Supplementary Material

Unveiling the impact of a CF₂ motif in the isothiourea catalyst skeleton: Evaluating C(3)-F₂-HBTM and its catalytic activity

Matthew T. Westwood,^a Kevin Kasten,^a Lotte Stockhammer,^d Roberto del Río-Rodríguez,^b Jose A. Fernández-Salas,^b Andreas Eitzinger,^c Alexandra M. Z. Slawin,^a Mario Waser,^d Jose Alémán,^b Armin R. Ofial,^{c*} and Andrew D. Smith ^{a*}

 ^a EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, UK
 ^b Departamento de Química Orgánica (Módulo 1), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049-Madrid, Spain
 ^c Department Chemie, Ludwig-Maximilians-Universität, Butenandtstr. 5–13 (Haus F), 81377 München, Germany
 ^d Institute of Organic Chemistry, Johannes Kepler Universität Linz, Altenbergerstraße 69, 4040 Linz, Austria
 Email: <u>armin.ofial@cup.uni-muenchen.de</u>; <u>ads10@st-andrews.ac.uk</u>

Table of Contents

General Experimental	S2
Chiral HPLC Analysis of (S)-7	S2
NMR Spectra	S3
X-Ray Crystallography	S26

1. General Experimental

An Applied Photophysics SX.20 stopped-flow spectrophotometer system was used for monitoring the kinetics of the reactions of benzhydrylium ions with isothioureas. The temperature of drive syringes, the flow circuit, and the observation cell was maintained constant at 20 °C (± 0.2 °C) by use of a circulating bath cryostat. All solutions were prepared in flame-dried Schlenk tubes under an atmosphere of dry argon. The kinetic runs were initiated by mixing equal volumes of dichloromethane solutions of the nucleophile and the benzhydrylium salt. Nucleophile concentrations at least four times higher than the benzhydryl cation concentrations were employed, resulting in pseudo-first-order kinetics with an exponential decay of the benzhydryl cation concentration. First-order rate constants k_{obs} [s⁻¹] were obtained by least-squares fitting of the absorbance data (average from at least 5 runs at each nucleophile concentration) to the single-exponential A = A₀ · $e^{-kobs \cdot t}$ + C. Second-order rate constants k_1 [$M^{-1} \cdot s^{-1}$] were then calculated from $k_{obs} = k_1$ [Nuc]₀.

Cyclic voltammetry measurements on a CH Instruments, Inc., CHI6330E Electrochemical Workstation were performed in deaerated acetonitrile solutions containing 0.1 M Bu₄NClO₄ by using a 2 mm diameter platinum working electrode, a platinum wire counter electrode and an Ag/Ag⁺ pseudo-reference electrode. Ferrocene was used as an internal standard for calibration vs. SCE (Fc/Fc⁺ = +0.382 V vs. SCE in MeCN, Aranzaes, J. R., Daniel, M.-C., Astruc, D., *Can. J. Chem.*, **2006**, *84*, 288-299.). The instrument parameters were: Scan rate 0.1V/s, sample interval 1 mV, quiet time 2 s and sensitivity 0.00001 A/V.

2. Chiral HPLC Analysis of (S)-7

Chiral HPLC analysis of (S)-7, Chiralcel OD-H (90:10 hexane : IPA, flow rate 1.0 mLmin⁻¹, 211 nm, 30 °C) t_R (S): 21.5 min, t_R (R) 32.2 min, >99:1 er

Detector A Channel 1 211nm			
Peak#	Ret. Time	Area%	
1	21.525	50.253	
2	32.165	49.747	
Total		100.000	

Figure S1 HPLC Analysis on a chiral stationary phase of (S)-C(3)-F₂-HBTM 7

3. NMR Spectra

©AUTHOR(S)

2108080147-1-20-mw267.11.fid MTW1409B2 || 19F Observe with 1H decoupling - Full Range SW

111.750 112.295 115.204 115.749 120.084

ARKIVOC 2024, *ii*, S1-S45

©AUTHOR(S)

2309111522-2-33-mw267.11.fid

MTW1415B2 || 19F Observe with 1H decoupling - Full Range SW

 ~ -111.303 ~ -111.987 ~ -121.117 ~ -121.802

2111041750-3-30-mw267.11.fid MTW1470A1 || 19F Observe with 1H decoupling - Full Range SW

0 -50 -100 -150 -200 -25(f1 (ppm) Page S13 ©AUTHOR(S)

2109101606-1-7-mw267.11.fid MTW1426H2 || 19F Observe with 1H decoupling - Full Range SW

-104.299
-104.832
-112.236
-112.769

2110281328-0-28-mw267.11.fid MTW146241 U 19F Observe without 1H decoupling	LEE 92- 5 - Full Range SW	
MTW1462A1 19F Observe without 1H decoupling	g - Full Range SW	

©AUTHOR(S)

4.	X-Ray Crystallography
Data	Collection
	A colorless platelet crystal of $C_{16}H_{12}F_2N_2S$ having approximate dimensions of 0.12
x 0.03	30 x 0.010 mm was mounted in a loop. All measurements were made on a Rigaku XtaLA
P200	diffractometer using multi-layer mirror monochromated Mo-Ka radiation.
	Call constants and an arientation matrix for data collection corresponded to
nrimi	tive orthorhombic cell with dimensions:
pinn	
	a = 6.807(3) Å
	b = 9.898(4) Å
	c = 19.960(7) Å
	$V = 1344.8(9) Å^3$
For Z	= 4 and F.W. = 302.34 , the calculated density is 1.493 g/cm ³ . The reflection condition
of:	
	h00: h = 2n
	0k0: k = 2n
	00I: I = 2n
uniau	ely determine the space group to be:
annqe	
	P2 ₁ 2 ₁ 2 ₁ (#19)
	The data were collected at a temperature of -180 \pm 1 ⁰ C to a maximum 2q value
50.8 ⁰).
Data	Reduction
	Of the 6101 reflections were collected where 2448 were unique (B: $\tau = 0.028$
oquiv	Of the ofor reflections were morged. Data were collected and processed using CrystalCl
	and renections were merged. Data were conected and processed using CrystalCle
(Rigal	<uj. td="" →<=""></uj.>
	The linear absorption coefficient m for Me Karadiation is 2 572 cm ⁻¹ An ampiri
absor	ration correction was applied which resulted in transmission factors ranging from 0.7
to 0.9	197. The data were corrected for Lorentz and polarization effects.
Struc	ture Solution and Refinement

45 46	The structure was solved by direct methods ² and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using
47 48	the riding model. The final cycle of full-matrix least-squares refinement ³ on F ² was based on 2448 observed reflections and 190 variable parameters and converged (largest parameters)
48 49	shift was 0.00 times its esd) with unweighted and weighted agreement factors of:
50 51	R1 = S Fo - Fc / S Fo = 0.0241
52 53	
54 55 56	wR2 = [S (w (Fo ² - Fc ²) ²)/ S w(Fo ²) ²] ^{1/2} = 0.0678
57	The goodness of fit ⁴ was 0.88. Unit weights were used. The maximum and minimum
58	peaks on the final difference Fourier map corresponded to 0.29 and -0.18 e ⁻ /Å ³ ,
59	respectively. The final Flack parameter 5 was 0.00(3), indicating that the present absolute
60 61	structure is correct. 6
62	Neutral atom scattering factors were taken from International Tables for
63	Crystallography (IT), Vol. C, Table 6.1.1.4 ⁷ . Anomalous dispersion effects were included in
64	Fcalc ⁸ ; the values for Df' and Df" were those of Creagh and McAuley ⁹ . The values for the
65	mass attenuation coefficients are those of Creagh and Hubbell ¹⁰ . All calculations were
66	performed using the CrystalStructure ¹¹ crystallographic software package except for
67	refinement, which was performed using SHELXL Version 2018/3 ¹² .
68 69	
70	

71 References

72

- <u>CrystalClear</u>: Data Collection and Processing Software, Rigaku Corporation (1998-2015).
 Tokyo 196-8666, Japan.
- 75 2. <u>SHELXT Version 2018/2</u>: Sheldrick, G. M. (2014). Acta Cryst. A70, C1437.
- 76 3. Least Squares function minimized: (SHELXL Version 2018/3)
- i. $Sw(F_0^2-F_c^2)^2$ where w = Least Squares weights.
- 78 4. Goodness of fit is defined as:
- 79 i. $[Sw(F_0^2 F_c^2)^2 / (N_0 N_v)]^{1/2}$
- 80 ii. where: N_O = number of observations
- 81 a. N_V = number of variables
- 5. Parsons, S., Flack, H.D. and Wagner, T. Acta Cryst. B69 (2013) 249-259.
- 83 6. Flack, H.D. and Bernardinelli (2000), J. Appl. Cryst. 33, 114-1148.
- International Tables for Crystallography, Vol.C (1992). Ed. A.J.C. Wilson, Kluwer
 Academic Publishers, Dordrecht, Netherlands, Table 6.1.1.4, pp. 572.
- 86 8. Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).
- 9. Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C.
 Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).
- 10. Creagh, D. C. & Hubbell, J.H.; "International Tables for Crystallography", Vol C, (A.J.C.
 Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).
- 91 11. <u>CrystalStructure 4.3</u>: Crystal Structure Analysis Package, Rigaku Corporation (2000-
- 92 2019). Tokyo 196-8666, Japan.
- 93 12. <u>SHELXL Version 2018/3</u>: Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

95	EXPERIMENTAL DETAILS	
96		
97		
98		
99		Table S1. Crystal Data
100		
101		
102		
103	Empirical Formula	C16H12F2N2S
104		
105	Formula Weight	302.34
106		
107	Crystal Color, Habit	colorless, platelet
108	Crystal Dimensions	0.120 X 0.020 X 0.010 mm
109	Crystal Dimensions	0.120 X 0.030 X 0.010 mm
110 111	Crystal System	orthorhombic
112	Crystal System	or mornomble
113	Lattice Type	Primitive
114		
115	Lattice Parameters	a = 6.807(3) Å
116		b = 9.898(4) Å
117		c = 19.960(7) Å
118		V = 1344 8(9) Å ³
119		v = 1344.0(3)/v
120	Space Group	P2 ₁ 2 ₁ 2 ₁ (#19)
121		
122	Z value	4
123		
124	D _{calc}	1.493 g/cm ³
125	cure	5,
126	Fooo	624.00
127		
128	m(MoKa)	2 573 cm ⁻ 1
129	in(inord)	2.575 611

130	Table S2. Intensity Measurements			
131				
132				
133				
134	Diffractometer	XtaLAB P200		
135				
136	Radiation	MoKa (l = 0.71075 Å)		
137		multi-layer mirror monochromated		
138				
139	Voltage, Current	45kV, 66mA		
140				
141	Temperature	-180.0 ⁰ C		
142				
143	Detector Aperture	83.8 x 70.0 mm		
144				
145	Data Images	451 exposures		
146				
147	Pixel Size	0.172 mm		
148				
149	2q _{max}	50.8 ⁰		
150				
151	No. of Reflections Measured	Total: 6101		
152		Unique: 2448 (R _{int} = 0.0284)		
153		Parsons quotients (Flack x parameter):		
154	927			
155				
156	Corrections	Lorentz-polarization		
157		Absorption		
158		(trans. factors: 0.734 - 0.997)		
159				

160 161 162 163	Table S3. Structure Sol	ution and Refinement
165 164 165	Structure Solution	Direct Methods (SHELXT Version 2018/2)
166 167	Refinement	Full-matrix least-squares on F ²
168 169	Function Minimized	S w (Fo ² - Fc ²) ²
170 171	Least Squares Weights	w = 1/ [s ² (Fo ²) + (0.0577 · P) ² + 0.0000 · P]
172 173		where $P = (Max(Fo^2, 0) + 2Fc^2)/3$
174 175	2q _{max} cutoff	50.8 ⁰
176 177	Anomalous Dispersion	All non-hydrogen atoms
178 179	No. Observations (All reflections)	2448
180 181	No. Variables	190
182 183	Reflection/Parameter Ratio	12.88
184 185	Residuals: R1 (I>2.00s(I))	0.0241
186 187	Residuals: R (All reflections)	0.0255
188 189	Residuals: wR2 (All reflections)	0.0678
190 191	Goodness of Fit Indicator	0.880
192 193	Flack parameter (Parsons' quotients = 927)	0.00(3)
194 195	Max Shift/Error in Final Cycle	0.001
196 197	Maximum peak in Final Diff. Map	0.29 e⁻/Å ³
198 199	Minimum peak in Final Diff. Map	-0.18 e ⁻ /Å ³

200	Table S4.	Atomic	coordinates	and	B _{iso} /E	Beq

201					
202	atom	Х	У	Z	B _{eq}
203	S1	0.60708(8)	0.46858(5)	0.62977(2)	1.543(12)
204	F1	0.28639(19)	0.36746(12)	0.82374(6)	1.91(2)
205	F2	0.32238(18)	0.52530(13)	0.89983(6)	1.80(2)
206	N8	0.3795(3)	0.56571(16)	0.72202(8)	1.28(3)
207	N12	0.6567(3)	0.43730(17)	0.76201(9)	1.49(3)
208	C2	0.3985(3)	0.56198(19)	0.60565(10)	1.36(3)
209	C3	0.3337(3)	0.5902(2)	0.54125(10)	1.57(4)
210	C4	0.1602(3)	0.6646(2)	0.53361(11)	1.70(4)
211	C5	0.0552(3)	0.7080(2)	0.58951(10)	1.58(4)
212	C6	0.1197(3)	0.67978(19)	0.65441(10)	1.41(3)
213	C7	0.2937(3)	0.6063(2)	0.66175(10)	1.29(3)
214	C9	0.2978(3)	0.5943(2)	0.78818(9)	1.48(4)
215	C10	0.3778(3)	0.49081(19)	0.83610(10)	1.50(3)
216	C11	0.5992(3)	0.4679(2)	0.83183(10)	1.45(3)
217	C13	0.5491(3)	0.4893(2)	0.71600(10)	1.41(3)
218	C14	0.7148(3)	0.5867(2)	0.86034(10)	1.44(3)
219	C15	0.7859(3)	0.6896(2)	0.81894(10)	1.54(4)
220	C16	0.8949(3)	0.7963(2)	0.84558(11)	1.69(3)
221	C17	0.9296(3)	0.8027(2)	0.91417(11)	1.79(4)
222	C18	0.8580(3)	0.7017(2)	0.95562(11)	2.04(4)
223	C19	0.7524(3)	0.5934(2)	0.92908(11)	1.75(4)
224					

225 $B_{eq} = 8/3 p^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)cos g + 2U_{13}(aa^*cc^*)cos b + 2U_{23}(bb^*cc^*)cos a)$

226 Table S5. Atomic coordinates and $\mathsf{B}_{\mathsf{iso}}$ involving hydrogen atoms

227					
228	atom	х	У	Z	B _{iso}
229	H3	0.40531	0.55981	0.50328	1.887
230	H4	0.11375	0.68555	0.48996	2.036
231	H5	-0.06266	0.75790	0.58334	1.893
232	H6	0.04755	0.70957	0.69238	1.689
233	H9A	0.15262	0.58915	0.78679	1.771
234	H9B	0.33584	0.68626	0.80277	1.771
235	H11	0.63093	0.38675	0.85964	1.744
236	H15	0.75978	0.68691	0.77221	1.843
237	H16	0.94521	0.86461	0.81687	2.023
238	H17	1.00220	0.87587	0.93252	2.146
239	H18	0.88092	0.70638	1.00251	2.449
240	H19	0.70605	0.52388	0.95784	2.104
241					

242	Table S6.	Anisotro	pic dis	placement	parameters
	10010-001	/ 11130110		placefilerie	parameters

243			•				
244	atom	U ₁₁	U ₂₂	U33	U ₁₂	U ₁₃	U ₂₃
245	S1	0.0194(3)	0.0226(3)	0.0166(2)	0.0049(2)	0.0024(2)	-0.0010(2)
246	F1	0.0257(7)	0.0203(6)	0.0267(7)	-0.0061(5)	0.0005(5)	0.0020(5)
247	F2	0.0241(6)	0.0287(7)	0.0156(6)	0.0017(6)	0.0041(5)	0.0016(5)
248	N8	0.0161(8)	0.0169(8)	0.0157(8)	0.0025(7)	0.0021(7)	-0.0000(7)
249	N12	0.0202(9)	0.0184(9)	0.0180(8)	0.0033(7)	0.0006(7)	0.0001(7)
250	C2	0.0169(9)	0.0142(9)	0.0207(9)	-0.0008(8)	0.0016(8)	-0.0004(8)
251	C3	0.0220(11)	0.0195(10)	0.0183(10)	-0.0010(9)	0.0020(9)	0.0012(9)
252	C4	0.0245(12)	0.0203(11)	0.0197(10)	-0.0017(9)	-0.0014(9)	0.0022(9)
253	C5	0.0186(11)	0.0169(10)	0.0245(11)	-0.0012(9)	-0.0008(9)	0.0021(9)
254	C6	0.0179(10)	0.0163(9)	0.0193(9)	-0.0004(9)	0.0026(9)	0.0002(8)
255	C7	0.0184(10)	0.0125(9)	0.0180(10)	-0.0034(8)	0.0000(9)	0.0000(8)
256	C9	0.0175(10)	0.0210(10)	0.0176(10)	0.0011(9)	0.0036(9)	-0.0008(9)
257	C10	0.0222(11)	0.0180(10)	0.0169(10)	-0.0032(9)	0.0039(9)	-0.0011(8)
258	C11	0.0214(10)	0.0165(9)	0.0174(10)	0.0017(9)	0.0018(9)	0.0022(8)
259	C13	0.0190(10)	0.0153(10)	0.0193(10)	-0.0014(8)	0.0029(8)	-0.0025(8)
260	C14	0.0150(10)	0.0176(10)	0.0221(11)	0.0057(8)	0.0015(8)	-0.0008(9)
261	C15	0.0182(10)	0.0201(10)	0.0201(10)	0.0038(9)	0.0021(9)	0.0020(9)
262	C16	0.0194(10)	0.0173(9)	0.0274(10)	0.0036(9)	0.0048(10)	0.0024(9)
263	C17	0.0172(11)	0.0207(10)	0.0301(11)	0.0004(9)	-0.0000(9)	-0.0051(9)
264	C18	0.0282(12)	0.0289(11)	0.0205(10)	0.0019(10)	-0.0003(10)	-0.0010(10)
265	C19	0.0235(11)	0.0227(11)	0.0204(11)	0.0008(9)	0.0012(9)	0.0032(9)
266							

The general temperature factor expression: $exp(-2p^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + c^{*2}U_{33}l^2)$ 268

 $2a*b*U_{12}hk + 2a*c*U_{13}hl + 2b*c*U_{23}kl))$ 269

270						
271	Table S7	. Bond lengt	hs (Å)			
272						
273	atom	atom	distance	atom	atom	distance
274	S1	C2	1.762(2)	S1	C13	1.778(2)
275	F1	C10	1.392(2)	F2	C10	1.370(2)
276	N8	C7	1.396(3)	N8	C9	1.460(3)
277	N8	C13	1.386(3)	N12	C11	1.479(3)
278	N12	C13	1.282(3)	C2	C3	1.387(3)
279	C2	C7	1.398(3)	C3	C4	1.400(3)
280	C4	C5	1.393(3)	C5	C6	1.396(3)
281	C6	C7	1.398(3)	C9	C10	1.504(3)
282	C10	C11	1.526(3)	C11	C14	1.525(3)
283	C14	C15	1.398(3)	C14	C19	1.397(3)
284	C15	C16	1.396(3)	C16	C17	1.391(3)
285	C17	C18	1.386(3)	C18	C19	1.396(3)
286						
287						

288						
289	Table S8	8. Bond lengtl	hs involving hydrogens	s (Å)		
290						
291	atom	atom	distance	atom	atom	distance
292	C3	H3	0.950	C4	H4	0.950
293	C5	H5	0.950	C6	H6	0.950
294	C9	H9A	0.990	C9	H9B	0.990
295	C11	H11	1.000	C15	H15	0.950
296	C16	H16	0.950	C17	H17	0.950
297	C18	H18	0.950	C19	H19	0.950
298						

300 301	Table S9	. Bond ang	gles (⁰)					
302	atom	atom	atom	angle	atom	atom	atom	angle
303	C2	S1	C13	91.44(10)	C7	N8	C9	
304		124.34(1	7)					
305	C7	N8	C13	115.52(16)	C9	N8	C13	
306		120.09(1	6)					
307	C11	N12	C13	116.20(17)	S1	C2	C3	
308		127.95(1	6)					
309	S1	C2	C7	110.91(15)	C3	C2	C7	
310		121.12(1	9)					
311	C2	C3	C4	118.35(19)	C3	C4	C5	120.5(2)
312	C4	C5	C6	121.33(19)	C5	C6	C7	
313		117.90(1	9)					
314	N8	C7	C2	112.74(18)	N8	C7	C6	
315		126.47(1	8)					
316	C2	C7	C6	120.77(19)	N8	C9	C10	
317		107.77(1	7)					
318	F1	C10	F2	105.06(15)	F1	C10	C9	
319		108.83(1	6)					
320	F1	C10	C11	107.54(15)	F2	C10	C9	
321		108.72(1	6)					
322	F2	C10	C11	111.15(16)	C9	C10	C11	
323		115.04(1	7)					
324	N12	C11	C10	110.13(16)	N12	C11	C14	
325		111.92(1	6)					
326	C10	C11	C14	111.96(16)	S1	C13	N8	
327		109.39(1	4)					
328	S1	C13	N12	121.35(16)	N8	C13	N12	
329		129.26(1	.9)					
330	C11	C14	C15	121.32(18)	C11	C14	C19	
331		119.83(1	.8)					
332	C15	C14	C19	118.85(19)	C14	C15	C16	
333		120.67(1	9)					
334	C15	C16	C17	120.0(2)	C16	C17	C18	119.7(2)
335	C17	C18	C19	120.6(2)	C14	C19	C18	120.2(2)
336								

337								
338	Table S	10. Bond a	angles invol	ving hydrogen	s (⁰)			
339								
340	atom	atom	atom	angle	atom	atom	atom	angle
341	C2	C3	H3	120.8	C4	C3	H3	120.8
342	C3	C4	H4	119.7	C5	C4	H4	119.7
343	C4	C5	H5	119.3	C6	C5	H5	119.3
344	C5	C6	H6	121.0	C7	C6	H6	121.1
345	N8	C9	H9A	110.2	N8	C9	H9B	110.2
346	C10	C9	H9A	110.1	C10	C9	H9B	110.1
347	H9A	C9	H9B	108.5	N12	C11	H11	107.5
348	C10	C11	H11	107.5	C14	C11	H11	107.5
349	C14	C15	H15	119.7	C16	C15	H15	119.7
350	C15	C16	H16	120.0	C17	C16	H16	120.0
351	C16	C17	H17	120.2	C18	C17	H17	120.2
352	C17	C18	H18	119.7	C19	C18	H18	119.7
353	C14	C19	H19	119.9	C18	C19	H19	119.9
354								

357 358

356 Table S11. Torsion Angles(⁰)

(Those having bond angles > 160 or < 20 degrees are excluded.)

359	atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom4	angle
360	C2	S1	C13	N8	-0.69(13)	C2	S1	C13	N12	
361		179.15	(16)							
362	C13	S1	C2	C3	-178.27(17)	C13	S1	C2	C7	0.44(13)
363	C7	N8	C9	C10	156.91(16)	C9	N8	C7	C2	-
364	178.02(15)								
365	C9	N8	C7	C6	0.2(3)	C7	N8	C13	S1	0.8(2)
366	C7	N8	C13	N12	-179.02(18)	C13	N8	C7	C2	-0.5(2)
367	C13	N8	C7	C6	177.78(16)	C9	N8	C13	S1	
368		178.45	(14)							
369	C9	N8	C13	N12	-1.4(3)	C13	N8	C9	C10	-20.5(2)
370	C11	N12	C13	S1	176.77(14)	C11	N12	C13	N8	-3.4(3)
371	C13	N12	C11	C10	29.2(2)	C13	N12	C11	C14	-96.0(2)
372	S1	C2	C3	C4	178.67(13)	S1	C2	C7	N8	-0.1(2)
373	S1	C2	C7	C6	-178.45(13)	C3	C2	C7	N8	
374		178.74	(17)							
375	C3	C2	C7	C6	0.4(3)	C7	C2	C3	C4	0.1(3)
376	C2	C3	C4	C5	-0.4(3)	C3	C4	C5	C6	0.4(3)
377	C4	C5	C6	C7	0.0(3)	C5	C6	C7	N8	-
378	178.54(17)								
379	C5	C6	C7	C2	-0.4(3)	N8	C9	C10	F1	-
380	73.33(1	9)								
381	N8	C9	C10	F2	172.75(14)	N8	C9	C10	C11	47.4(2)
382	F1	C10	C11	N12	68.22(18)	F1	C10	C11	C14	-
383	166.57(13)								
384	F2	C10	C11	N12	-177.29(13)	F2	C10	C11	C14	-
385	52.09(1	9)								
386	C9	C10	C11	N12	-53.2(2)	C9	C10	C11	C14	72.0(2)
387	N12	C11	C14	C15	29.0(2)	N12	C11	C14	C19	-
388	150.54(16)								
389	C10	C11	C14	C15	-95.2(2)	C10	C11	C14	C19	85.2(2)
390	C11	C14	C15	C16	-178.69(16)	C11	C14	C19	C18	-
391	179.98(16)								
392	C15	C14	C19	C18	0.5(3)	C19	C14	C15	C16	0.8(3)
393	C14	C15	C16	C17	-1.5(3)	C15	C16	C17	C18	0.9(3)
394	C16	C17	C18	C19	0.4(3)	C17	C18	C19	C14	-1.1(3)
395										
396										
397										

399						
400	Table S1	2. Intramole	cular contacts less tha	n 3.60 Å		
401						
402	atom	atom	distance	atom	atom	distance
403	F1	N8	2.894(2)	F1	N12	2.890(2)
404	F1	C13	3.046(2)	F2	N8	3.593(2)
405	F2	C14	2.850(3)	F2	C19	3.060(3)
406	N8	C11	2.825(3)	N8	C14	3.588(3)
407	N8	C15	3.592(3)	N12	C7	3.593(3)
408	N12	C9	2.942(3)	N12	C15	2.881(3)
409	C2	C5	2.766(3)	C3	C6	2.830(3)
410	C4	C7	2.775(3)	C6	C9	3.052(3)
411	C9	C14	3.184(3)	C9	C15	3.508(3)
412	C10	C13	2.666(3)	C10	C15	3.421(3)
413	C10	C19	3.313(3)	C13	C14	3.241(3)
414	C13	C15	3.279(3)	C14	C17	2.804(3)
415	C15	C18	2.775(3)	C16	C19	2.785(3)
416						
417						

41	.8
----	----

419	Table S13.	Intramolecular	contacts	less than	3.60	Å involvi	ng hydrogens
-----	------------	----------------	----------	-----------	------	-----------	--------------

421	atom	atom	distance	atom	atom	distance
422	S1	H3	3.013	F1	H9A	2.488
423	F1	H9B	3.201	F1	H11	2.460
424	F2	H9A	2.613	F2	H9B	2.510
425	F2	H11	2.634	F2	H19	2.857
426	N8	H6	2.735	N8	H15	3.024
427	N12	H9B	3.392	N12	H15	2.576
428	C2	H4	3.253	C2	H6	3.292
429	C3	H5	3.277	C4	H6	3.291
430	C5	H3	3.285	C6	H4	3.283
431	C6	H9A	2.799	C6	H9B	3.307
432	C7	H3	3.285	C7	H5	3.253
433	C7	H9A	2.679	C7	H9B	2.938
434	C9	H6	2.804	C9	H11	3.376
435	C9	H15	3.291	C10	H15	3.486
436	C10	H19	3.317	C11	H9A	3.390
437	C11	H9B	2.867	C11	H15	2.703
438	C11	H19	2.676	C13	H9A	3.203
439	C13	H9B	2.985	C13	H11	3.092
440	C13	H15	2.672	C14	H9B	2.991
441	C14	H16	3.283	C14	H18	3.276
442	C15	H9B	3.081	C15	H11	3.280
443	C15	H17	3.272	C15	H19	3.267
444	C16	H18	3.258	C17	H15	3.268
445	C17	H19	3.270	C18	H16	3.259
446	C19	H11	2.605	C19	H15	3.266
447	C19	H17	3.273	H3	H4	2.358
448	H4	H5	2.330	H5	H6	2.351
449	H6	H9A	2.342	H6	H9B	2.960
450	H9B	H15	2.950	H11	H15	3.555
451	H11	H19	2.438	H15	H16	2.341
452	H16	H17	2.343	H17	H18	2.334
453	H18	H19	2.340			
454						

456							
457	Table S14.	Intermolecula	ar contacts les	s than 3.60 Å			
458							
459	atom	atom	distance		atom	atom	distance
460	F1	C5 ¹	3.301(3)		F1	C6 ¹	3.359(3)
461	F1	C15 ²	3.384(3)		F2	C3 ³	3.225(3)
462	F2	C4 ³	3.267(3)		N8	C16 ²	3.524(3)
463	N12	C6 ²	3.406(3)		N12	C9 ²	3.553(3)
464	C2	C16 ²	3.442(3)		C2	C17 ²	3.425(3)
465	C3	F2 ⁴	3.225(3)		C3	C17 ²	3.479(3)
466	C4	F2 ⁴	3.267(3)		C5	F1 ⁵	3.301(3)
467	C6	F1 ⁵	3.359(3)		C6	N12 ⁶	3.406(3)
468	C6	C11 ⁶	3.445(3)		C7	C16 ²	3.328(3)
469	C9	N12 ⁶	3.553(3)		C9	C16 ⁷	3.583(3)
470	C11	C6 ²	3.445(3)		C15	F1 ⁶	3.384(3)
471	C16	N8 ⁶	3.524(3)		C16	C2 ⁶	3.442(3)
472	C16	C7 ⁶	3.328(3)		C16	C9 ⁸	3.583(3)
473	C17	C2 ⁶	3.425(3)		C17	C3 ⁶	3.479(3)
474							
475							
476							
477	Symmetry	Operators:					
478							
479	(1) -X,Y+1,	/2-1,-Z+1/2+1		(2) -X+1,Y+1/2-1,-Z+1/2+1			
480	(3) -X+1/2	,-Y+1,Z+1/2		(4) -X+1/2,-Y+1,Z+1/2-1			
481	(5) -X,Y+1,	/2,-Z+1/2+1		(6) -X+1,Y+1,	/2,-Z+1/2+1		
482	(7) X-1,Y,Z		(8) X+1,Y,Z				

484	Table S15. Intermolecular conta	ts less than 3.60 Å involving hydrogens
-----	---------------------------------	---

486	atom	atom	distance	atom	atom	distance
487	S1	H9B ¹	3.126	S1	H16 ²	3.388
488	S1	H17 ²	3.076	S1	H18 ³	3.075
489	F1	H4 ⁴	3.427	F1	H5⁵	2.633
490	F1	H6⁵	2.777	F1	H15 ¹	2.638
491	F1	H16 ¹	3.219	F2	H3 ⁴	2.716
492	F2	H4 ⁴	2.789	F2	H5⁵	3.201
493	F2	H18 ⁶	3.318	N8	H11 ⁷	3.572
494	N8	H16 ¹	3.074	N12	H6 ¹	3.156
495	N12	H9B ¹	2.802	N12	H16 ²	3.216
496	C2	H4 ⁸	3.469	C2	H11 ⁷	3.294
497	C2	H16 ¹	3.418	C2	H17 ¹	3.378
498	C3	H4 ⁸	2.991	C3	H5 ⁸	2.990
499	C3	H11 ⁷	3.548	C3	H17 ¹	3.163
500	C4	H3 ⁹	3.316	C4	H4 ⁸	3.457
501	C4	H5 ⁸	3.098	C4	H11 ⁷	3.376
502	C4	H17 ¹	3.138	C4	H19 ¹⁰	3.462
503	C5	H3 ⁹	3.123	C5	H4 ⁹	3.557
504	C5	H11 ⁷	2.954	C5	H17 ¹	3.340
505	C6	H11 ⁷	2.675	C6	H15 ¹¹	3.396
506	C6	H16 ¹	3.202	C6	H17 ¹	3.570
507	C7	H11 ⁷	2.855	C7	H16 ¹	2.924
508	C7	H17 ¹	3.577	C9	H16 ¹	3.507
509	C10	H4 ⁴	3.533	C10	H5⁵	3.536
510	C11	H6 ¹	3.543	C13	H9B ¹	3.123
511	C14	H9A ¹²	3.322	C15	H6 ¹²	3.097
512	C15	H9A ¹²	2.763	C16	H6 ¹²	3.34
513	C16	H9A ¹²	2.943	C16	H9B ¹²	3.306
514	C17	H18 ¹³	3.494	C18	H3 ¹⁴	3.194
515	C18	H17 ⁶	3.382	C18	H18 ⁶	3.474
516	C19	H3 ¹⁴	3.150	C19	H17 ⁶	3.260
517	C19	H18 ⁶	3.491	H3	F2 ¹⁰	2.716
518	H3	C4 ⁸	3.316	H3	C5 ⁸	3.123
519	H3	C18 ³	3.194	H3	C19 ³	3.150
520	H3	H4 ⁸	2.895	H3	H5 ⁸	2.508
521	H3	H17 ¹	3.557	H3	H18 ³	3.010
522	H3	H19 ³	2.917	H4	F1 ¹⁰	3.427
523	H4	F2 ¹⁰	2.789	H4	C2 ⁹	3.469
524						

526	Table S16. Intermolecular contacts less than 3.60 Å involving hydrogens (co	ontinued)
-----	---	-----------

528	atom	atom	distance	atom	atom	distance
529	H4	C3 ⁹	2.991	H4	C4 ⁹	3.457
530	H4	C5 ⁸	3.557	H4	C10 ¹⁰	3.533
531	H4	H3 ⁹	2.895	H4	H5 ⁸	2.703
532	H4	H11 ¹⁰	3.171	H4	H17 ¹	3.523
533	H4	H19 ¹⁰	3.074	H5	F1 ¹⁵	2.633
534	H5	F2 ¹⁵	3.201	H5	C3 ⁹	2.990
535	H5	C4 ⁹	3.098	H5	C10 ¹⁵	3.536
536	H5	H3 ⁹	2.508	H5	H4 ⁹	2.703
537	H5	H11 ⁷	3.400	H6	F1 ¹⁵	2.777
538	H6	N12 ⁷	3.156	H6	C11 ⁷	3.543
539	H6	C15 ¹¹	3.097	H6	C16 ¹¹	3.342
540	H6	H11 ⁷	2.991	H6	H15 ¹¹	2.535
541	H6	H16 ¹¹	3.002	H6	H16 ¹	3.420
542	H9A	C14 ¹¹	3.322	H9A	C15 ¹¹	2.763
543	H9A	C16 ¹¹	2.943	H9A	H15 ¹¹	2.859
544	H9A	H16 ¹¹	3.129	H9A	H16 ¹	3.109
545	H9B	S1 ⁷	3.126	H9B	N12 ⁷	2.802
546	H9B	C13 ⁷	3.123	H9B	C16 ¹¹	3.306
547	H9B	H16 ¹¹	3.204	H11	N8 ¹	3.572
548	H11	C2 ¹	3.294	H11	C3 ¹	3.548
549	H11	C4 ¹	3.376	H11	C5 ¹	2.954
550	H11	C6 ¹	2.675	H11	C7 ¹	2.855
551	H11	H4 ⁴	3.171	H11	H5 ¹	3.400
552	H11	H6 ¹	2.991	H15	F1 ⁷	2.638
553	H15	C6 ¹²	3.396	H15	H6 ¹²	2.535
554	H15	H9A ¹²	2.859	H16	S1 ¹⁶	3.388
555	H16	F1 ⁷	3.219	H16	N8 ⁷	3.074
556	H16	N12 ¹⁶	3.216	H16	C2 ⁷	3.418
557	H16	C6 ⁷	3.202	H16	C7 ⁷	2.924
558	H16	C9 ⁷	3.507	H16	H6 ¹²	3.002
559	H16	H6 ⁷	3.420	H16	H9A ¹²	3.129
560	H16	H9A ⁷	3.109	H16	H9B ¹²	3.204
561	H17	S1 ¹⁶	3.076	H17	C2 ⁷	3.378
562	H17	C3 ⁷	3.163	H17	C4 ⁷	3.138
563	H17	C5 ⁷	3.340	H17	C6 ⁷	3.570
564	H17	C7 ⁷	3.577	H17	C18 ¹³	3.382
565	H17	C19 ¹³	3.260	H17	H3 ⁷	3.557
566						

507							
568	Table S17. Intermolecular contacts less than 3.60 Å involving hydrogens (continued)						
569					_		
570	atom	atom	distance	atom	atom	distance	
571	H17	H4 ⁷	3.523	H17	H18 ¹³	2.998	
572	H17	H19 ¹³	2.775	H18	S1 ¹⁴	3.075	
573	H18	F2 ¹³	3.318	H18	C17 ⁶	3.494	
574	H18	C18 ¹³	3.474	H18	C19 ¹³	3.491	
575	H18	H3 ¹⁴	3.010	H18	H17 ⁶	2.998	
576	H18	H18 ⁶	3.513	H18	H18 ¹³	3.513	
577	H18	H19 ¹³	3.557	H19	C4 ⁴	3.462	
578	H19	H3 ¹⁴	2.917	H19	H4 ⁴	3.074	
579	H19	H17 ⁶	2.775	H19	H18 ⁶	3.557	
580							
581							
582	Symmet	ry Operators	:				
583							
584	(1) -X+1,Y+1/2-1,-Z+1/2+1			(2) -X+2,Y+1/2-1,-Z+1/2+1			
585	(3) $-X+1/2+1$. $-Y+1.Z+1/2-1$			(4) -X+1/2,-Y+1,Z+1/2			
586	(5) -X.Y+1/2-1Z+1/2+1			(6) X+1/2-1,-Y+1/2+1,-Z+2			
587	(7) - X + 1.Y + 1/2Z + 1/2 + 1			(8) X+1/2Y+1/2+1Z+1			
588	(9) X+1/2-1Y+1/2+1Z+1			(10) -X+1/2,-Y+1,Z+1/2-1			
589	(11) X-1.Y.Z			(12) X+1.Y.Z			
590	(13) X+1/2-Y+1/2+1-7+2			(14) -X+1/2+1 -Y+1 7+1/2			
591	(15) - X V + 1/2 - 7 + 1/2 + 1			(16) _Y+2 V+1/2 _7+1/2+1			
502	(13) 7,	····/ <i>2, 2</i> ·1/2	· -				
<u>592</u>							