RhIII-catalyzed synthesis and investigation of the DNA-binding properties of 11- and 13-substituted berberine derivatives

Philipp Groß, Phil M. Pithan, and Heiko Ihmels*

Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and (Bio)Technology (Cµ), University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany

Email: ihmels@chemie.uni-siegen.de

Abstract

The Rh-catalyzed annulation reaction of 2-(ethynylaryl)ethaneamines was used as key step to synthesize two berberine derivatives with hydroxy and phenyl substituents in 11- and 13-position. These compounds showed absorption and emission properties comparable to the parent alkaloid berberine. The fluorescence of the hydroxy-substituted berberine ($pK_a = 6.3$) is efficiently quenched under acidic conditions, whereas a fluorescence light-up effect was observed with increasing pH values. The interactions of the berberine derivatives with duplex DNA and quadruplex DNA were investigated with absorption, circular dichroism (CD), and linear dichroism (LD) spectroscopy. The 13-phenyl-substituted berberine binds to duplex DNA with a binding constant of $K_b = 1.2 \times 10^5$ M$^{-1}$ and to quadruplex DNA with $K_b = 1.9 \times 10^5$ M$^{-1}$. The CD- and LD-spectroscopic studies showed that the 11-hydroxy-13-phenyl-substituted berberine binds to duplex DNA by intercalation and to quadruplex DNA by terminal π stacking.

Keywords: heterocycles, DNA recognition, hydroxyberberine, protoberberine, tetrahydroisoquinolinium
Introduction

The tetrahydroisoquinoline scaffold is found in a broad range of alkaloids, which exhibit remarkable bioactivities.\(^1\)\(^{-3}\) Therefore, compounds with this structural feature are of great interest in medicinal chemistry and pharmaceutical sciences, and the exploration of novel pathways for the synthesis of tetrahydroisoquinoline derivatives allows the exploitation of novel analogues of these natural products.\(^1\) Among the isoquinoline alkaloids, protoberberine derivatives, and especially berberine, are of particular interest, because they display a wide range of different biological activities, namely DNA-binding,\(^4\)\(^{-6}\) anticancer, antiviral and antiseptic properties.\(^7\)\(^{-9}\) Along these lines, the straightforward and variable synthesis of berberine derivatives provides important structures and lead compounds for the development of novel efficient and selective therapeutic agents.\(^8\)\(^{10}\) Although several synthetic routes to berberine derivatives have been explored already,\(^8\)\(^{9,11\text{-}13}\) many preparative approaches towards derivatization are limited to particular functional groups and often involve tedious multi-step synthesis.\(^12\)\(^{,14,15}\) Berberine itself is readily available in large quantities by extraction from plant material, but can only be readily functionalized in 9-, 9-\(\text{O}\)-, 10-\(\text{O}\)-, 12- and 13-position, so that a more versatile synthetic approach is necessary to provide a broader range of substitution patterns.\(^16\)\(^{-19}\) In this context, it has been shown that the annulation reaction of 2-(ethynylphenyl)ethaneamines and benzaldehydes through Rh-catalysis is a potent method for the synthesis of highly functionalized berberine derivatives from readily available precursors,\(^20\)\(^{,21}\) though terminal alkynes have not been applied, yet, and require silyl protection groups.\(^21\) Hence, the Rh-catalyzed cyclization may facilitate the synthesis of berberine derivatives with novel substitution patterns and functional groups, which are inaccessible by conventional approaches.\(^21\) In this context, the synthesis of hydroxy-substituted berberines figures as an attractive target, as hydroxy functionalities may have a significant effect on the bioactivity of a cationic arenes, which has already been shown in a comparison between berberine (1a) and the 9-hydroxy-substituted analogue berberrubrine as well as for 12-hydroxy substituted berberines.\(^22\)\(^{-24}\) In other studies, it has also been shown that the DNA-binding properties of resembling quinolizinium derivatives, such as the 8-hydroxybenzo[b]quinolizinium (2a) and 3-hydroxynaphtho[1,2-\(b\)]quinolizinium (2b), are influenced by the hydroxy functionality.\(^25\)\(^{,26}\) At the same time, the development of DNA-binding ligands is an important interdisciplinary research area because such compounds are promising candidates as lead structures for DNA-targeting drugs or as functional dyes for DNA detection.\(^27\) Therefore, we focused our attention on novel hydroxyberberine derivatives to complement our ongoing studies of the factors that govern the DNA-binding properties of berberine derivatives.\(^18\)\(^{,28\text{-}30}\) And we proposed that the above-mentioned route through Rh-catalyzed annulation reaction may be employed as a key step for the synthesis, although hydroxy-substituted derivatives have not been prepared by this method, so far. Specifically, we investigated the synthesis of selected 11-hydroxyberberine derivatives 1b, 1f, and 1g, and – for comparison – of a resembling reference compound without hydroxy group. Herein, we present the synthesis of 11-hydroxy-13-phenyl-substituted berberine and the corresponding "deoxy"-derivative along with their absorption, emission, and DNA-binding properties.
Results and Discussion

Synthesis
Firstly, the amino group of homoveratrylamine (3a) was protected as acetyamide 3b by the reaction with trifluoroacetic ethylester (Scheme 1). Subsequent iodination with iodine chloride gave the iodo-substituted arene derivative 3c in 81% yield over 2 steps. The protected 2-iodohomoveratrylamine 3c was employed in a Pd/Cu-mediated Sonogashira coupling reaction with alkynes 4a or 4b to yield the literature known alkynylated homoveratrylamine derivative 5a and the novel derivative 5b in 90% and 79% yield, respectively. The amides 5a,b were deprotected under alkaline conditions to give the free amines 6a and 6b in >95% yield, respectively (Scheme 1). The structures of the known compounds 3a–c and 6a,b were confirmed with 1H NMR spectroscopy and comparison with literature data. Moreover, the structure of compound 5b was unambiguously characterized by NMR spectroscopy (1H, 13C, H,H-COSY, HSQC and CH-HMBC), elemental analysis and mass spectrometry. Hence, the multiplicities and chemical shifts of proton signals at 1.15 ppm, 2.91 ppm and 2.98 ppm were assigned to the trisopropylsilyl group and the methylene groups. Furthermore, the singlets in the proton spectrum at 3.88 ppm, 3.89 ppm, 6.70 ppm and 6.95 ppm were assigned to the methoxy groups and the aromatic ring.

![Scheme 1](image_url)

Scheme 1. Synthesis of the alkynylated homoveratrylaminederivatives 6a and 6b.

The phenylalkynyl-substituted homoveratrylamine 6a was converted to the berberine derivatives 1b and 1c in a Rh-catalyzed reaction with 4-hydroxybenzaldehyde (7a), benzaldehyde (7b), or 4-(trisopropylsilyloxy) benzaldehyde (7c) in low yields of 16%, 8%, and 7%, respectively (Scheme 2). In the case of the silyl-protected product obtained by the reaction with aldehyde 7c, deprotection occurred during the chromatographic purification to directly give berberine 1b. However, the 1H NMR-spectroscopic analysis of the crude product of 1b indicated the initial formation of the TIPS-protected derivative. The novel berberine 1b was fully characterized by NMR spectroscopy (1H, 13C, H,H-COSY, HSQC und CH-HMBC), elemental analysis, and mass spectrometry, showing characteristic proton signals at 3.03 ppm, 4.30 ppm, 5.62 ppm and 8.66 ppm, which were assigned to the methylene groups and the berberine framework. It should be noted, however, that the 1H NMR shifts are concentration dependent. The structure of product 1c was identified by comparison of the 1H NMR-spectroscopic data with the literature data. Thus, the characteristic triplets in the 1H NMR spectrum at 3.25 ppm and 4.88 ppm were assigned to the methylene groups, while the signals at 7.46 ppm and 7.65 ppm were assigned to the phenyl ring. The elemental analysis showed that chloride was present as counter anion, which was presumably introduced during column-chromatographic purification on silica gel.

The Rh-catalyzed reaction of the silylalkynyl-substituted derivative 6b and benzaldehyde (7b) led to the formation of berberine derivative 1e (Scheme 2). The 1H NMR-spectroscopic analysis indicated that the
protected derivative 1d was formed, but after chromatographic purification an additional 1H NMR signal at 9.09 ppm appeared, which was assigned to the 13-H of the unsubstituted derivative 1e. Hence, the berberine 1d was presumably protodesilylated on the slightly acidic silica gel phase. In a second attempt, the crude product of berberine 1d was directly deprotected by addition of trifluoroacetic acid (TFA) to give the product 1e in 17% overall yield from the amine 6b (Scheme 2).33,34 In contrast, the reaction of 4-hydroxybenzaldehyde (7a) and silylalkynyl-substituted homoveratrylamine 6b resulted in the formation of side products instead of the desired product 1f, presumably because of the decomposition of the berberine during the purification process, as suggested by the 1H NMR-spectroscopic analysis. The berberine 1e was synthesized with a different counter ion when compared with the literature and was therefore unambiguously characterized by 1H NMR spectroscopy, elemental analysis, and mass spectrometry.

Scheme 2. Synthesis of berberines 1b–f by a Rh-catalyzed annulation reaction.

Absorption and emission properties
The absorption and emission properties of the derivatives 1b and 1e were investigated in MeOH, DMSO, and CHCl$_3$ (Figure 1). The hydroxy-substituted berberine derivative 1b showed a long-wavelength absorption band with a maximum at 379 nm in DMSO, 382 nm in CHCl$_3$, and 362 nm in MeOH, the latter, however, only as a very broad band. In addition, two slightly stronger, blue-shifted absorption maxima were observed at 318 nm and 293 nm in DMSO, at 312 nm and 294 nm in CHCl$_3$, and at 320 nm and 296 nm in MeOH (Figure 1, A1). Derivative 1c showed emission maxima at 472 nm, 495 nm, and 490 nm in MeOH, DMSO, and CHCl$_3$, respectively. The fluorescence intensity was the highest in MeOH and the weakest in CHCl$_3$ (Figure 1, B1). The absorption spectrum of derivative 1e in MeOH showed comparable features with a broad absorption at 380 nm and 340 nm (Figure 1, A2) and broad emission bands with low fluorescence intensity. The emission maximum is located at 435 nm in MeOH, at 461 nm in DMSO, and at 559 nm in CHCl$_3$ (Figure 1, B2). The absorption and emission properties closely resemble the ones of berberine (1a), however the long-waved absorption maximum of berberine derivatives 1b and 1e is slightly blue-shifted and the absorption band is not as pronounced for 1e, when compared to berberine (1a).35

Figure 1. Absorption (A) and normalized emission spectra (B) of 1b (1) ($c = 20$ µM, $\lambda_{ex} = 350$ nm) and 1e (2) ($c = 40$ µM, $\lambda_{ex} = 350$ nm) in MeOH (blue), DMSO (black), CHCl$_3$ (red).
To assess the acidity of the hydroxy functionality of the berberine derivative 1b, photometric and fluorimetric acid-base titrations were conducted in Britton-Robinson buffer (Figure 2). Thus, starting at pH 2, the solution was titrated with aq. NaOH solution \((c = 2 \text{ M})\), and the acid-base reaction was monitored by absorption spectroscopy. During the titration, new absorption maxima at 313 and 373 nm were detected with increasing pH values (Figure 2A). Notably, no isosbestic points were formed, indicating that more than two absorbing species are formed in an acid-base equilibrium, namely the hydroxyberberine 1b, its conjugate base and aggregates thereof. The derivative 1b has a very weak emission in acidic medium with no distinct emission maximum. However, the emission intensity increased significantly, and a maximum at 468 nm developed with increasing pH value (Figure 2B). The plots of the absorption maximum at \(\lambda_{\text{abs}} = 373 \text{ nm}\) and the fluorescence intensity at \(\lambda_{\text{fl}} = 486 \text{ nm}\) versus the pH value and a fit of the experimental titration curves to the Henderson-Hasselbalch equation revealed a pKₐ value of 6.3 (Figure 2). Overall, the plots of the absorption and emission intensity of 1b at a given wavelength versus the pH value of the solution showed the typical behavior of a cationic N-hetarene, namely a pronounced dependence of the absorption and emission properties on the pH because of the deprotonation of the hydroxy functionality in alkaline conditions, as also observed, for example, with hydroxybenzo[\(b\)]quinolizinium and 3-hydroxynaphthoquinolizinium.\(^{25,26,36}\) A similar pH-dependent emission such as the one of 1b has been reported for several hydroxynaphthalene derivatives and explained by the hydrogen bonds of the hydroxy functionality with the surrounding medium.\(^{37,38}\) In contrast,

![Figure 2](https://example.com/f2.png)

Figure 2. Photometric (A) and fluorimetric (B) acid-base titration of hydroxyberberine 1b in Britton-Robinson buffer \((c = 20 \text{ \mu M}, \ \text{pH} = 2.0)\) with aq. NaOH solution \((c = 2 \text{ M})\); \(\lambda_{\text{ex}} = 350 \text{ nm}\). The arrows indicate the change of the absorption or the emission during the titration. Red line: start of the titration; blue line: end of the titration. Inset: plot of the absorption at \(\lambda_{\text{abs}} = 373 \text{ nm}\) (A) or the normalized fluorescence intensity at the emission maximum (corrected for change of the absorption at the excitation wavelength, \(\lambda_{\text{ex}} = 350 \text{ nm}\); \(\lambda_{\text{em}} = 468 \text{ nm}\)) (B) versus the pH value; red lines: fitting of the experimental data to the theoretical curve of weak acids.

however, the 9-hydroxy-substituted berberine derivative berberrubine shows a reverse trend, namely a broad emission band at \(\lambda_{\text{max}} = 550 \text{ nm}\) in acidic medium, which is blue-shifted and quenched under alkaline conditions.\(^{39}\) This different behavior of the two hydroxy-substituted berberine derivatives may be explained by fluorescence quenching in 1b by a fast excited-state proton transfer reaction at the hydroxy functionality, which does not take place to significant extent in berberrubine.\(^{40}\)

DNA binding properties

The binding interactions of berberine 1e with calf thymus DNA (ct DNA) and quadruplex DNA d[AGGGTTA]₃GGG (22AG) were investigated with photometric DNA titrations. The addition of DNA to a solution of 1e in phosphate buffer resulted in a decrease of the absorption and a red shift of the initial absorption maximum at 331 nm to 345 nm (ct DNA) and 341 nm (22AG), respectively (Figure 3, A and B). The titration data were used to determine the binding constants from the resulting binding isotherms and fitting of the experimental data to the theoretical non-competitive DNA binding model of Stootman et al. (Figure 4, A and
This analysis gave binding constants of $K_{ct \text{ DNA}} = 1.2 \times 10^5 \text{ M}^{-1}$ for 1e with ct DNA and $K_{22AG} = 1.9 \times 10^5 \text{ M}^{-1}$ with quadruplex DNA 22AG, which are in the commonly observed range of binding constants of berberine derivatives with these DNA forms.42 For comparison, the parent compound berberine (1a) has binding constants of $K_{ct \text{ DNA}} = 9.0 \times 10^3 \text{ M}^{-1}$ and $K_{22AG} = 1.2 \times 10^6 \text{ M}^{-1}.43,44$ Thus, the affinity of 1e to quadruplex DNA 22AG is lower than the one of berberine (1a), presumably because the lack of methoxy substituents changes the overall dipole of the ligand such that the attractive dipole-dipole interactions with the guanine quartet are reduced. In contrast, berberine (1a) binds weaker to duplex DNA than 1e because the latter, smaller ligand fits much better into the intercalation site of ct DNA. Upon addition of DNA to a solution of hydroxyberberine 1b, precipitation of the ligand-DNA complex occurred, so that the DNA-binding properties of this derivative could not be quantitatively assessed.

![Figure 3. Photometric titration of 1e with ct DNA (A) in BPE buffer ($c_{ct \text{ DNA}} = 2.46 \text{ mM}, c_{Na^+} = 16 \text{ mM}, \text{pH} = 7.0$) and 22AG (B) in KPB buffer ($c_{22AG} = 190 \text{ mM, cK^+ = 95 mM, pH} = 7.0$ with 5% DMSO (v/v)). The arrows indicate the changes of absorption upon addition of DNA; red line: start of the titration, blue line: end of titration. Inset: plot of absorption at a defined wavelength versus the DNA concentration (c_{DNA} in base pairs/quartets).](image)

Additionally, the interactions of 1b with ct DNA and 22AG were studied with circular dichroism (CD) spectroscopy (Figure 4 and 4B). The addition of ct DNA caused very broad negative induced CD (ICD) bands with peaks around 400 nm, 360 nm, and 320 nm, which were assigned to the long-wavelength absorption of the ligand 1e. These ICD signals result from a non-degenerate coupling of transition dipoles of the ligand and the base pairs and thus confirm the complex formation.45 Moreover, the negative band at 340 nm indicates a parallel alignment of the dipoles, which has also been observed for berberine (1a).46 In the case of ct DNA, additional flow LD-spectroscopic studies were performed to further clarify the binding mode (Figure 4C).45 Hence, a solution of ct DNA and ligand 1b displayed an increasing negative LD band (> 300 nm) in the absorption region of the ligand with increasing ligand-to-DNA ratio. This negative LD band is unambiguous proof of intercalation because it indicates the coplanar alignment of the aromatic ligand relative to the base pairs, which also give a negative LD band at 254 nm.45

Upon addition of quadruplex DNA 22AG to 1b, a negative ICD signal developed at 318 nm. Additionally, a positive, but very weak ICD band developed at 383 nm, which suggests terminal π-stacking as binding mode of 1b with a loose orientation of the ligand with respect to the transition moment of the adjacent base pairs.45 The red-shifted ICD signal resembles that of known quadruplex-DNA-bound berberine derivatives,29 while the negative ICD signal at 320 nm is usually not observed and may therefore be assigned to a specific transition that involves the phenyl substituent. Overall, these results are in agreement with terminal π-stacking to the quadruplex structure as predominant binding mode (Figure 4B).45,47,48 This binding mode has been shown
already for berberine (1a), however, in that case, an association of two molecules in the binding site has been proposed, which is unlikely for 1b because of the sterically demanding phenyl group in 13-position.

Conclusions

In summary, it was shown that the novel berberine derivatives 1b and 1e are available by the recently established Rh-catalyzed annulation reaction of the appropriate 2-(ethynylaryl)ethaneamines. But at the same time, it was observed that this method also has its limits, namely the hydroxy functionality in 11-position was only successfully introduced in combination with a phenyl substituent in 13-position, while the monosubstituted hydroxyberberine 1g was not obtained. The novel berberines 1b and 1e essentially show the same absorption and emission properties as the parent compound berberine (1a). Furthermore, spectrometric acid-base titrations revealed a pKₐ value of 6.3 for the hydroxyberberine 1b, which is comparable with the pKₐ of berberrubine (pKₐ = 5–6), and an increase of the emission intensity with increasing pH value. Presumably, under acidic conditions the fluorescence of 1b is efficiently quenched by a fast excited-state proton transfer reaction of the hydroxy group. It was also shown that berberine 1e exhibits a more pronounced binding affinity towards ct DNA than the parent compound berberine and binds to G4 DNA (ct DNA: K_{ct DNA} = 1.2 × 10⁵ M⁻¹; 22AG: K_{22AG} = 1.9 × 10⁵ M⁻¹). Additionally, intercalation or terminal π-stacking of 1e as predominant binding mode towards both DNA forms was assessed by CD and LD spectroscopy, respectively. Therefore, this class of hydroxy-substituted protoberberines showed promising properties as potential DNA-binders with a pH-dependent emission, which is also known for other hydroxy-substituted cationic heterarenes. Hence, the employed synthetic route provided functionalized tetrahydroisoquinolinium derivatives with promising photophysical and DNA-binding properties — although the yields are in need of improvement —, which are not readily available by "conventional" approaches.

Experimental Section

General. All reagents were commercially available and were used without further purification (cf. Supporting Information). The ¹H NMR spectra were recorded with a Bruker Avance 400 (¹H: 400 MHz, ¹³C: 100 MHz) at room temperature (T = 25 °C). The ¹H NMR and ¹³C NMR spectra were referenced to the residual proton signal of the solvent [DMSO-d₆: δ(¹H) = 2.50 ppm, δ(¹³C) = 39.5 ppm or CDCl₃: δ(¹H) = 7.26 ppm, δ(¹³C) = 77.2 ppm] and
analyzed with the softwares ACD/NMR Processor and MestReNova. The elemental analyses were conducted in-house at the University of Siegen, Organic Chemistry I. The mass spectra were measured with a Finnigan LCQ Deca (driving current: 6 kV, collision gas: argon, capillary temperature: 200 °C, support gas: nitrogen). The melting points were measured with a melting point apparatus BÜCHI 545 (Büchi, Flawil, CH) and are uncorrected. The sample solutions in the DNA experiments were mixed with a reaction vessel shaker Top-Mix 11118 (Fisher Bioblock Scientific). E-Pure® water was obtained with an ultrapure water system D4632-33 (Wilhelm Werner GmbH, Leverkusen, D) and the filters D 0835, D0803 and D 5027 (2 ®). The pH values were measured with the pH measuring device QpH 70 (Merck). The absorption spectra were measured with Hellma quartz glass cuvettes 110-QS and 114B-QS (layer thickness d = 10 mm) on a Varian Cary 100 Biospectrophotometer, which was equipped with a thermostat. The emission spectra were measured with Hellma quartz glass cuvettes 115F-QS (layer thickness d = 10 mm) with a Varian Cary Eclipse fluorescence spectrometer, which was equipped with a thermostat. All measurements were recorded at T = 20 °C, if not stated otherwise. During the reactions, the solutions were stirred with a magnetic stirrer. Reaction temperatures refer to the medium surrounding the reaction vessel. The room temperature was 22 °C. The solvents were evaporated with a rotatory evaporator under reduced pressure.

\[N-(4,5-Dimethoxy-2-((triisopropylsilyl)ethenyl)phenethyl)-2,2,2-trifluoroacetamide \] (5b). Under inert gas atmosphere, iodotrifluoroacetamide 3b (2.02 g, 5.00 mmol) was added to a deaerated solution of triisopropylsilylacetylene (4b) (1.09 g, 6.00 mmol, 1.40 mL), Pd(PPh₃)Cl₂ (140 mg, 200 μmol), CuI (76.0 mg, 400 μmol) and PPh₃ (105 mg, 400 μmol) in anhydrous iPr₂NH/THF (1/1 v/v, 40 mL), and the reaction mixture was stirred at r.t. for 3.5 h. The reaction mixture was added to sat. aq. NH₄Cl solution (100 mL) and subsequently extracted with CH₂Cl₂ (3 × 80 mL). The combined organic layers were dried with Na₂SO₄, the drying agent was filtered off, and the solvent was removed under reduced pressure. The crude product was recrystallized from EtOAc/n-hexane to obtain amide 5b as light-yellow solid (1.80 g, 3.93 mmol, 79%). For analytic purposes, the product was recrystallized from n-hexane; mp 70–75 °C. – ¹H NMR (400 MHz, CDCl₃): δ = 1.14 (s, 3 H, Si(CH(CH₃)₂)₃), 1.14 (s, 18 H, Si(CH(CH₃)₂)₃), 3.06 (t, 3J 7 Hz, 2 H, CH₂), 3.67 (t, 3J 6 Hz, 2 H, CH₂'), 3.87 (s, 3 H, 5-OCH₃), 3.89 (s, 3 H, 4-OCH₃), 3.63 (br. s, 1 H, NH), 6.64 (s, 1 H, 6-H), 6.96 (s, 1 H, 3-H). – ¹³C NMR (100 MHz, CDCl₃): δ = 11.3 (Si(CH(CH₃)₂)₃), 18.7 (Si(CH(CH₃)₂)₃), 33.2 (CH₂), 40.4 (CH₂'), 55.9 (4-OCH₃), 56.1 (5-OCH₃), 93.6 (2-CCSi), 105.0 (2-CCSi), 112.1 (C6), 115.0 (C2), 115.2 (C3), 133.2 (C1), 147.6 (C4), 149.7 (C5). – MS (ESI⁺): m/z (rel. intensity) = 937 (100) [2 M + Na]⁺, 480 (84) [M + Na]⁺.

General procedure for the synthesis of 11- and 13-substituted berberine derivatives (GP 1). In a sealed tube, a mixture of Cu(BF₄)₂ 6 H₂O (600 μmol) and [RhCp*(CH₃CN)₃]_2(SbF₆)₂ 25.0 μmol) was evacuated and flushed with O₂ (purity 4.8) three consecutive times. A solution of the arylaldehyde (1.20 mmol) and the homoveratrylamine 6a or 6b (1.00 mmol) in MeOH (8.5 mL) was added, and the reaction mixture was stirred at 60 °C for 5–6 h. The suspension was treated with CH₂Cl₂ (35 mL), filtered through a celite pad, and washed with CH₂Cl₂ (100 mL). The crude product was removed under reduced pressure, and the crude product was purified by column chromatography.

11-Hydroxy-2,3-dimethoxy-13-phenyl-5,6-dihydroisoquinolinol [3,2-α]isoquinolin-7-ium (1b). According to GP 1, a mixture of 2-(phenylethenyl)homoveratrylamine (6a) (294 mg, 1.04 mmol), 4-hydroxybenzaldehyde (7a) (147 mg, 1.20 mmol, 120 μL), Cu(BF₄)₂ 6 H₂O (207 mg, 600 μmol), [RhCp*(CH₃CN)₃]_2(SbF₆)₂ (20.8 mg, 25.0 μmol) in MeOH (8.5 mL) was stirred for 6 h. The crude product was purified by flash-column chromatography (SiO₂; CH₂Cl₂/MeOH, 95/5 v/v, Rf = 0.37), recrystallized from MeOH and washed with Et₂O to give the product 1b-Cl as yellow amorphous solid (55.0 mg, 143 μmol, 14%); mp 293–297 °C (dec.). – ¹H NMR (400 MHz, DMSO-d₆): δ = 3.02–3.04 (m, 5 H, 3-OCH₃, 5-H), 3.74 (s, 3 H, 2-OCH₃), 4.28 (t, 3J 6 Hz, 2 H, 6-H), 5.60
(d, 4J 2 Hz, 1 H, 12-H), 6.38 (s, 1 H, 4-H), 6.59 (dd, 3J 9 Hz, 4J 2 Hz, 1 H, 10-H), 6.91 (s, 1 H, 1-H), 7.22–7.24 (m, 2 H, 2'-H, 6'-H), 7.49–7.53 (m, 3 H, 3'-H, 4'-H, 5'-H), 7.58 (d, 3J 9 Hz, 1 H, 9-H), 8.64 (s, 1 H, 8-H). – 13C-NMR (100 MHz, DMSO-d6): δ = 27.9 (C5), 53.1 (C6), 54.7 (2-OCH3), 55.5 (3-OCH3), 109.9 (C12), 110.7 (C4), 113.6 (C1), 114.9 (C8a), 120.0 (C13b), 124.5 (C13), 127.8 (C4'), 129.4 (C3', C5'), 130.6 (C2', C6'), 131.0 (C10), 131.2 (C4a), 131.2 (C9), 133.7 (C13a), 137.5 (C1'), 141.2 (C12a), 141.9 (C8), 146.0 (C2), 149.1 (C3), 179.9 (C11). – MS (ESI+): m/z (rel. intensity) = 384 (100) [M − BF4]⁺, 406 (88) [M + Na⁺ − H⁺ − BF4]⁺. – El. Anal. for C25H22NO3Cl, (419.90), calcd.: C 71.51, H 5.28, N 3.34; found: C 71.67, H 5.18, N 3.24.

2,3-Dimethoxy-5,6-dihydroisoquinolino[3,2-a]isoquinolin-7-ium (1e).12,21 According to GP 1, a mixture 2-(triisopropylsilylethyl)homoveratramine (6b) (84.4 mg, 233 μmol), benzaldehyde (7b) (38.2 mg, 360 μmol, 37.0 μL), Cu(BF4)2·6 H2O (62.1 mg, 180 μmol) and [RhCp*(CH3CN)3](SbF6)2· (6.25 mg, 7.50 μmol) in MeOH (2.5 mL) was stirred for 5 h. The crude product was purified by flash-column chromatography (SiO2; CH2Cl2/MeOH, 95/5 v/v, Rf = 0.30). The obtained solid (35.0 mg, 76.9 μmol) was redissolved in CH2Cl2 (1.0 mL) and TFA (351 mg, 3.08 mmol, 0.24 mL) and the mixture was stirred under reflux for 2 h. The reaction mixture was added dropwise to Et2O (100 mL), the resulting precipitate was filtered off and washed with Et2O to give the product 1e as yellow amorphous solid (15.0 mg, 36.9 μmol, 17%), mp 245–246 °C (dec.). – 1H NMR (400 MHz, DMSO-d6): δ = 3.26 (t, 3J 6 Hz, 2 H, 5-H), 3.89 (s, 3 H, 3-OCH3), 3.95 (s, 3 H, 2-OCH3), 4.88 (t, 3J 6 Hz, 2 H, 6-H), 7.13 (s, 1 H, 4-H), 7.77 (s, 1 H, 1-H), 7.95–7.98 (m, 1 H, 10-H), 8.18–8.27 (m, 2 H, 11-H, 12-H), 8.42 (d, 3J 8 Hz, 1 H, 9-H), 9.09 (s, 1 H, 13-H), 10.00 (s, 1 H, 8-H). – MS (ESI+): m/z (rel. intensity) = 292 (100) [M − BF4⁺]. – El. Anal. for C19H18BF4NO2·2 H2O (397.18), calcd.: C 57.46, H 5.08, N 3.53; found: C 57.77, H 4.88, N 3.58.

Acknowledgements

Generous support by the Deutsche Forschungsgesellschaft (Ih24/17-1) and the University of Siegen is gratefully acknowledged. We thank Rochus Breuer for the CHNS analysis.

Supplementary Material

Supplementary material (SI) is available.

References

https://doi.org/10.1016/j.bmc.2008.07.029
https://doi.org/10.1016/j.bmcl.2006.05.033
https://doi.org/10.1002/ptr.6504
https://doi.org/10.1021/acs.jmedchem.1c01592
https://doi.org/10.1097/CAD.0b013e328330d95b
https://doi.org/10.1016/j.bmc.2021.116143
https://doi.org/10.3389/fphar.2022.940282
https://doi.org/10.1021/jo502842s
https://doi.org/10.1039/c3md00254c
https://doi.org/10.1002/ejoc.200500095
https://doi.org/10.1016/j.bmcl.2005.11.045
https://doi.org/10.3390/ijms23214061
https://doi.org/10.1080/14756366.2022.2118268
https://doi.org/10.3762/bjoc.17.81
https://doi.org/10.1155/2014/924585
https://doi.org/10.1039/C7CC00080A
https://doi.org/10.1002/chem.201504378
https://doi.org/10.1021/bi9810961
https://doi.org/10.5012/bkcs.2002.23.3.391
https://doi.org/10.3762/bjoc.19.108

https://doi.org/10.1021/acs.orglett.6b01991

https://doi.org/10.3762/bjoc.13.23

https://doi.org/10.3762/bjoc.18.108

https://doi.org/10.3390/molecules26092566

https://doi.org/10.1002/chem.202100297

https://doi.org/10.3762/bjoc.16.230

https://doi.org/10.1016/j.tet.2007.04.097

https://doi.org/10.1021/acs.joc.6b02647

https://doi.org/10.1039/P19900000393

https://doi.org/10.1021/jp067702g

https://doi.org/10.1039/b816048a

https://doi.org/10.1039/f297571b00669

https://doi.org/10.1016/j.photobiology.2018.07.019

https://doi.org/10.1016/j.tet.2015.06.098

https://doi.org/10.1002/(SICI)1521-3773(20000515)39:10<1780::AID-ANIE1780>3.0.CO;2-H

https://doi.org/10.1039/b604686j

https://doi.org/10.1002/jmr.2486
https://doi.org/10.1002/med20202

https://doi.org/10.1016/j.bbagen.2011.01.011

https://doi.org/10.3762/bjoc.14.5

https://doi.org/10.1080/07391102.1991.10507893

https://doi.org/10.1016/j.bmc.2005.01.041

https://doi.org/10.1016/j.bmcl.2006.03.087

https://doi.org/10.1021/bc200268a

https://doi.org/10.1021/np400607k

This paper is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)