ = 1.5 Hz, ΔνAB = 55.7 Hz, CH^bridge); 13C NMR (125 MHz, CDCl3) δ 199.62, 142.20, 135.43, 48.91, 48.85, 48.47.

(±)-rel-(4aR,SR,8aS)-5-Methyl-4a,5,8,8a-tetrahydronaphthalene-1,4-dione (5b). Quinone 1b (217 mg, 2.01 mmol in CH2Cl2; 56 mg, 0.516 mmol in HFIP) and diene 2b (0.40 mL, 4.01 mmol in CH2Cl2; 0.10 mL, 1.00 mmol in HFIP) were reacted following general procedure to give 5b (324 mg, 92% in CH2Cl2; 88 mg, 97% in HFIP) as a grey oil; Rf (7/3 cyclohex./AcOEt): 0.50; 1H NMR (500 MHz, CDCl3) δ 6.75 (1H, d, J = 10.3 Hz, HCC^quione), 6.69 (1H, d, J = 10.3 Hz, HCC^quione), 5.70-5.59 (2H, m, HCC^diened), 3.34 (1H, dd, J = 6.0, 5.9 Hz, MeCH^angular), 3.24 (1H, ddd, J = 7.5, 5.9, 3.9 Hz, CH2CH^angular), 2.57 (1H, m, MeCH), 2.49 (2H, m, CH2), 0.94 (3H, d, Me^angular); 13C NMR (125 MHz, CDCl3) δ 201.31, 199.71, 141.21, 140.60, 130.99, 123.48, 50.52, 45.49, 31.86, 22.50, 18.69.

(4aR,8aS)-6,7-Dimethyl-4a,5,8,8a-tetrahydronaphthalene-1,4-dione (6b). Quinone 1b (206 mg, 1.90 mmol in CH2Cl2; 56 mg, 0.521 mmol in HFIP) and diene 2c (0.43 mL, 3.80 mmol in CH2Cl2; 0.12 mL, 1.06 mmol in HFIP) were reacted following general procedure to give 6b (288 mg, 80% in CH2Cl2; 95 mg, 96% in HFIP) as a grey powder; Rf (7/3 cyclohex./AcOEt): 0.59; mp: 120-123°C; 1H NMR (500 MHz, CDCl3) δ 6.65 (2H, s, HCC^quione), 3.24-3.12 (2H, m, 2 × CH^angular), 2.46-1.98 (4H, m, 2 × CH2), 1.62 (6H, s, 2 × Me); 13C NMR (125 MHz, CDCl3) δ 200.42, 139.45, 123.41, 47.18, 30.55, 18.97.

(1R,4S,4aR,9aS)-1,4,4a,9a-Tetrahydro-1,4-methanoanthracene-9,10-dione (3c). Quinone 1c (195 mg, 1.23 mmol in CH2Cl2; 51 mg, 0.323 mmol in HFIP) and diene 2a (0.21 mL, 2.50 mmol in CH2Cl2; 0.06 mL, 0.714 mmol in HFIP) were reacted following general procedure to give 3c (257 mg, 93% in CH2Cl2; 72 mg, >98% in HFIP) as a grey powder; Rf (8/2 cyclohex./AcOEt): 0.33; mp: 108-110°C; 1H NMR (500 MHz, CDCl3) δ 8.02 (2H, dd, J = 5.9, 3.3 Hz, 2 × CH^Ar), 7.69 (2H, dd, J = 5.9, 3.3 Hz, 2 × CH^Ar), 5.98 (2H, dd, ABXYZ, JAX = JAY = 1.8 Hz, HCC^diened), 3.66 (2H, m, ABXYZ, 2 × CH^bridge), 3.45 (2H, dd, ABXYZ, JYz = 2.5 Hz, JYz = 1.4 Hz, 2 × CH^angular), 1.55 (2H, dddd, ABXYZ, JAB = 8.6 Hz, JAX = 1.8 Hz, JBZ = 1.4 Hz, ΔνAB = 17.2 Hz, CH^bridge); 13C NMR (125 MHz, CDCl3) δ 197.97, 135.93, 135.86, 134.24, 126.98, 49.66, 49.63, 49.35.

(±)-rel-(-1R,4aS,9aR)-1-Methyl-1,4,4a,9a-tetrahydroanthracene-9,10-dione (5c). Quinone 1c (208 mg, 1.32 mmol in CH2Cl2; 66 mg, 0.419 mmol in HFIP) and diene 2b (0.26 mL, 2.61 mmol in HFIP; 0.08 mL, 0.802 mmol in HFIP) were reacted following general procedure to give 5c (300 mg, >98% in CH2Cl2; 96 mg, >98% in HFIP) as
Arkivoc 2024 (5) 202312140
Jeanmart, L. et al.

Page 19 of 29

AUTHOR(S)

a grey oil; \(R_t (7/3 \text{ cyclohex./AcOEt}) : 0.81; \) \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 8.09-8.00 (2H, m, \(2 \times \text{CH}^\text{Ar} \)), 7.77-7.71 (2H, m, \(2 \times \text{CH}^\text{Ar} \)), 5.76-5.65 (2H, m, \(\text{HCH}^\text{diene} \)), 3.51 (1H, dd, \(J = 5.9, 5.8 \text{ Hz}, \text{MeCH}^\text{H}^\text{angular} \)), 3.43-3.38 (1H, m, \(\text{CH}_2\text{CH}^\text{angular} \)), 2.85-2.75 (1H, m, \(½ \times \text{CH}_2 \)), 2.73-2.55 (1H, m, MeCH), 2.26-2.18 (1H, m, \(½ \times \text{CH}_2 \)), 0.84 (3H, d, \(J = 7.4 \text{ Hz}, \text{MeCH} \)); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) 199.14, 198.35, 135.90, 135.43, 134.33, 134.24, 131.29, 126.76, 126.63, 123.65, 50.90, 46.03, 23.09, 18.49.

(4aR,9aS)-2,3-Dimethyl-1,4,4a,9a-tetrahydroanthracene-9,10-dione (6c). Quinone 1c (196 mg, 1.24 mmol in CH\(_2\text{Cl}_2\); 56 mg, 0.354 mmol in HFIP) and diene 2c (0.28 ml, 2.47 mmol in CH\(_2\text{Cl}_2\); 0.08 ml, 0.707 mmol in HFIP) were reacted following general procedure. The crude product was purified by flash chromatography on silica gel (9/1 cyclohex./AcOEt) to give 6c (176 mg, 59% in CH\(_2\text{Cl}_2\); 81 mg, 95% in HFIP) as a grey powder; \(R_t (7/3 \text{ cyclohex./AcOEt}) : 0.70; \) m.p.: 146-149°C; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 8.04 (2H, dd, \(J = 5.8, 3.3 \text{ Hz}, 2 \times \text{CH}^\text{Ar} \)), 7.73 (2H, dd, \(J = 5.8, 3.3 \text{ Hz}, 2 \times \text{CH}^\text{Ar} \)), 3.40-3.29 (2H, m, \(2 \times \text{CH}^\text{angular} \)), 2.53-2.05 (4H, m, \(2 \times \text{CH}_2 \)), 1.64 (6H, s, \(2 \times \text{Me} \)); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) 198.55, 194.37, 134.43, 126.97, 123.30, 47.48, 30.79, 19.04.

(±)-rel-(1R,4S,4aR,8aS)-4a,6,7-Trimethyl-1,4,4a,8a-tetrahydro-1,4-methanonaphthalene-5,8-dione (3d). Quinone 1d (118 mg, 0.783 mmol in CH\(_2\text{Cl}_2\); 52 mg, 0.345 mmol in HFIP) and diene 2a (0.13 ml, 1.55 mmol in CH\(_2\text{Cl}_2\); 0.06 ml, 0.713 mmol in HFIP) were reacted following general procedure. The crude product was purified by flash chromatography on silica gel (95/5 PhMe/Me/acetone) to give 3d (101 mg, 60% in CH\(_2\text{Cl}_2\); 75 mg, >98% in HFIP) as a pale yellow oil; \(R_t (8/2 \text{ PhMe/Me/acetone}) : 0.73; \) \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 6.06 (1H, dd, \(J = 5.6, 2.9 \text{ Hz}, \text{HCH}^\text{diene} \)), 5.92 (1H, dd, \(J = 5.6, 2.8 \text{ Hz}, \text{HCH}^\text{diene} \)), 3.43-3.36 (1H, m, \(\text{CH}^\text{bridge} \)), 3.09-3.02 (1H, m, \(\text{CH}^\text{bridge} \)), 2.81 (1H, d, \(J = 3.9 \text{ Hz}, \text{CH}^\text{angular} \)), 1.91 (6H, s, MeCCMe

(±)-rel-(4aR,8S,8aS)-2,3,4a,8-Tetramethyl-4a,5,8,8a-tetrahydroanthracene-1,4-dione (5d). Quinone 1d (215 mg, 1.43 mmol in CH\(_2\text{Cl}_2\); 86 mg, 0.569 mmol in HFIP) and diene 2b (0.29 ml, 2.91 mmol in HFIP) were reacted following general procedure. The crude product was purified by flash chromatography on silica gel (8/2/0.1 cyclohex./CH\(_2\text{Cl}_2\)/acetone) to give 5d (97 mg, 31% in CH\(_2\text{Cl}_2\); 124 mg, >98% in HFIP) as a pale yellow oil; \(R_t (6/4/0.2 \text{ CHCl}_3/\text{cyclohex./acetone}) : 0.70; \) \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 5.67-5.52 (2H, m, \(\text{HCH}^\text{diene} \)), 2.93-2.82 (2H, m, \(½ \times \text{CH} \)), 2.16-2.09 (1H, m, MeCH), 2.09-2.03 (1H, m, \(½ \times \text{CH}_2 \)), 2.00 (3H, q, \(J = 1.0 \text{ Hz}, \text{MeCCMe} \)), 1.98 (3H, q, \(J = 1.0 \text{ Hz}, \text{MeCCMe} \)), 1.40 (3H, s, Me

(±)-cis-2,3,4a,6,7-Pentamethyl-4a,5,8,8a-tetrahydroanthracene-1,4-dione (6d). Quinone 1d (176 mg, 1.17 mmol in HFIP) and diene 2c (0.26 ml, 2.30 mmol in HFIP) were reacted following general procedure. The crude product was purified by flash chromatography on silica gel (99/1 cyclohex./AcOEt) to give 6d (269 mg, >98% in HFIP) as a pale yellow oil; \(R_t (8 \times 2 \text{ cyclohex./AcOEt}) : 0.66; \) \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 2.81 (1H, t, \(J = 5.9 \text{ Hz}, \text{CH}^\text{angular} \)), 2.52-2.43 (1H, m, \(½ \times \text{CHCH}_2 \)), 2.40 (1H, d, \(J = 17.2 \text{ Hz}, ½ \times \text{MeCHCH}_2 \)), 2.11-2.03 (1H, m, \(½ \times \text{CHCH}_2 \)), 1.97 (6H, s, MeCCMe

(±)-rel-(1R,4S,4aR,8aS)-6,7-Dimethoxy-4a-methyl-1,4,4a,8a-tetrahydro-1,4-methanonaphthalene-5,8-dione (3e). Quinone 1e (43 mg, 0.236 mmol in CH\(_2\text{Cl}_2\); 50 mg, 0.276 mmol in HFIP) and diene 2a (0.04 ml, 0.476 mmol in CH\(_2\text{Cl}_2\); 0.05 ml, 0.595 mmol in HFIP) were reacted following the general procedure to give 3e (58 mg, 98% in CH\(_2\text{Cl}_2\); 68 mg, >98% in HFIP) as a yellow waxy solid; \(R_t (7/3 \text{ cyclohex./AcOEt}) : 0.38; \) \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 6.09 (1H, dd, \(J = 5.7, 2.9 \text{ Hz}, \text{HCH}^\text{diene} \)), 5.95 (1H, dd, \(J = 5.7, 2.8 \text{ Hz}, \text{HCH}^\text{diene} \)), 3.88 (3H, s,
MeOCCOMe), 3.87 (3H, s, MeOCCOMe), 3.36 (1H, s(br), angularHCCHbridge), 3.02 (1H, s(br), angularMeCCbridge), 2.78 (1H, d, J = 3.9 Hz, CHangular), 1.52 (2H, ddd, ABXY, J_AB = 9.2 Hz, J_BX = J_BY = 1.7 Hz, Δν_AB = 60.3 Hz, CHbridge), 1.43 (3H, s, Meangular); 13C NMR (125 MHz, CDCl3) δ 198.49, 194.89, 150.60, 150.54, 138.15, 134.52, 60.66, 60.64, 57.05, 53.41, 52.56, 48.83, 46.34, 26.51.

(±)-rel-(4aR,8bS,8aS)-2,3-Dimethoxy-4a,8-dimethyl-4a,5,8,8a-tetrahydronaphthalene-1,4-dione (5e). Quinone 1e (150 mg, 0.821 mmol in CH2Cl2; 173 mg, 0.947 mmol in HFIP) and diene 2b (0.13 mL, 1.65 mmol in CH2Cl2; 0.15 mL, 1.90 mmol in HFIP) were reacted following general procedure. The crude product was purified by flash chromatography on silica gel (5/5 cyclohex./CH2Cl2) as a yellow oil; Rf (5/5/0.2 cyclohex./CH2Cl2/acetone): 0.46; 1H NMR (500 MHz, CDCl3) δ 3.96-5.53 (2H, m, HCCHdiened), 3.89 (3H, s, MeO), 3.97 (3H, s, MeO), 2.97-2.86 (1H, m, ½ × CH2), 2.80 (1H, dd, J = 7.3, 1.8 Hz, CHangular), 2.21-2.12 (1H, m, MeCH), 2.10-2.02 (1H, m, ½ × CH2), 1.41 (3H, s, Meangular), 0.85 (3H, d, J = 7.3 Hz, MeCH); 13C NMR (125 MHz, CDCl3) δ 199.53, 194.88, 150.42, 148.92, 130.09, 122.48, 60.87, 60.51, 49.54, 49.08, 39.55, 23.99, 20.48, 19.36; HRMS (ESI+): for [M+H]+ calc.: 251.1283, found: 251.1278.

(±)-cis-2,3-Dimethoxy-4a,6,7-trimethyl-4a,5,8,8a-tetrahydronaphthalene-1,4-dione (6e). Quinone 1e (245 mg, 1.35 mmol in HFIP) and diene 2c (0.30 mL, 2.65 mmol in HFIP) were reacted following general procedure. The crude product was purified by flash chromatography on silica gel (9/1 cyclohex./AcOEt) to give 6e (246 mg, 70% in HFIP) as a yellow oil; Rf (5/5 PhMe/AcOEt): 0.78; 1H NMR (500 MHz, CDCl3) δ 3.92 (3H, s, MeO), 3.95 (3H, s, MeO), 2.77 (1H, ddd, J = 6.1, 5.2, 0.6 Hz, CHangular), 2.56-2.47 (1H, m, ½ × CH2CH2), 2.43 (1H, d, J = 17.2 Hz, ½ × MeCH2), 2.16-2.02 (1H, m, ½ × CH2CH2), 1.73-1.67 (1H, m, ½ × MeCH2), 1.63-1.59 (3H, m, MeCCMe), 1.58-1.54 (3H, m, MeCCMe), 1.29 (3H, s, Meangular); 13C NMR (125 MHz, CDCl3) δ 198.77, 195.94, 147.70, 147.08, 122.84, 122.73, 60.72, 60.62, 51.80, 47.41, 39.13, 29.89, 23.28, 19.06, 18.70; HRMS (ESI+): for [M+H]+ calc.: 265.1440, found: 265.1434.

(±)-rel-(1R,4S,4aS,8aR)-4a-Bromo-6-methoxy-1,4,4a,8-tetrahydro-1,4-methanophthalene-5,8-dione (3f). Quinone 1f (200 mg, 0.923 mmol in CH2Cl2; 50 mg, 0.230 mmol in HFIP) and diene 2a (0.16 mL, 1.90 mmol in CH2Cl2; 0.04 mL, 0.476 mmol in HFIP) were reacted following standard procedure to give 3f (261 mg, >98% in CH2Cl2; 65 mg, >98% in HFIP) as a white powder; Rf (8/2 PhMe/AcOEt): 0.45; mp: 103-105°C; 1H NMR (500 MHz, CDCl3) δ 6.18 (1H, dd, J = 5.6, 2.8 Hz, HCCHdiened), 6.06 (1H, dd, J = 5.6, 3.0 Hz, HCCHdiened), 5.97 (1H, s, MeOCCH), 3.79 (3H, s, MeO), 3.75-3.70 (1H, m, BrCHCHbridge), 3.67 (1H, d, J = 3.9 Hz, CHangular), 3.56-3.48 (1H, m, HCCHbridge), 2.06 (2H, ddd, ABX, J_AX = 1.3 Hz, J_BX = 1.8 Hz, J_AB = 9.4 Hz, Δν_AB = 136.6 Hz, Ch2bridge); 13C NMR (125 MHz, CDCl3) δ 197.58, 194.98, 171.16, 141.45, 141.42, 137.20, 136.45, 54.26, 53.37, 52.07, 48.33, 48.10; HRMS (ESI+): for [M+H]+ calc.: 282.9964, found: 282.9954. Crystals for compound 3f were obtained by slow evaporation from dichloromethane at room temperature.

(±)-rel-(1R,4S,4aS,8aR)-4a-Bromo-6-methoxy-8a-methyl-1,4,4a,8-tetrahydro-1,4-methanophthalene-5,8-dione (3g). Quinone 1g (209 mg, 0.903 mmol in HFIP) and diene 2a (0.15 mL, 1.78 mmol in HFIP) were reacted following general procedure to give 3g (265 mg, >98% in HFIP) as a grey powder; Rf (7/3 cyclohex./AcOEt): 0.43; mp: 93-96°C; 1H NMR (500 MHz, CDCl3) δ 6.24 (1H, dd, J = 5.5, 2.8 Hz, HCCHdiened), 5.96 (1H, dd, J = 5.5, 3.1 Hz, HCCHdiened), 5.88 (1H, s, MeOCCH), 3.79 (3H, s, MeO), 3.72-3.66 (1H, m, BrCHCHbridge), 3.14-3.08 (1H, m, MeCCbridge), 2.06 (2H, ddd, ABX, J_AX = 1.6 Hz, J_BX = 1.7 Hz, J_AB = 9.7 Hz, Δν_AB = 189.9 Hz, Ch2bridge), 1.69 (3H, s, Meangular); 13C NMR (125 MHz, CDCl3) δ 198.62, 187.17, 162.47, 140.89, 134.63, 113.06, 71.17, 59.25, 56.86, 56.31, 52.84, 44.75, 30.83; HRMS (ESI+): for [M+H]+ calc.: 299.0283, found: 299.0277. Crystals for compounds 3g were obtained by slow evaporation from dichloromethane at room temperature.

(±)-rel-(4aR,8R,8aS)-8a-Bromo-2-methoxy-4a,8-dimethyl-4a,5,8,8a-tetrahydronaphthalene-1,4-dione (5g). Quinone 1g (207 mg, 0.895 mmol in CH2Cl2; 208 mg, 0.902 mmol in HFIP) and diene 2b (0.14 mL, 1.77 mmol in CH2Cl2; 0.14 mL, 1.77 mmol in HFIP) were reacted following general procedure to give 5g (268 mg, >98% in
HFIP) as a yellowish oil. The conversion being too low in dichloromethane (13%), we did not try to isolate the adduct; Rf (7/3 cyclohex./AcOEt): 0.64; 1H NMR (500 MHz, CDCl₃) δ 5.64 (1H, s, MeOCH), 5.63-5.51 (2H, m, HCCH(quinone)), 3.80 (3H, s, MeO), 2.99-2.88 (1H, m, MeCH), 2.54-2.16 (2H, m, CH₂), 1.56 (3H, d, J = 0.8 Hz, Meangular), 1.53 (3H, d, J = 7.4 Hz, MeCH); 13C NMR (125 MHz, CDCl₃) δ 198.34, 186.49, 159.87, 130.15, 122.17, 105.96, 74.92, 56.67, 55.05, 38.68, 36.40, 17.31, 16.59; HRMS (ESI+): for [M+H]+ calc.: 299.0283, found: 299.0277.

(†)-cis-8a-Bromo-2-methoxy-4a,6,7-trimethyl-4a,5,8,8a-tetrahydroanaphthalene-1,4-dione (6g). Quinone 1g (106 mg, 0.458 mmol in HFIP) and diene 2c (0.10 mL, 0.884 mmol in HFIP) were reacted following general procedure. The crude product was purified by flash chromatography on on silica gel (9/1 cyclohex./AcOEt) to give 6g (52 mg, 36%, in HFIP) as a light yellow oil; Rf (7/3 cyclohex./AcOEt): 0.59; 1H NMR (500 MHz, CDCl₃) δ 5.71 (1H, s, MeOCH), 3.81 (3H, s, MeO), 3.18 (1H, d, J = 17.3 Hz, ½ × BrCC₂), 2.67-2.59 (1H, m, ½ × BrCC₂), 2.46 (1H, d, J = 17.5 Hz, ½ × angularMeCH₂), 2.02 (1H, d, J = 17.5 Hz, ½ × angularMeCH₂), 1.67 (3H, s, MeCCMe), 1.51 (3H, s, MeCCMe), 1.49 (3H, s, Meangular); 13C NMR (125 MHz, CDCl₃) δ 198.85, 185.75, 159.26, 124.31, 122.11, 107.26, 69.31, 56.60, 53.21, 42.26, 38.59, 18.50, 18.48, 18.02; HRMS (ESI+): for [M+H]+ calc.: 313.0439, found: 313.0435.

Methyl (†)-rel-(1R,4S,4aS,8aS)-5,8-dioxo-1,5,8a-tetrahydro-1,4-methanonaphthalene-4a(4H)-carboxylate (3h). Quinone 1h (230 mg, 1.38 mmol in CH₂Cl₂; 55 mg, 0.333 mmol in HFIP) and diene 2a (0.23 mL, 2.74 mmol in CH₂Cl₂; 0.06 mL, 0.712 mmol in HFIP) were reacted following general procedure. The crude product was purified by flash chromatography on silica gel (9/1 cyclohex./AcOEt) to give 3h (281 mg, 88% in CH₂Cl₂; 71 mg, 92% in HFIP) as a light yellow oil; Rf (7/3 cyclohex./AcOEt): 0.47; 1H NMR (500 MHz, CDCl₃) δ 6.61 (2H, dd, AB, JAB = 10.4 Hz, ΔVAB = 4.6 Hz, HCCH(quinone), 6.12 (1H, dd, J = 5.6, 2.8 Hz, HCCH(quinone), 6.09 (1H, dd, J = 5.6, 2.9 Hz, HCCH(quinone), 3.82-3.76 (1H, m, MeO₂CCCH(bridge)), 3.73 (3H, s, CO₂Me), 3.52-3.44 (1H, m, CH(bridge)), 3.38 (1H, d, J = 4.0 Hz, CHangular), 1.65 (2H, ddd, ABXY, JAB = 9.3 Hz, JAX = JAY = 1.4Hz, JBX = JBY = 1.7 Hz, ΔVAB = 21.9 Hz, CH₂(bridge); 13C NMR (125 MHz, CDCl₃) δ 197.58, 194.98, 171.16, 141.45, 141.42, 137.20, 136.45, 63.27, 54.26, 53.37, 52.07, 48.33, 48.10.

Methyl (†)-rel-(4aR,5S,8aR)-5-methyl-1,4-dioxo-1,5,8a-tetrahydronaphthalene-4a(4H)-carboxylate (5h). Quinone 1h (213 mg, 1.29 mmol in CH₂Cl₂; 67 mg, 0.403 mmol in HFIP) and diene 2b (0.26 mL, 2.61 mmol in CH₂Cl₂; 0.08 mL, 0.802 mmol in HFIP) were reacted following standard procedure to give 5h (300 mg, >98% in CH₂Cl₂; 94 mg, >98% in HFIP) as a light yellow oil; Rf (7/3 cyclohex./AcOEt): 0.46; 1H NMR (500 MHz, CDCl₃) δ 6.74 (2H, dd, AB, JAB = 10.3 Hz, ΔVAB = 16.6 Hz, HCCH(quinone), 5.67-5.54 (2H, m, HCCH(quinone), 3.78 (3H, s, CO₂Me), 3.73 (1H, dd, J = 7.3, 4.3 Hz, CHangular), 3.07-2.94 (1H, m, MeCH), 2.70-2.04 (2H, m, CH₂), 0.99 (3H, d, J = 7.5 Hz, MeCH); 13C NMR (125 MHz, CDCl₃) δ 197.74, 196.65, 170.75, 140.29, 140.17, 130.55, 122.65, 63.13, 53.36, 48.20, 34.65, 22.16, 18.42.

Methyl (†)-cis-6,7-dimethyl-1,4-dioxo-1,5,8a-tetrahydronaphthalene-4a(4H)-carboxylate (6h). Quinone 1h (216 mg, 1.30 mmol in CH₂Cl₂; 52 mg, 0.312 mmol in HFIP) and diene 2c (0.30 mL, 2.65 mmol in CH₂Cl₂; 0.07 mL, 0.619 mmol in HFIP) were reacted following the general procedure to give 6h (321 mg, >98% in CH₂Cl₂; 76 mg, 98% in HFIP) as a grey powder; Rf (7/3 cyclohex./AcOEt): 0.46; mp: 104-107°C; 1H NMR (500 MHz, CDCl₃) δ 6.66 (2H, dd, AB, JAB = 10.5 Hz, ΔVAB = 4.8 Hz, HCCH(quinone), 3.74 (3H, s, CO₂Me), 3.54 (1H, dd, J = 7.2, 6.5 Hz, CHangular), 2.62-2.54 (1H, m, ½ × MeO₂CCCH₂), 2.38-2.30 (2H, m, ½ × MeO₂CCCH₂ + ½ × HCH₂), 2.16-2.01 (1H, m, ½ × HCH₂), 1.63 (3H, s(br), MeCCMe), 1.59 (3H, s(br), MeCCMe); 13C NMR (125 MHz, CDCl₃) δ 198.15, 195.17, 170.65, 139.63, 138.07, 123.08, 122.78, 60.84, 53.32, 49.04, 33.96, 30.21, 18.83, 18.77.

Methyl (†)-rel-(1R,4S,4aS,9aS)-9,10-dioxo-1,9,9a,10-tetrahydro-1,4-methanoanthracene-4a(4H)-carboxylate (3i). Quinone 1i (205 mg, 0.949 mmol in CH₂Cl₂; 51 mg, 0.237 mmol in HFIP) and diene 2a (0.16 mL, 1.90 mmol in CH₂Cl₂; 0.04 mL, 0.476 mmol in HFIP) were reacted following general procedure. The crude product was
purified by flash chromatography on silica gel (8/2 cyclohex./AcOEt) to give 3i (256 mg, 95% in CH₂Cl₂; 65 mg, 97% in HFIP) as a light yellow viscous oil; Rᵣ (7/3 cyclohex./AcOEt): 0.55; ¹H NMR (500 MHz, CDCl₃) δ 8.09-8.00 (2H, m, 2 × CH₂), 7.75-7.69 (2H, m, 2 × CH₃), 6.03 (2H, ddd, ABXY, JₓY = 14.0 Hz, J₉X = 5.6 Hz, J₉ halves = 2.7 Hz, ΔνAB = 13.1 Hz, HCC₃H(CH₃)₃, 3.95-3.88 (1H, m, angularHCH₃), 3.70 (3H, s, CO₂Me), 3.63-3.49 (2H, m, CH₃(CH₃)₃ + Me₂CCCH₄(bis)), 1.68 (2H, ddd, A'B'XY, J₉X = 9.2 Hz, J₉Y = J₉ halves = 1.5 Hz, ΔνAB = 53.5 Hz, CH₃(bis)); ¹³C NMR (125 MHz, CDCl₃) δ 195.92, 193.68, 171.78, 137.39, 136.61, 135.27, 134.99, 134.60, 134.48, 127.49, 127.16, 64.37, 55.29, 53.25, 52.80, 49.05, 48.63; HRMS (ESI+): for [M+H]⁺ calc.: 283.0965, found: 283.0961.

Methyl (±)-rel-(4R,4aS,9aS)-4-methyl-9,10-dioxo-1,9,9a,10-tetrahydroanthracene-4a(4H)-carboxylate (5i). Quinone 1i (205 mg, 0.948 mmol in CH₂Cl₂; 62 mg, 0.286 mmol in HFIP) and diene 2b (0.15 mL, 1.90 mmol in CH₂Cl₂; 0.06 mL, 0.602 mmol in HFIP) were reacted following general procedure to give 5i (266 mg, >98% in CH₂Cl₂; 80 mg, >98% in HFIP) as a grey powder; Rᵣ (7/3 cyclohex./AcOEt): 0.71; mₚ: 98-101°C; ¹H NMR (500 MHz, CDCl₃) δ 8.10-8.01 (2H, m, 2 × CH₂), 7.79-7.72 (2H, m, 2 × CH₃), 5.73-5.60 (2H, m, HCC₃H(CH₃)₃), 3.89 (1H, dd, J = 6.8, 4.6 Hz, CH₃(bis)), 3.74 (3H, s, CO₂Me), 3.16-3.04 (1H, m, MeCH₃), 2.80-2.12 (2H, m, CH₂), 0.89 (3H, d, J = 7.5 Hz, MeCH₃); ¹³C NMR (125 MHz, CDCl₃) δ 196.34, 194.95, 171.11, 135.01, 134.77, 134.67, 134.54, 130.85, 127.22, 126.64, 122.80, 53.24, 48.59, 34.83, 22.64, 18.04. Crystals for compounds 5i were obtained by slow evaporation from dichloromethane at room temperature.

Methyl (±)-cis-2,3-dimethyl-9,10-dioxo-1,9,9a,10-tetrahydroanthracene-4a(4H)-carboxylate (6i). Quinone 1i (217 mg, 1.00 mmol in CH₂Cl₂; 63 mg, 0.291 mmol in HFIP) and diene 2c (0.23 mL, 2.03 mmol in CH₂Cl₂; 0.07 mL, 0.619 mmol in HFIP) were reacted following general procedure to give 6i (297 mg, >98% in CH₂Cl₂; 85 mg, >98% in HFIP) as a light yellow oil; Rᵣ (7/3 cyclohex./AcOEt): 0.75; ¹H NMR (500 MHz, CDCl₃) δ 8.10-8.00 (2H, m, 2 × CH₂), 7.80-7.70 (2H, m, 2 × CH₃), 3.69 (3H, s, CO₂Me), 2.77-2.64 (1H, m, ½ × Me₂CCCH₄), 2.47-2.35 (2H, m, ½ × Me₂CCCH₄ + ½ × HCC₃H(CH₃)₃), 2.23-2.09 (1H, m, ½ × HCC₃H(CH₃)₃), 1.66 (3H, s(br), MeCCMe), 1.61 (3H, s(br), MeCCMe); ¹³C NMR (125 MHz, CDCl₃) 196.35, 193.67, 171.01, 134.88, 134.46, 133.73, 133.19, 127.43, 127.16, 123.18, 123.05, 61.01, 53.22, 49.37, 34.22, 30.66, 18.90, 18.82; HRMS (ESI+): for [M+H]⁺ calc.: 299.1283, found: 299.1278.

Methyl (±)-rel-(1R,4S,4aS,8aS)-6-methoxy-8a-methyl-5,8-dioxo1,5,8a-tetrahydro-1,4-methanonaphthalene-4a(4H)-carboxylate (3j). Quinone 1j (130 mg, 0.619 mmol in CH₂Cl₂; 118 mg, 0.561 mmol in HFIP) and diene 2a (0.10 mL, 1.19 mmol in CH₂Cl₂; 0.10 mL, 1.19 mmol in HFIP) were reacted following the general procedure. After evaporation of the solvent, the crude mixture was triturated with diethyl ether, filtered and dried under vacuum to give 3i (142 mg, 85% in CH₂Cl₂; 125 mg, 82% in HFIP) as a white powder; Rᵣ (7/3 cyclohex./AcOEt): 0.55; mₚ: 164-166°C (decomposition); ¹H NMR (500 MHz, CDCl₃) δ 6.18 (1H, dd, J = 5.7, 3.0 Hz, HCC₃H(CH₃)₃, 6.02 (1H, dd, J = 5.7, 2.9 Hz, HCC₃H(CH₃)₃, 5.88 (1H, s, MeOCC), 3.77 (3H, s, HCCOMe), 3.70 (3H, s, CO₂Me), 3.67-3.64 (1H, m, CH₃(bis)), 3.06-3.02 (1H, m, CH₃(bis)), 2.10 (1H, dt, J = 9.7, 1.4 Hz, ½ × CH₃(bis)), 1.60 (1H, dt, J = 9.7, 1.7 Hz, ½ × CH₂(bis)), 1.40 (3H, s, Me₃CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 200.20, 191.73, 171.31, 162.42, 140.02, 136.05, 113.10, 56.95, 57.48, 56.62, 54.06, 52.77, 52.61, 45.79, 23.64; HRMS (ESI+): for [M+Na]⁺ calc.: 299.0890, found: 299.0878.

Methyl(±)-rel-(4aR,5S,5aR,8aR)-3-methoxy-5,8a-dimethyl-1,4-dioxo-1,5,8a-tetrahydro-1,4-methanonaphthalene-4a(4H)-carboxylate (5j). Quinone 1j (127 mg, 0.605 mmol in HFIP) and diene 2b (0.12 mL, 1.20 mmol in HFIP) were reacted following the general procedure. After evaporation of the solvent, the crude mixture was triturated with diethyl ether, filtered and dried under vacuum to give 5j (132 mg, 79% in HFIP) as a white powder; Rᵣ (5/5/0.5 cyclohex./CH₂Cl₂/acetone): 0.47; mₚ: 133-134°C; ¹H NMR (500 MHz, CDCl₃) δ 5.68 (1H, s, MeOCC), 5.66 (1H, ddt, J = 10.1, 2.5, 1.8 Hz, HCC₃H(CH₃)₃, 5.52 (1H, ddt, J = 10.1, 5.1, 2.6 Hz, HCC₃H(CH₃)₃), 3.79 (3H, s, HCCOMe), 3.69 (3H, s, CO₂Me), 2.87-2.78 (1H, m, MeCH₃), 2.35-2.28 (1H, m, ½ × CH₂), 1.97 (1H, appearing as a ddt, J = 18.4, 4.9, 2.0 Hz, ½ × CH₂), 1.52 (3H, s, Me₃CH₃), 1.33 (3H, d, J = 7.5, MeCH₃); ¹³C NMR (125 MHz, CDCl₃)
δ 199.95, 189.79, 170.88, 162.98, 130.52, 121.63, 106.65, 65.19, 56.75, 52.73, 52.61, 37.41, 33.43, 17.01, 16.05; HRMS (ESI+): for [M+Na+] calc.: 301.1046, found: 301.1037. Crystals for compounds 5j were obtained by slow evaporation from dichloromethane at room temperature.

Methyl (±)-cis-6,7,8a-trimethyl-1,4-dioxo-1,5,8,8a-tetrahydronaphthalene-4a(4H)-carboxylate (6j). Quinone 1j (139 mg, 0.663 mmol in HFIP) and diene 2c (0.15 mL, 1.33 mmol in HFIP) were reacted following the general procedure. After evaporation of the solvent, the crude mixture was triturated with diethyl ether, filtered and dried under vacuum to give 6j (159 mg, 82% in HFIP) as a white powder; Rf (5/5/0.5 cyclohex./CH2Cl2/acetonitrile): 0.47; mβ: 112-114°C; 1H NMR (500 MHz, CDCl3) δ 5.91 (1H, s, MeOCCH), 3.75 (3H, s, HCCOMe), 3.66 (3H, s, CO2Me), 3.07 (1H, d, J = 17.8 Hz, ½ × MeOCCCH3), 2.38-2.24 (2H, m, ½ × MeOCCCH3 + ½ × angularMeCH2), 1.79 (1H, d, J = 17.7 Hz, ½ × angularMeCH2), 1.69 (3H, s, MeCCMe diene), 1.52 (3H, s, MeCCMe diene), 1.29 (3H, s, Me angular); 13C NMR (125 MHz, CDCl3) δ 200.59, 188.99, 169.52, 158.97, 122.76, 121.68, 110.55, 65.34, 56.41, 53.34, 50.57, 42.34, 31.66, 18.75, 18.72, 17.62; HRMS (ESI+): for [M+Na+] calc.: 315.1428, found: 315.1360. (1R,4S,4aS,8aR)-7-Methoxy-4a-((S)-p-tolylsulfinyl)-1,4,4a,8a-tetrahydro-1,4-methanonaphthalene-5,8-dione (α-3m). Quinone 1l (66 mg, 0.238 mmol in HFIP) and diene 2a (0.04 mL, 0.476 mmol in HFIP) were reacted following the general procedure to give the crude product α-3l; Rf (8/2 PhMe/AcOEt): 0.68; 1H NMR (500 MHz, CDCl3) δ 7.35 (2H, d, J = 8.4 Hz, 2 × CHp tolyl), 7.20 (2H, d, J = 8.4 Hz, 2 × CHp tolyl), 6.24 (1H, dd, J = 5.5 Hz, 3.0 Hz, HCC diene), 6.18 (1H, dd, J = 5.5, 2.8 Hz, HCC diene), 5.33 (1H, s, MeOCH), 3.84-3.81 (1H, m, CH bridge), 3.75 (1H, s, CH angular), 3.56-3.53 (1H, m, CH bridge), 3.39 (3H, s, MeO), 2.34 (3H, s, ArMep tolyl), 2.30-2.27 (1H, m, ½ × CH2 bridge), 1.51-1.40 (1H, m, ½ × CH2 bridge).

(+)-(1S,4R)-6-Methoxy-1,4-dihydro-1,4-methanonaphthalene-5,8-dione (α-4m). HFIP was removed in vacuo and replaced by the same volume of CH2Cl2 and the adduct α-3l was allowed to undergo a sulfide elimination overnight. The crude product was purified by flash chromatography on demetallated silica gel (9/1 cyclohex./AcOEt) to give α-4l (22 mg, 46% in HFIP) as a light yellow powder; Rf (6/4 cyclohex./AcOEt): 0.12; mβ: 110-113°C (decomposition); [α]D20 (c = 0.50, CHCl3): +3.1°; 1H NMR (500 MHz, CDCl3) δ 6.89-6.80 (2H, m, HCC), 5.69 (1H, s, MeOCH), 4.12-4.09 (1H, m, CH bridge), 4.06-4.09 (1H, m, CH bridge), 3.78 (3H, s, MeO), 2.36-2.21 (2H, m, CH2 bridge); 13C NMR (125 MHz, CDCl3) δ 184.26, 178.31, 162.61, 159.31, 158.37, 142.74, 142.53, 106.03, 73.83, 56.67, 48.65, 48.34. HRMS (ESI+): for [M+H+] calc.: 203.0708, found: 203.0703. (1S,4R,4aR,8aS)-7-Methoxy-4a-((S)-p-tolylsulfinyl)-1,4,4a,8a-tetrahydro-1,4-methanonaphthalene-5,8-dione (β-3m). Quinone 1l (154 mg, 0.558 mmol in CH2Cl2) and diene 2a (0.10 mL, 1.19 mmol in CH2Cl2) were reacted following the general procedure to give the crude product β-3l; Rf (3/7/0.2 CH2Cl2/cyclohex./acetone): 0.27; 1H NMR (500 MHz, CDCl3) δ 7.35 (2H, d, J = 8.4 Hz, 2 × CHp tolyl), 7.20 (2H, d, J = 8.4 Hz, 2 × CHp tolyl), 5.33 (1H, s, MeOCH), 6.23 (1H, dd, J = 5.3, 3.1 Hz, HCC diene), 6.17 (1H, dd, J = 5.3, 3.2 Hz, HCC diene), 3.84-3.82 (1H, m, CH bridge), 3.77 (1H, d, J = 4.4 Hz, CH angular), 3.56-3.53 (1H, m, CH bridge), 3.38 (3H, s, MeO), 2.33 (3H, s, ArMeptoly), 2.32-2.29 (1H, m, ½ × CH2 bridge), 1.49-4.45 (1H, m, ½ × CH2 bridge).

(-)-(1R,4S)-6-Methoxy-1,4-dihydro-1,4-methanonaphthalene-5,8-dione (β-4m). Once the cycloaddition was over, the adduct β-3l was allowed to undergo the sulfide elimination overnight. The solvent was evaporated and the crude product purified by flash chromatography on demetallated silica gel (9/1 cyclohex./AcOEt) to give β-4l (41 mg, 36% in CH2Cl2) as a light yellow powder; Rf (6/4 cyclohex./AcOEt): 0.12; mβ: 109-111°C (decomposition) [α]D20 (c = 0.50, CHCl3): -3.0°; 1H NMR (500 MHz, CDCl3) δ 6.89-6.80 (2H, m, HCC), 5.69 (1H, s, MeOCH), 4.12-4.09 (1H, m, CH bridge), 4.06-4.09 (1H, m, CH bridge), 3.78 (3H, s, MeO), 2.36-2.21 (2H, m, CH2 bridge); 13C NMR (125 MHz, CDCl3) δ 184.26, 178.31, 162.61, 159.31, 158.37, 142.74, 142.53, 106.03, 73.83, 56.67, 48.65, 48.34. HRMS (ESI+): for [M+H+] calc.: 203.0708, found: 203.0712. 2-Methoxy-5-methyl-5,8-dihydronaphthalene-1,4-dione (α/β-7m). Quinone 1l (84 mg, 0.304 mmol in CH2Cl2; 90 mg, 0.326 mmol in HFIP) and diene 2b (0.06 mL, 0.602 mmol in CH2Cl2; 0.06 mL, 0.602 mmol in HFIP) were
reacted following general procedure. The crude product was purified by flash chromatography on demetallated silica gel (95/5 cyclohex./AcOEt) to give 7I (33 mg, 53% in CH₂Cl₂; 42 mg, 63% in HFIP) as a waxy orange solid; Rf (7/3 cyclohex./AcOEt): 0.57; [α]D⁰₂⁰°C (c = 0.50, CHCl₃): from CH₂Cl₂: +100.9°; from HFIP: +85.1°; ¹H NMR (500 MHz, CDCl₃) δ 5.88 (1H, s, MeOCC₂), 3.83-3.72 (2H, m, HCH₇-diene), 3.80 (3H, s, MeO), 3.43 (1H, qdd, J = 7.0, 3.7, 1.3 Hz, MeCH₂), 3.21-2.89 (2H, m, C₂H), 1.18 (3H, d, J = 7.0 Hz, MeCH); ¹³C NMR (125 MHz, CDCl₃) δ 186.84, 182.14, 158.45, 147.47, 130.02, 107.63, 56.26, 29.13, 24.07, 22.29; HRMS (ESI⁺): for [M+H]⁺ calc.: 205.0865, found: 205.0860.

(1R,4S,4aR,5S,8R,8aS,9aS,10aR)-1,4,4a,5,8,8a,9a,10a-Octahydro-1,4:5,8-dimethanoanthracene-9,10-dione (11). Quinone 1f (57 mg, 0.525 mmol in CH₂Cl₂; 50 mg, 0.229 mmol in HFIP) and diene 2a (0.09 mL, 1.07 mmol in HFIP) were reacted following the standard procedure to give 11 (118 mg, 93% in HFIP) as a white powder; Rf (8/2 cyclohex./AcOEt): 0.33; m.p.: 156-158°C (decomp.); ¹H NMR (500 MHz, CDCl₃) δ 6.18 (4H, dd, ABXYZ, Jₓₓ = Jᵧᵧ = 1.8 Hz, 2 × HCH₇-diene), 3.35-3.32 (4H, m, ABXYZ, 4 × CH₃-bridge), 2.88-2.83 (4H, m, ABXYZ, 4 × CH₃-bridge), 1.39 (4H, dddd, ABXYZ, Jₓₓ = Jᵧᵧ = 1.8 Hz, Jᵧᵧ = Jᵧₓ = 1.4 Hz, Jₓₓ = 8.6 Hz, Δₓᵧ = 84.6 Hz, 2 × CH₃-bridge); ¹³C NMR (125 MHz, CDCl₃) δ 212.85, 136.49, 53.34, 49.71, 38.60, 33.93, 25.17, 23.94; HRMS (ESI⁺): from HFIP: +100.9°; from HFIP: +85.1°.

2-Methoxy-6,7-dimethylnaphthalene-1,4-dione (12). Quinone 1f (116 mg, 0.535 mmol in CH₂Cl₂; 50 mg, 0.229 mmol in HFIP) and diene 2b (0.11 mL, 1.10 mmol in CH₂Cl₂; 0.05 mL, 0.501 mmol in HFIP) were reacted following the standard procedure. Once the cycloaddition was over (remove HFIP in vacuo and replace by the same volume of CH₂Cl₂), Et₃N (0.15 mL, 1.08 mmol in CH₂Cl₂; 0.07 mL, 0.504 mmol in HFIP) was added and the solution was stirred overnight at room temperature. The solution was washed with a saturated solution of NH₄Cl and brine and dried over Na₂SO₄. The solution was filtered and the solvent evaporated. The crude product was purified by filtration over silica gel (eluent: CH₂Cl₂) to give 12 (80 mg, 74% in CH₂Cl₂; 33 mg, 71% in HFIP) as a light yellow powder; Rf (7/3 cyclohex./AcOEt): 0.54; m.p.: 133-135°C; ¹H NMR (500 MHz, CDCl₃) δ 8.04-7.98 (1H, m, HCHCHCMe), 7.58 (1H, dd, J = 7.7, 7.6 Hz, HCHCHCMe), 7.50-7.47 (1H, m, HCHCHCMe), 6.12 (1H, s, MeOCH₇), 3.89 (3H, s, MeO), 2.75 (3H, s, HCHCHCMe); ¹³C NMR (125 MHz, CDCl₃) δ 185.21, 181.68, 160.99, 142.01, 137.45, 133.67, 133.54, 128.79, 125.16, 108.62, 56.56, 23.00.

2-Methoxy-6,7-dimethylnaphthalene-1,4-dione (13)

From Quinone 1f. Quinone 1f (102 mg, 0.470 mmol in CH₂Cl₂; 62 mg, 0.288 mmol in HFIP) and diene 2c (0.11 mL, 0.972 mmol in CH₂Cl₂; 0.07, 0.619 mmol in HFIP) were reacted following the general procedure. Once the cycloaddition was over (remove HFIP in vacuo and replace with its own volume of CH₂Cl₂), Et₃N (0.13 mL, 0.935 mmol in CH₂Cl₂; 0.08 mL, 0.576 mmol in HFIP) was added and the solution was stirred overnight at room temperature. The mixture was washed with a saturated solution of NH₄Cl and brine and dried over Na₂SO₄. The solution was filtered and the solvent evaporated. The crude product was filtered over silica gel (eluent: CH₂Cl₂) to give 13 (76 mg, 75% in CH₂Cl₂; 45 mg, 72% in HFIP) as a light yellow powder.

From Quinone 1m. Quinone 1m (91 mg, 0.328 mmol in CH₂Cl₂; 90 mg, 0.326 mmol in HFIP) and diene 2c (0.07 mL, 0.619 mmol in CH₂Cl₂; 0.07, 0.619 mmol in HFIP) were reacted following the general procedure. The crude product was purified by flash chromatography on demetallated silica gel to give 13 (38 mg, 53% in CH₂Cl₂; 39 mg, 56% in HFIP) as a light yellow powder; Rf (7/3 cyclohex./AcOEt): 0.38; m.p.: 168-169°C; ¹H NMR (500 MHz, CDCl₃) δ 7.88 (1H, s, MeCCH), 7.82 (1H, s, MeCCH), 6.10 (1H, s, MeOCC₂), 3.89 (3H, s, MeO), 2.39(3) (3H, s, MeCMe), 2.38(6) (3H, s, MeCMe); ¹³C NMR (125 MHz, CDCl₃) δ 185.45, 180.49, 160.53, 144.51, 143.22, 130.16, 129.14, 127.92, 127.42, 109.78, 56.50, 20.44, 20.20.

Methyl (±)-rel-(1R,6R,8S)-1-methoxy-4,6-dimethyl-2,5-dioxo-8-[(E)-prop-1-en-1-yl]bicyclo[4.2.0]oct-3-ene-3-carboxylate (14). Quinone 1j (80 mg, 0.381 mmol in CH₂Cl₂) and diene 2b (0.08 mL, 0.802 mmol in CH₂Cl₂) were reacted following the general procedure. After fifteen days, the solvent was evaporated and the crude mixture was purified by flash chromatography (9/1 cyclohex./AcOEt) to give the title compound 14 (53 mg,
50% in CH₂Cl₂) as a yellow oil; Rf (7/3 cyclohex./AcOEt): 0.54; ¹H NMR (500 MHz, CDCl₃) δ 5.66-5.66 (2H, m, HCC₃H₆), 3.91 (3H, s, CO₂Me), 3.40 (1H, dd, J = 10.9, 6.5 Hz, CH₂quinoxine), 3.23-3.19 (4H, s + m, OMe + CH₂diene), 2.39 (1H, m, ÷ CH₂), 2.16 (1H, ddd, J = 11.7, 8.6, 6.5 Hz, ÷ CH₂), 2.04 (3H, s, Me₂quinoxine), 1.71 (3H, d, J = 5.2 Hz, Me₂diene); ¹³C NMR (125 MHz, CDCl₃) δ 197.74, 193.13, 165.02, 147.24, 142.11, 129.76, 126.61, 81.80, 52.97, 52.95, 46.36, 44.00, 27.88, 18.32, 14.43; HRMS (ESI+): for [M+Na]+ calc.: 301.1046, found: 301.1033.

Methyl (±)-rel-(1R,6S,8R)-1-methoxy-4,6,8-trimethyl-2,5-dioxo-8-(prop-1-en-2-yl) bicyclo[4.2.0]oct-3-ene-3-carboxylate (15). Quinone 1 (76 mg, 0.362 mmol in CH₂Cl₂) and diene 2c (0.08 mL, 0.707 mL in CH₂Cl₂) were reacted following the general method. After fifteen days, the solvent was evaporated and the crude mixture was purified by flash chromatography on silica gel (9/1 cyclohex./AcOEt) to give the title compound 15 (25 mg, 24% in CH₂Cl₂) as a yellow oil; Rf (7/3 cyclohex./AcOEt): 0.62; ¹H NMR (500 MHz, CDCl₃) δ 4.96 (1H, s, ÷ CH₂½), 4.79 (1H, s, ÷ CH₂½), 3.92 (3H, s, CO₂Me), 3.24 (1H, dd, J = 11.3, 5.1 Hz, CH₂quinoxine), 3.16 (3H, s, OMe), 2.96 (1H, appearing as t, J = 11.3 Hz, ÷ CH₂cyclobut), 2.07 (3H, s, Me₂CCCMe), 2.06-2.03 (1H, m, ÷ CH₂cyclobut), 1.82 (3H, s, Me₂), 1.14 (3H, s, Me₂). ¹³C NMR (125 MHz, CDCl₃) δ 199.19, 193.80, 165.04, 147.74, 147.66, 143.97, 110.99, 85.90, 52.97, 52.76, 51.37, 43.90, 34.09, 24.32, 20.46, 14.63; HRMS (ESI+): for [M+Na]+ calc.: 315.1203, found: 315.1189.

(+)-(1S,4R,4aS,8aR)-6-((S)-p-Tolylsulfinyl)-1,4,4a-8a-tetrahydro-1,4-methanonaphthalene-5,8-dione (α-16). Quinone 1k (151 mg, 0.611 mmol in CH₂Cl₂; 158 mg, 0.640 mmol in HFIP) and diene 2a (0.06 mL, 0.713 mmol in CH₂Cl₂; 0.06 mL, 0.713 mmol in HFIP) were reacted following standard procedure. The crude product was purified by flash chromatography on demetallated silica gel (100/0 to 100/5 CH₂Cl₂/acetone) to give α-16 (116 mg, 61% in CH₂Cl₂; 120 mg, 60% in HFIP) in the second fraction as a yellow oil; Rf (10/1 CH₂Cl₂/acetone): 0.48; [α]D²₀ (c = 1.0, CHCl₃): +273.2°; ¹H NMR (500 MHz, CDCl₃) δ 7.53 (2H, d, J = 8.8 Hz, 2 × CH₃-tolyli), 7.16 (1H, s, ArS(O)CC₃), 5.83 (1H, dd, J = 6.1, 3.1 Hz, HCC₃), 4.81 (1H, dd, J = 6.1, 2.7 Hz, HCC₃), 4.27 (1H, s(br), CH₃bridge), 3.28-3.18 (3H, m, CH₃bridge + 2 × CH₃angular), 2.38 (3H, s, ArMe₂-tolyli), 1.49-1.23 (2H, m, CH₂bridge); ¹³C NMR (125 MHz, CDCl₃) δ 196.74, 196.16, 161.16, 142.81, 139.07, 136.58, 135.34, 134.13, 130.00, 126.10, 50.26, 49.85, 49.74, 49.68, 49.42, 21.60.

(+)-(1R,4S,4aR,8aS)-6-((S)-p-Tolylsulfinyl)-1,4,4a-8a-tetrahydro-1,4-methanonaphthalene-5,8-dione (β-16). The same procedure as α-16 was followed to give β-16 (54 mg, 28% in CH₂Cl₂; 36 mg, 18% in HFIP) in the first fraction as a yellow solid; Rf (10/1 CH₂Cl₂/acetone): 0.61; m.p.: 162-163°C; [α]D²₀ (c = 1.0, CHCl₃): +471.6°; ¹H NMR (500 MHz, CDCl₃) δ 7.60 (2H, d, J = 7.7 Hz, 2 × CH₃-tolyli), 7.27 (2H, d, J = 7.7 Hz, 2 × CH₃-tolyli), 7.21 (1H, s, ArS(O)CC₃), 6.19-6.14 (2H, m, HCC₃), 3.59-3.49 (2H, m, 2 × CH₂bridge), 3.17 (2H, dd, ABXY, JAB = 8.5 Hz, JAX = JAY = 4.0 Hz, ΔVAB = 49.0 Hz, HCC₃angular), 2.38 (3H, s, ArMe₂-tolyli), 1.63-1.42 (2H, m, CH₂bridge); ¹³C NMR (125 MHz, CDCl₃) δ 196.94, 196.03, 160.95, 142.85, 142.65, 137.29, 135.83, 135.43, 130.28, 125.92, 50.45, 49.65, 49.07, 48.87 (two signals at the same setting), 48.86, 21.67.

6,7-Dimethylnaphthalene-1,4-dione (17): Quinone 1k (100 mg, 0.406 mmol in CH₂Cl₂; 152 mg, 0.615 mmol in HFIP) and diene 2c (0.05 mL, 0.442 mmol in CH₂Cl₂; 0.07 mL, 0.619 mmol in HFIP) were reacted following general procedure. In the case of HFIP, once the cycloaddition was over, the solvent was evaporated in vacuo and replaced by the same volume of CH₂Cl₂ and the sulfoxide elimination was allowed overnight. The crude product was purified by flash chromatography on demetallated silica gel (7/3 cyclohex./CH₂Cl₂) to give 15 (8 mg, 11% in CH₂Cl₂; 17 mg, 15% in HFIP) as a brown powder; Rf (6/4/0.5 cyclohex./CH₂Cl₂/acetone): 0.54; m.p.: 117-119°C; ¹H NMR (500 MHz, CDCl₃) δ 7.82 (2H, s, 2 × MeCC₃), 6.90 (2H, s, HCC₃quinoxine), 2.40 (6H, s, 2 × MeCC₃); ¹³C NMR (125 MHz, CDCl₃) δ 185.50, 143.95, 138.69, 130.05, 127.57, 20.36.

(+)-(1R,4S,4aR,8aS)-6-Chloro-7-((S)-p-tolylsulfinyl)-1,4,4a,8a-tetrahydro-1,4-methanonaphthalene-5,8-dione (α-18). Quinone 1l (106 mg, 0.377 mmol in CH₂Cl₂; 104 mg, 0.370 mmol in HFIP) and diene 2a (0.06 mL, 0.713 mmol in CH₂Cl₂; 0.06 mL, 0.713 mmol in HFIP) were reacted following the general procedure. The crude
product was purified by flash chromatography on demetallated silica gel (100% CH₂Cl₂) to give α-16 (55 mg, 42% in CH₂Cl₂; 72 mg, 55% in HFIP) in the first fraction as a yellow oil; Rf (20/1 CH₂Cl₂/acetonitrile): 0.62; [α]_D²⁰ (c = 0.75, CHCl₃): +132.0°; ¹H NMR (500 MHz, CDCl₃) δ 67.67 (2H, d, J = 8.1 Hz, 2 × C₄H₃-tolyl), 7.30 (2H, d, J = 8.1 Hz, 2 × C₄H₃-tolyl), 6.00 (1H, dd, J = 5.6, 2.8 Hz, HCH diene), 5.86 (1H, dd, J = 5.6, 2.8 Hz, HCH diene), 3.58-3.52 (1H, m, CH bridged), 3.52-3.46 (1H, m, CH bridged), 3.36 (1H, dd, J = 8.5, 3.9 Hz, CH angular), 3.31 (1H, dd, J = 8.5, 3.9 Hz, CH angular), 2.39 (3H, s, ArMe p-tolyl), 1.48 (2H, m, CH₂ bridge); ¹³C NMR (125 MHz, CDCl₃) δ 192.44, 190.05, 152.24, 148.35, 142.33, 138.19, 135.83, 135.08, 130.09, 125.29, 50.37, 49.79, 49.41, 48.52, 21.61.

(+)-(1S,4R,4aS,8aR)-6-Chloro-7-((S)-p-tolylsulfinyl)-1,4,4a,8a-tetrahydro-1,4-methanonaphthalene-5,8-dione (α-18). The same procedure as α-16 was followed to give β-18 (43 mg, 33% in CH₂Cl₂; 21 mg, 17% in HFIP) in the second fraction as yellow solid; Rf (20/1 CH₂Cl₂/acetonitrile): 0.53; [α]_D²⁰ (c = 0.5, CHCl₃): +89.9°; m_p: 102-104°C; ¹H NMR (500 MHz, CDCl₃) δ 7.68 (2H, d, J = 8.1 Hz, 2 × C₄H₃-tolyl), 7.30 (2H, d, J = 8.1 Hz, 2 × C₄H₃-tolyl), 6.04 (1H, dd, J = 5.6, 2.9 Hz, HCH diene), 5.93 (1H, dd, J = 5.6, 2.8 Hz, HCH diene), 3.60-3.53 (1H, m, CH bridged), 3.53-3.46 (1H, m, CH bridged), 3.35 (2H, ddd, ABXY, J_ab = 8.8 Hz, J_ax = J_ay = 3.7 Hz, Δν_ab = 13.7 Hz, HCH angular), 2.40 (3H, s, ArMe p-tolyl), 1.56-1.40 (2H, m, CH₂ bridge); ¹³C NMR (125 MHz, CDCl₃) δ 192.31, 189.86, 152.26, 148.53, 142.37, 138.22, 136.09, 130.13, 125.35, 50.47, 49.21, 49.03, 48.93, 48.89, 21.62.

(4aS,8aR)-(2-Chloro-6,7-dimethyl-3-((S)-p-tolylsulfinyl)-4a,5,8,8a-tetrahydronaphthalene-1,4-dione (α-19) and (4aR,8aS)-2-chloro-6,7-dimethyl-3-((S)-p-tolylsulfinyl)-4a,5,8,8a-tetrahydronaphthalene-1,4-dione (β-19). Quinone 11 (97 mg, 0.344 mmol in CH₂Cl₂; 30 mg, 0.107 mmol in HFIP) and diene 2c (0.09 mL, 0.795 mmol in CH₂Cl₂; 0.02 mL, 0.177 mmol in HFIP) were reacted following general procedure to give a mixture of α-19 and β-19 (112 mg, 90%, α/β: 79/21 in CH₂Cl₂; 32 mg, 82%, α/β: 39/61 in HFIP) as a light orange solid foam: Rf (20/1 CH₂Cl₂/acetonitrile): 0.67; ¹H NMR of the α/β mixture obtained from dichloromethane (400 MHz, CDCl₃) δ 7.90-7.79 (2H, m, 2 × CH₃-tolyl), 6.90-6.80 (2H, m, 2 × C₄H₃-tolyl), 2.40-1.95 (2H, m), 1.90 (0.63H, s(br), ArMe p-tolyl (β)), 1.88 (2.37H, s(br), ArMe p-tolyl (α)), 1.85-1.33 (4H, m), 1.29 (2.37H, s(br), MeCCMe (α)), 1.27 (0.63H, s(br), MeCCMe (β)), 1.18 (0.63H, s(br), MeCCMe (β)), 1.15 (2.37H, s(br), MeCCMe (α)).

Acknowledgements

We thankfully acknowledge the work of Pr. Johan Wouters and Dr. Nikolai Tumanov (Unité de Chimie Physique Théorique et Structurale, Laboratoire de Chimie Biologique et Structurale, University of Namur) for the X-ray analyses of our crystalline compounds.

Supplementary Material

Copies of ¹H and ¹³C NMR spectra of synthesized compounds, as well as crystallographic data of compounds 1j, α-3a, 3f, 3g, 5i and 5j are available in the supplementary material file associated with this paper. References used to compare the data of compounds that were already described in the literature are also cited in the supplementary material file.
References

 https://doi.org/10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO;2-Z
 https://doi.org/10.1002/anie.201305908
 https://doi.org/10.1002/anie.201305908
 https://doi.org/10.1002/anie.198607901
 https://doi.org/10.1016/j.ejmech.2013.06.018
 https://doi.org/10.1039/C6OB02006B
 https://doi.org/10.1002/chem.200902796
 https://doi.org/10.1021/ja0735958
 https://doi.org/10.1002/anie.200502176
 https://doi.org/10.1021/ja00272a058
 https://doi.org/10.1021/ja00538a081
 https://doi.org/10.1002/ ejoc.200500202
 https://doi.org/10.1021/jo00210a001
 https://doi.org/10.1002/chem.200600809
 https://doi.org/10.1021/jo00351a030
 https://doi.org/10.1021/jo060486n
 https://doi.org/10.1002/ ejoc.201100207
https://doi.org/10.1002/chem.200700762

https://doi.org/10.1021/acs.orglett.5b03029

https://doi.org/10.1002/(SICI)1521-3765(20000303)6:5<906::AID-CHEM906>3.0.CO;2-G

https://doi.org/10.1021/cr00022a004

https://doi.org/10.1039/A601717G

https://doi.org/10.1002/kin.21057

https://doi.org/10.1016/s0040-4039(00)80045-3

https://doi.org/10.1021/ol027273e

https://doi.org/10.1002/joc.711

https://doi.org/10.1002/1435-3965(2000)00:0<4730::AID-EJOC4730>3.0.CO;2-G

https://doi.org/10.1016/S0040-4039(00)99307-9
https://doi.org/10.1016/S0957-4166(99)00094-4

https://doi.org/10.1016/0040-4039(94)88379-3

https://doi.org/10.1021/jo00051a036

https://doi.org/10.1021/jo00325a026

https://doi.org/10.1080/14756366.2016.1238364

https://doi.org/10.1007/s11030-015-9630-2

https://doi.org/10.1002/ejoc.200801278

This paper is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)