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Abstract 

Regioselective rhodium(III)-catalysed C-H activation/annulation of O-pivaloyl benzoylhydroxamates with 

ortho-alkynylbenzoate esters facilitates the rapid preparation of a novel class of fluorophores based on the 

isoindolo[2,1-b]isoquinoline-5,7-dione core.  The photophysical, electrochemical and coordination properties 

of these novel structures are investigated. 
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Introduction 
 

Fused aromatic and heteroaromatic skeleta are integral components of a vast number of effect chemicals, 

from pharmaceuticals and agrochemicals to fluorescent dyes and photovoltaic materials.  In recent years, 

selective and efficient metal-catalysed C-H activation/annulation reactions have emerged as a powerful 

method for the rapid assembly of complex fused skeleta from simpler mono- or acyclic precursors.1-3  We4,5 

and others6-12 have previously reported investigations into the use of vinyl acetate as an acetylene equivalent, 

for example in rhodium(III)-catalysed C-H activation/annulation processes.4,5 During the development of a 

method to synthesise 3,4-unsubstituted isoquinolinones by reaction of vinyl acetate with various 

benzoylhydroxamates,4 we found that while the O-pivaloyl benzoylhydroxamate (1a) gave a good yield of 

isoquinolinone (2), the corresponding N-methoxybenzamide 1b gave none of the desired product 2, instead 

undergoing an unexpected condensation with vinyl acetate to deliver the 2:1 adduct 3 in low yield (Scheme 1).   

 

 
 

Scheme 1. Adventitious synthesis of fluorescent heterocycle 3 and similarity to previously reported 

fluorophores 4 and 5. 

 

Compound 3 exhibited strong blue fluorescence when irradiated with UV light (abs 375 nm, emis 413 

nm).  Although compound 3 has been known for well over 100 years13 and various synthetic approaches to this 

general framework have been reported,14-19 the photophysical properties of this class of heterocycles have not 

been investigated in depth. Interestingly, however, the tetracyclic core of 3 has clear structural similarities 

with known fluorophores such as the isodipyrrinones exemplified by 420,21 and polyarylated isoquinolinones 

such as 5.22 As such, we wished to further investigate the synthesis and properties of diverse substituted 

variants of 3, and report herein the development of a general and convergent strategy for their preparation, 

along with studies of their photophysical, electrochemical and coordination behaviour. 

 

 

Results and Discussion 
 

Our first task was to develop a synthetically-useful and generalised approach to functionalised derivatives of 3, 

and we began by investigating its opportunistic formation under the conditions outlined in Scheme 1.  We 
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considered that 3 might potentially arise by transient formation of isoquinolinone (2) and subsequent 

annulation of a second equivalent of benzoyl hydroxamate; however, attempted coupling of 2 with even the 

more reactive 1a failed to produce compound 3 (Scheme 2, panel a).  We next considered whether the 

reaction might proceed through formation of o-styryl hydroxamate 6: vinyl acetate has been demonstrated to 

act as a vinylating reagent under certain conditions of rhodium-catalysed C-H activation,23-25 and Glorius has 

demonstrated the directed C-H olefination of N-methoxybenzamides such as 1b with styrenes.26 In the event, 

reaction of compounds 1b and 627 gave an 11% isolated yield of 3 (Scheme 2, panel b).  A proposed pathway 

for the formation of 3 is shown in Scheme 2, panel c.  Vinylation of 1b with vinyl acetate produces substituted 

styrene 6, which reacts with further 1b to produce the stilbene 7.  The precise pathway from 7 to 3 is not 

known but we propose that vinylic C-H activation and cyclisation could give isoindolinone 8, which would then 

undergo condensation with elimination of ammonia to generate 3: Glorius has previously reported formation 

of isoindolinones through C-H activation/oxidative cyclisation of styrenic benzamides under closely related 

conditions.28 Interestingly, during attempts to optimise the formation of 3, we observed the precipitation of a 

highly insoluble material which, although impure, gave 1H NMR data in d6-DMSO which was consistent with 

structure 7.  Although the material could not be redissolved in methanol, heating in this solvent in a sealed 

microwave vessel with [Cp*RhCl2]2 and caesium acetate at 80 oC led to formation of 3, supporting the notion 

that this material is an intermediate. 

 

 
 

Scheme 2. Mechanistic investigations and proposed pathway for the formation of 3. 

 

Despite improved understanding of the origins of 3, we did not feel that this approach would ultimately 

prove useful in the synthesis of analogues. Ideally, our approach should allow ready and independent variation 

of substituents around each of the benzene rings, and additionally we wished to address the poor solubility of 

3 by attachment of solubilising alkyl groups to the rigid heteroaromatic framework.  However, we remained 
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attracted by the convergence of rhodium(III)-catalysed C-H activation/annulation as a method for assembling 

the targets 9,22,29 and proposed a new approach outlined in Scheme 3. 

 

 
 

Scheme 3. Proposed convergent synthesis of substituted fluorescent imides 9. 

 

We recognised that cyclometallation of activated benzoylhydroxamates 1 could initiate a regioselective 

annulation with readily-prepared ortho-alkynylbenzoate esters 10 to generate isoquinolinones 11; 

condensation of the isoquinolinone nitrogen with the ester (potentially in the same operation) would then 

generate the targets 9.  The success of this strategy depends upon a regioselective outcome in the rhodium-

catalysed annulation of 1 with non-symmetrical alkynes, but we were encouraged at the outset that Fagnou 

had reported that aryl/alkyl-substituted alkynes do indeed preferentially generate the 3-aryl,4-

alkylisoquinolones on reaction with compounds of type 1, albeit that they had not investigated the impact of 

ortho-aryl substituents on the reactions.30,31 We note that, subsequent to our own studies, the groups of both 

Guo and Fan18 and Wang19 have utilised rhodium(III)-catalysed annulation followed by (respectively) 

palladium-catalysed oxidative carbonylations/carboxylations to generate the five-membered ring of the imide 

in compounds related to 9. 

Our initial investigations involved the reaction of O-pivaloyl benzoylhydroxamate (1a) with methyl 2-

(oct-1-yn-1yl)benzoate (10a) (Scheme 4, panel a).  Under conditions analogous to those reported by Fagnou,30 

we were pleased to observe the direct formation of the desired imide 9a as a ca. 1:1 mixture with the 

uncyclised amidoester 11a by analysis of the 1H NMR of the crude reaction mixture; pleasingly, no traces of 

regioisomeric annulation products could be observed.  Attempted purification by column chromatography was 

complicated by partial hydrolysis of the imide to amido acid 12a and so the product was instead isolated by 

precipitation from the crude reaction mixture by addition of ethereal HCl, followed by crystallisation from 

ethyl acetate to give a 53% yield of pure 5a.  Since sufficient quantities of material for investigation of the 

photophysical properties were readily prepared by this method, further optimisation was not undertaken for 

this or subsequent products. 

We next investigated the effect of introducing electron-donating oxygen substituents to the aromatic 

ring of the isoindolinone subunit.  The 2-propyloxy-substituted ester 10b underwent cyclisation under the 

standard conditions to give an unoptimised 28% yield of imide 9b.  Reaction of the 4-(methoxymethyloxy)-

substituted ester 10c with 1a gave the MOM-protected imide 9c in 35% yield; subsequent removal of the 

MOM-group under acidic conditions gave the free phenol 9d.  In order to introduce a free phenol ortho- to the 

indolinone carbonyl group, we used an isopropylidene group to protect both acid and phenol substituents in 

10d (Scheme 4, panel b). Annulation under the standard conditions returned the non-cyclised isoquinolone 

11e in high yield; cyclisation to the desired imide 9e was achieved in a separate step by intramolecular 

acylation of the isoquinolone nitrogen under basic conditions, with concomitant loss of acetone revealing the 

free phenol in a single operation.  The same sequence was carried out on the naphthoic acid-derived O-

pivaloylhydroxamate 1c, leading to imide 9f bearing an extended -system. Finally, we investigated extension 
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of conjugation through appending a thienyl substituent to the benzoylhydroxamate (Scheme 4, panel c): 

reaction of 1d with alkyne 10b gave imide 9g in an unoptimised 28% yield. The bromine substituent in 9g was 

included to facilitate the later introduction of further (hetero)biaryls through cross-coupling chemistry should 

this prove of interest. 

 

 
 

Scheme 4. Synthetic routes to substituted fluorescent heterocycles 9a-g. 

 

In all, seven different imides 9a-g were prepared through the C-H activation/annulation/cyclisation 

sequence, and we next sought to investigate their photophysical properties. 

 

Absorption/emission studies 

Electronic absorption and emission spectra of imides 9a-g were recorded in dichloromethane (Figure 1 and 

Table 1).  The quantum yields of fluorescence were calculated using 9,10-diphenylanthracene as standard 

since its max of absorbance (375 nm) is close to that of imide 9a (383 nm).  Compared with the isodipyrronine 

4, imide 9a is slightly blue-shifted in both absorption and emission spectra, with a smaller Stokes shift (15 nm 

vs 29 nm) and a slightly reduced but still relatively high quantum yield of fluorescence. Fluorescence data for 
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the triarylisoquinolinone 5 are only reported in the solid-state, but 9a shows red-shifted emission by 

comparison. Introduction of alkoxy or hydroxyl groups to the isoindolinone rings had relatively little effect on 

the emission/absorption properties: ortho-substitution in 9b/9e produces a small red shift, while the para-

substituted products 9c/9d exhibit a small blue shift; however, while the quantum yields for the ortho-

substituted compounds were similar to 9a, those for the para-substituted variants were significantly lower.  

Extension of the isoquinolone π-system in the naphthalene-derived 9f led to the longest wavelength emission 

and absorption, giving similar results to 4 but with a stronger molar absorption. Finally, the bromothienyl 

product 9g displayed similar absorption/emission wavelengths to 9a along with strong absorbance features 

below 350 nm corresponding to the thienyl group, suggesting the π-systems are not strongly coupled.  

 

 
 

Figure 1. Absorption/emission spectra for 9a-9g. Absorption maxima normalised to A = 1.0, fluorescence 

spectra in arbitrary units. 
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Table 1. Absorption and emission data for imides 9a-9g 

Imide Absorbance 

(nm) 

Fluorescence 

(nm) 

a
 

 

rel 

 

9a 383b 403 418 439 2.34 0.44 

9b 392 413b 427 442 2.81 0.32 

9c 377b 398 409 433 2.51 0.17 

9d 375b 396 407 431 2.01 0.15 

9e 394 416b 427 449 2.68 0.45 

9f 408 429b 441 466 3.14 0.44 

9g 390b 408 422 446 2.07 0.15 

4c 400b 424 453    - - 1.52 0.72 

5d  - - - - 401 414 - - - - 

a molar extinction coefficients reported in 104 M-1cm-

1; b molar absorptivity measured at this wavelength as 

max; c values taken from reference 20, recorded in 

chloroform; d values estimated from reference 22, 

recorded in the solid state. 

 

Electrochemical studies 

To further probe the substituent effects, we carried out studies of the electrochemical behaviour of imides 9a, 

9b, and 9g (Figure 2 and Table 2 - see SI for cyclic voltammograms of 9b and 9g). 

 

 
 

Figure 2.  Cyclic voltammograms of 9a (1.0 mM) in non-aqueous media (CH3CN/[nBu4N]BF4 0.10 M). 
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Table 2. Reduction potentials for imides 9a, d, and g 

Entry Imide EpC1 (V) EpC1 (V) EpC2 (V) EpC2 (V) 

1 9a -1.33 0.066 -1.79 0.048 

2 9b -1.38 0.053 -1.80 0.058 

3 9g -1.37 0.014 -1.74 0.014 

 

All three compounds displayed two reversible reduction peaks. The presence of the electron-donating ortho-

alkoxy substituent in 9b/9g causes a small increase in the first reduction potential (entries 1 vs 2/3), while the 

second reduction potential does not appear influenced by the presence of the propoxy group but is sensitive 

to the presence of the thienyl substituent in 9g (entries 1/2 vs entry 3).  These results suggest that the 

‘isoindolinone’ and ‘isoquinolinone’ portions of the molecules are behaving effectively as isolated -systems. 

 

Metal ion complexation 

Alongside the intrinsic fluorescence properties of the imides, we were interested in exploring their behaviour 

as selective ligands for metal ions, and hence potentially as fluorescent sensors.  We were encouraged in this 

direction by inspection of the high-resolution mass spectrum of 9a, which featured a prominent peak for the 

[M2Na]+ ion at 685.3031 alongside the expected [MNa]+ ion at 354.1459, suggesting that the imide was a 

reasonably strong donor ligand to the sodium cation.  

We therefore conducted a complexation screen by adding various metal salts (Cu(BF4)2, Co(BF4)2, 

Zn(OTf)2 and Eu(OTf)3) to solutions of 9a in ethyl acetate. All gave colour changes compared with the free 

metal salt, but the complex with Zn(OTf)2 also uniquely displayed fluorescence when observed under a UV 

lamp at 365 nm and was selected for further study.  Inspection of solutions of a 2:1 mixture of imide 9a and 

Zn(OTf)2 at various concentrations revealed that coordination behaviour was only observed to a significant 

extent at a concentration of 10-4 M, with solutions at 10-5 and 10-6 M showing absorption and emission 

behaviour identical to 9a alone (Figure 3, panel a).  This was supported by quantitative titrations using 2x10-4 

M 9a which showed bathochromic shifts in the emission max from 440 nm to 462 nm upon addition of zinc 

ions, but that >2 equivalents of Zn(OTf)2 were required to reach the steady state (Figure 3, panel b).  Crystals 

of a complex between 9a and Zn(OTf)2 were grown by slow evaporation from acetone and analysis by X-ray 

diffraction confirmed a 2:1 complex 13 in which the ‘isoquinolinone’ portion of the imide remained unchanged 

with respect to the parent imide, but the ‘indolone’ portion of the imide showed C-N bond shortening/C-O 

bond lengthening consistent with significant electron donation to the zinc (Figure 3, panel c).  A change in one 

of the two C=O absorbances was also observed in the infra-red spectrum of complex 13, consistent with 

weakening of one of the two C=O bonds.  Complex 13 shows distinct solid-state fluorescence properties to the 

parent 9a.  Further studies of this complexation behaviour were limited by the poor solution stability of 13.   
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Figure 3. Panel a: fluorescence of 2:1 mixtures of 9a and Zn(OTf)2 at varying concentrations in EtOAc; panel b: 

fluorescence titration of 9a (2 x 10-4 M in dichloromethane) and Zn(OTf)2 in dichloromethane; panel c: 

crystallographic and IR data for 9a and zinc complex 13, plus solid-state fluorescence. 

 

 

Conclusions 
 

C-H Activation/annulation cascades have been employed in the synthesis of novel fluorescent isoindolo[2,1-

b]isoquinoline-5,7-dione structures 9.  These compounds show reasonable quantum yields but narrow Stokes 

shifts. Attempted modulation of the absorption/emission properties met with limited success, and 

electrochemical studies suggest that the two ‘halves’ of the heterocyclic core are behaving as electronically 

isolated units.  The behaviour of one of the imides 9a as a ligand for zinc(II) ions was probed: while 

complexation could be observed spectroscopically and structurally, the assemblies were chemically rather 

unstable.  Overall, the utility of C-H activation/annulation cascades for the rapid assembly of complex 

polycyclic heteroaromatic structures has been further demonstrated and this method should continue to find 

utility in the exploration of such scaffolds in a variety of discovery settings. 
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Experimental Section 
 

General. All experiments were conducted in oven-dried glassware, under a dry nitrogen atmosphere with 

anhydrous solvents, unless otherwise stated. Hygroscopic caesium acetate (CsOAc) was stored in a desiccator. 

Anhydrous solvents were obtained from a solvent purification system. Anhydrous methanol was stored on 3Å 

molecular sieves. All other solvents and reagents were obtained from commercial sources and used without 

further purification.  

Flash silica chromatography was performed using Fischer Matrix silica gel (35-70 µm particles) and thin layer 

chromatography was carried out using pre-coated silica plates (Merck Kieselgel 60F254). Spots were visualised 

using UV fluorescence (λmax = 254 nm) or chemical staining with potassium permanganate. All chromatography 

eluents were HPLC grade and used without purification. Petrol refers to petroleum ether (b.p. 40-60°C).  

Proton (1H) and carbon (13C{1H}) nuclear magnetic resonance spectra were recorded using a Bruker DPX 300, a 

Bruker DRX 500 or a Bruker Avance 500 spectrometer using an internal deuterium lock. 1H NMR chemical 

shifts (δ) are quoted in ppm downfield of tetramethylsilane or residual solvent peaks and coupling constants 

(J) are quoted in Hz. 13C{1H} NMR spectra were recorded with broadband proton decoupling at 75 MHz and 

125 MHz.  Assignments were made on the basis of chemical shift and coupling data, using COSY and DEPT 

where necessary. Infra-red spectra were recorded on a Perkin Elmer Spectrum One FT-IR spectrometer, with 

absorption reported in wavenumbers (cm-1). High-resolution electrospray mass spectra (ESI-MS) were 

measured on a Bruker MicroTOF-Q or Bruker MaXis Impact spectrometer in positive mode. Melting points 

were determined using a Griffin D5 variable temperature apparatus and are uncorrected. 

 

Synthesis 

N-(Pivaloyloxy)benzamide (1a) and N-(pivaloyloxy)2-naphthamide (1c) were prepared according to the 

procedures of Liebeskind33 and Glorius34 respectively. 

 

Synthesis of fluorescent imides 9 

General procedure. 12-Hexylisoindolo[2,1-b]isoquinoline-5,7-dione (9a). N-(Pivaloyloxy)benzamide (1a) (221 

mg, 1.00 mmol), [Cp*RhCl2]2 (6.0 mg, 0.01 mmol), CsOAc (382 mg, 2.00 mmol) and methyl 2-(1-

octynyl)benzoate (10a) (366 mg, 1.50 mmol) were dissolved in MeOH (5 mL, 0.2 M). The reaction was stirred 

at room temperature for 16 hours and concentrated in vacuo. The crude mixture was suspended in cold ether 

(0 °C) and 2M HCl in ether (5 mL) was added to the solution to precipitate the product.  The solid was filtered 

and redissolved in CHCl3.  CsOAc was filtered off from the solution, which was concentrated in vacuo and the 

crude product crystallised from EtOAc.  The desired imide 9a was isolated as yellow needles (176 mg, 53%). 

Mp 172-175 °C (EtOAc); δH (300 MHz, CDCl3) 8.56 (1H, d, J 7.9), 8.07 (1H, d, J 7.6), 7.90 (1H, d, J 7.9), 7.80-7.71 

(3H, m), 7.58-7.52 (2H, m), 3.19-3.08 (2H, m), 1.75 (2H, dt, J 10.9, 7.3), 1.67-1.54 (2H, m), 1.49-1.31 (4H, m), 

0.94 (3H, t, J 7.0); δC (75 MHz, CDCl3) 165.4, 159.9, 136.6, 135.4, 135.0, 134.0, 131.1, 129.8, 129.7, 128.7, 

128.5, 128.4, 126.0, 124.1, 123.8, 119.9, 31.8, 29.9, 29.2, 26.8, 22.8, 14.2; HRMS (ESI+): m/z calculated for 

formula: C22H22NO2 [MH+] 332.1645; found 332.1635; IR (max, solid, cm-1): 3080, 2952, 2851, 1758, 1673, 

1599, 1472, 1293, 1157, 1097, 1034. 

12-Hexyl-8-propoxyisoindolo[2,1-b]isoquinoline-5,7-dione (9b). The desired compound was isolated as 

yellow needles (106 mg, 32%) from methyl 2-(oct-1-yn-1-yl)-6-propoxybenzoate (10b) (290 mg, 0.960 mmol, 

1.10 eq.) and N-(pivaloyloxybenzamide) (1a) (192 mg, 0.870 mmol) following the general procedure.  The 

crude reaction mixture was treated with 2N HCl in ether (1 mL) and stirred for 2 hours to convert the methyl 

ester to the imide.  The solvent was removed in vacuo and the product was crystallised from cold MeOH. Mp 
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142-144 °C (MeOH); δH (500 MHz, CDCl3) 8.55 (1H, dd, J 7.9, 0.8), 7.76-7.69 (2H, m), 7.63 (1H, t, J 8.1), 7.51 

(1H, ddd, J 8.1, 6.7, 1.5), 7.43 (1H, d, J 7.8), 6.97 (1H, d, J 8.3), 4.13 (2H, t, J 6.4), 3.13-3.05 (2H, m), 2.00-1.87 

(2H, m), 1.72 (2H, ddd, J 11.6, 10.4, 6.4), 1.64-1.54 (2H, m), 1.47-1.31 (4H, m), 1.13 (3H, t, J 7.4), 0.93 (3H, t, J 

7.1); δC (126 MHz, CDCl3) 163.2, 159.7, 159.2, 137.6, 136.6, 136.4, 133.7, 130.8, 129.7, 128.7, 128.2, 123.9, 

119.3, 115.7, 115.6, 113.3, 70.8, 31.8, 29.9, 29.1, 26.7, 22.8, 22.7, 14.2, 10.6; HRMS (ESI+): m/z calculated for 

formula C25H27NNaO3 [MNa+]: 412.1883; found 412.1890; IR (max, solid, cm-1): 2959, 2921, 2860, 1759, 1667, 

1626, 1601, 1590, 1485, 1472, 1350, 1319, 1282, 1255, 1196, 1099, 1076, 1043. 

12-Hexyl-10-(methoxymethoxy)isoindolo[2,1-b]isoquinoline-5,7-dione (9c). The desired compound was 

isolated as a colourless crystalline solid (138 mg, 40%) from methyl 4-(methoxymethoxy)-2-(oct-1-yn-1 

yl)benzoate (10c) (345 mg, 1.13 mmol) following the general procedure. After 16 hours the reaction was 

concentrated in vacuo and THF (5 mL) was added to dissolve the product and precipitate the CsOAc. The solid 

was removed by filtration and the filtrate was cooled to 0 °C and acidified with 2N HCl in ether (5.0 mL, 2.5 

mmol).  After one hour the solid, which had precipitated from the solution, was collected by filtration to afford 

a cream amorphous solid (138 mg, 35%).  A sample was taken and recrystallized from slow diffusion of 

pentane into a solution of the compound in DMF. Mp 149-151 °C (DMF/pentane); δH (500 MHz, CDCl3) 8.56 

(1H, d, J 7.3), 7.97 (1H, d, J 8.5), 7.78-7.72 (2H, m), 7.58 (1H, d, J 2.0), 7.54 (1H, ddd, J 8.1, 6.6, 1.7), 7.18 (1H, 

dd, J 8.4, 2.0), 5.32 (2H, s), 3.54 (3H, s), 3.12-3.06 (2H, m), 1.78-1.71 (2H, m), 1.66-1.58 (2H, m), 1.47-1.34 (4H, 

m), 0.94 (3H, t, J 7.1); δC (125 MHz, CDCl3) 164.9, 163.1, 159.8, 137.4, 136.5, 133.9, 130.9, 129.8, 128.6, 128.5, 

127.5, 124.0, 122.2, 120.0, 118.4, 110.9, 94.9, 56.6, 31.9, 29.8, 29.3, 26.8, 22.8, 14.2; HRMS (ESI+): m/z 

calculated for formula C24H26NO4 [MH+]: 392.1856; found 392.1855; IR (max, solid, cm-1): 2954, 2922, 2857, 

1751, 1669, 1618, 1600, 1479, 1347, 1299, 1274, 1255, 1242, 1229, 1152, 1109, 1076, 1032, 1016. 

12-Hexyl-10-hydroxyisoindolo[2,1-b]isoquinoline-5,7-dione (9d). 12-Hexyl-10-(methoxymethoxy)isoindolo- 

[2,1-b]-isoquinoline-5,7-dione (9c) (140 mg, 0.35 mmol) was dissolved in MeCN (2.5 mL) and cooled to 0 °C.  2 

N HCl in ether (5 mL) was added to the reaction mixture, which was stirred overnight.  The solvents were 

removed in vacuo and the remaining solid was washed with THF/Et2O (5 mL) to afford the desired product (76 

mg, 62%).  A sample was recrystallized from (DMF/pentane)¬¬ to afford colourless crystals.  Mp >270 °C 

(DMF/pentane); δH (500 MHz, DMSO-d6) 10.92 (1H, s), 8.33 (1H, dd, J 7.9, 1.3), 7.95 (1H, d, J 8.1), 7.86 (1H, t, J 

7.6), 7.81 (1H, d, J 8.3), 7.62 (1H, t, J 7.2), 7.36 (1H, d, J 1.8), 7.03 (1H, dd, J 8.4, 1.9), 3.11-3.04 (2H, m), 1.68 

(4H, m), 1.42-1.29 (4H, m), 0.90 (3H, t, J 7.1); δC (125 MHz, DMSO-d6) 164.0, 158.5, 137.0, 136.0, 134.2, 130.5, 

128.5, 128.4, 127.7, 127.2, 124.6, 119.0, 118.7, 117.8, 110.1, 31.2, 28.8, 28.7, 25.6, 22.1, 13.9; HRMS (ESI+): 

m/z calculated for formula C22H22NO3 [MH+]: 348.1594; found 348.1593; IR (max, solid, cm-1): 2959, 2924, 

2853, 1741, 1667, 1640, 1628, 1592, 1475, 1433, 1416, 1391, 1352, 1322, 1295, 1277, 1262, 1239, 1204, 1153, 

1089, 1032, 1010. 

3-(2,2-Dimethyl-4-oxo-4H-benzo[d][1,3]dioxin-5-yl)-4-hexylisoquinolin-1(2H)-one (11e). 2,2-Dimethyl-5-(oct-

1-yn-1-yl)-4H-benzo[d][1,3]dioxin-4-one (10d) (138 mg, 0.480 mmol) was added to a solution of N-

(pivaloyloxy)benzamide (1a) (110 mg, 0.500 mmol), CsOAc (30 mg, 0.30 mmol) and [Cp*RhCl2]2 (3.0 mg, 0.005 

mol) in MeOH (2.5 mL, 0.20 M).  After 16 hours consumption of the starting material was observed by TLC. 

The reaction was concentrated in vacuo and purified by flash silica chromatography using 8% isopropanol in 

toluene to afford an orange-brown solid (195 mg, 96%).  The solid was triturated with cold Et2O (3 × 5 mL) to 

afford a colourless solid (143 mg, 71%).  A sample was taken and recrystallised from CHCl3 and pentane using a 

vapour diffusion to afford colourless cubic crystals. Mp 231-234 °C (CHCl3/pentane); δH (500 MHz, CDCl3) 10.25 

(1H, s), 8.27 (1H, d, J 8.2), 7.71-7.65 (2H, m), 7.63 (1H, t, J 7.5), 7.43 (1H, ddd, J 8.1, 5.9, 2.3), 7.15 (1H, dd, J 8.0, 

0.7), 7.10 (1H, dd, J 7.5, 0.9), 2.51 (1H, ddd, J 14.4, 10.0, 6.4), 2.39 (1H, ddd, J 14.3, 9.9, 6.6), 1.81 (3H, s), 1.74 

(3H, s), 1.53-1.43 (2H, m), 1.25-1.11 (6H, m), 0.82 (3H, t, J 7.0); δC (125 MHz, CDCl3) 162.8, 158.4, 157.3, 138.2, 
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137.4, 135.6, 135.5, 132.4, 128.0, 126.0, 123.8, 118.9, 114.0, 113.0, 106.1, 31.6, 29.9, 29.7, 27.9, 26.2, 25.6, 

22.7, 14.1, one quaternary carbon was not observed; HRMS (ESI+): m/z calculated for formula C25H28NO4 [MH+] 

406.2013: found 406.2023; IR (max, solid, cm-1): 2952, 2926, 2856, 1742, 1647, 1602, 1583, 1478, 1381, 1311, 

1276, 1202, 1044. 

12-Hexyl-8-hydroxyisoindolo[2,1-b]isoquinoline-5,7-dione (9e). Sodium hydride (100 mg, 2.50 mmol, 60% 

dispersion in oil) was triturated with petrol (2 × 5 mL) under nitrogen and diluted in THF (10 mL). In a separate 

flask, 3-(2,2-dimethyl-4-oxo-4H-benzo[d][1,3]-dioxin-5-yl)-4-hexylisoquinolin-1(2H)-one (11e) (100 mg, 0.25 

mmol) was dissolved in THF (5 mL) and cooled to 0 °C. An aliquot of the sodium hydride solution (1.00 mL, 

0.25 mmol) was added dropwise to the reaction. The homogeneous solution changed colour from pale yellow 

to bright orange, indicating formation of the phenolate ion. An additional aliquot of the sodium hydride 

solution (1.00 mL, 0.25 mmol) was added in order to achieve full conversion. The reaction mixture was 

quenched with acetic acid (0.5 mL), at which point the solution changed colour from orange to bright yellow. 

The reaction was concentrated in vacuo and the residue was rediluted in acetic acid (1 mL). The resultant solid 

was filtered and washed with Et2O (2 mL) to afford an amorphous yellow solid (55 mg, 63%). The solid was 

recrystallised from AcOH. Mp 215-218 °C (AcOH); δH (500 MHz, CDCl3) 8.69 (1H, s), 8.56 (1H, d, J 7.9), 7.77-

7.76 (2H, m), 7.63 (1H, t, J 8.0), 7.58-7.55 (1H, m), 7.37 (1H, d, J 7.7), 7.00 (1H, d, J 8.2), 3.14-3.07 (2H, m), 1.77-

1.70 (2H, m), 1.59 (2H, q, J 7.5), 1.45-1.33 (4H, m), 0.94 (3H, t, J 7.0); δC (126 MHz, CDCl3) 168.2, 159.7, 158.2, 

137.4, 136.5, 135.2, 134.2, 131.0, 129.9, 128.7, 128.1, 124.2, 121.4, 117.2, 115.6, 112.8, 31.8, 29.9, 29.1, 26.9, 

22.8, 14.2; HRMS (ESI+): m/z calculated for formula C22H22NO3 [MH+]: 348.1594; found 348.1590; IR (max, 

solid, cm-1): 3220, 2959, 2919, 2854, 1743, 1665, 1612, 1589, 1474, 1458, 1445, 1354, 1341, 1294, 1212, 1189, 

1177, 1159, 1117, 1081, 1064, 1038. 

3-(2,2-Dimethyl-4-oxo-4H-benzo[d][1,3]dioxin-5-yl)-4-hexylbenzo[g]isoquinolin-1(2H)-one (11f). 2,2-

Dimethyl-5-(oct-1-yn-1-yl)-4H-benzo[d][1,3]dioxin-4-one 10d (315 mg, 1.10 mmol) was added to a solution of 

N-(pivaloyloxy)-2-napthamide (6b) (271 mg, 1.00 mmol), CsOAc (384 mg, 2.00 mmol) and [Cp*RhCl2]2 (6.0 mg, 

0.01 mmol) in MeOH (5 mL, 0.2 M).  After 2 hours the reaction was concentrated in vacuo and a 1H NMR of the 

crude reaction mixture indicated a mixture of regioisomers.  The crude material was purified by flash silica 

chromatography using 50% EtOAc in pentane to afford an orange-brown solid (231 mg, 51%) and mixed 

fractions containing a mixture of regioisomers (5:2, 124 mg, 27%).  A sample from the pure fractions was 

removed and crystallised from slow mixing of THF and pentane to afford colourless crystals.  Mp 194-197 °C 

(THF/pentane); δH (500 MHz, CDCl3) 9.77 (1H, s), 8.89 (1H, s), 8.12 (1H, s), 8.02 (1H, d, J 8.2), 7.97 (1H, d, J 8.3), 

7.64 (1H, dd, J 8.3, 7.6), 7.58 (1H, ddd, J 8.2, 6.8, 1.2), 7.51 (1H, ddd, J 8.0, 6.8, 1.1), 7.18-7.15 (2H, m), 2.66-

2.57 (1H, m), 2.55-2.46 (1H, m), 1.80 (3H, s), 1.75 (3H, s), 1.60-1.52 (2H, m), 1.31-1.15 (6H, m), 0.84 (3H, t, J 

7.0); δC (126 MHz, CDCl3) 163.3, 158.4, 157.3, 137.7, 135.7, 135.6, 134.2, 134.1, 131.3, 129.4, 129.2, 128.1, 

126.2, 126.0, 124.7, 122.4, 118.9, 113.7, 113.0, 106.1, 31.6, 29.7, 29.7, 28.2, 26.0, 25.7, 22.7, 14.2; HRMS 

(ESI+): m/z calculated for formula C29H30NO4 [MH+]: 456.2169; found 456.2172; IR (max, solid, cm-1): 2927, 

2857, 1746, 1737, 1650, 1622, 1597, 1581, 1476, 1442, 1381, 1362, 1314, 1273, 1240, 1200, 1149, 1096, 1040. 

14-Hexyl-4-hydroxybenzo[g]isoindolo[2,1-b]isoquinoline-5,7-dione (9f). Sodium hydride (19 mg, 0.81 mmol, 

60% dispersion in oil) was triturated with pentane (2 × 1 mL) under nitrogen and diluted in THF (0.5 mL).  In a 

separate vial, 3-(2,2-dimethyl-4-oxo-4H-benzo[d][1,3]dioxin-5-yl)-4-hexylbenzo[g]isoquinolin-1(2H)-one (11f) 

(88 mg, 0.19 mmol) was dissolved in THF (3 mL, 0.06 M) and cooled to 0 °C. The sodium hydride solution was 

added dropwise to the reaction.  The homogeneous solution changed colour from pale yellow to bright 

orange, indicating formation of the phenolate ion.  After 30 minutes the reaction was quenched with acetic 

acid (0.5 mL), at which point the solution changed colour from orange to bright yellow.  The reaction mixture 

was concentrated in vacuo and the residue was triturated with water (1 mL) and dissolved into DCM (15 mL), 
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dried (MgSO4), filtered and concentrated in vacuo to afford a yellow amorphous solid (52 mg, 69%).  The solid 

was crystallised by slow evaporation of CHCl3 to afford yellow needles.  Mp 244-246 °C (CHCl3); δH (500 MHz, 

CDCl3) 9.04 (1H, s), 8.73 (1H, s), 8.14 (1H, s), 8.00 (1H, d, J 8.2), 7.97 (1H, d, J 8.3), 7.65-7.61 (2H, m), 7.55 (1H, 

ddd, J 8.0, 6.8, 1.1), 7.38 (1H, d, J 7.8), 6.96 (1H, d, J 8.3), 3.24-3.17 (2H, m), 1.82-1.76 (2H, m), 1.68-1.61 (2H, 

m), 1.49-1.35 (4H, m), 0.95 (3H, t, J 7.2); δC (126 MHz, CDCl3) δ 167.9, 159.9, 157.9, 137.1, 135.9, 135.0, 132.2, 

131.7, 130.0, 129.5, 129.3, 128.4, 127.6, 125.0, 124.0, 121.9, 116.7, 115.5, 112.9, 31.7, 29.8, 28.9,  26.9, 22.7, 

14.1, missing a quaternary carbon. HRMS (ESI+): m/z calculated for formula C26H23NNaO3 [MNa+]: 420.1570; 

found 420.1571; IR (max, solid, cm-1): 3243, 2950, 2923, 2873, 2854, 1742, 1664, 1619, 1596, 1567, 1490, 

1464, 1440, 1347, 1324, 1308, 1277, 1259, 1232, 1209, 1178, 1164, 1076, 1055, 1015. 

2-(5-Bromothiophen-2-yl)-12-hexyl-8-propoxyisoindolo[2,1-b]isoquinoline-5,7-dione (9g). The desired 

compound was isolated as a dark orange-brown microcrystalline powder (39 mg, 70 mmol, 28%) from methyl 

2-(1-octynyl)3-propoxybenzoate (1c) (151 mg, 0.50 mmol) following the general procedure. The product was 

purified by recrystallization from DCM/Et2O. Mp 202.4-202.7 °C (DCM/Et2O); δH (300 MHz, CDCl3) 8.46 (1H, d, J 

8.3), 7.73 (1H, d, J 1.5), 7.61 (1H, d, J 7.9), 7.57 (1H, dd, J 1.8, 8.2), 7.54 (1H, d, J 7.8), 7.17 (1H, d, J 3.9), 7.05 

(1H, d, J 3.9), 6.92 (1H, d, J 8.3), 4.07 (2H, t, J 6.5), 3.05 (2H, t, J 8.1), 1.93-1.81 (2H, m), 1.67-1.61 (4H, m), 1.38-

1.32 (4H, m), 1.06 (3H, t, J 7.4), 0.89 (3H, t, J 7.0); δC (75 MHz, CDCl3) 165.1, 159.1, 144.4, 138.4, 137.2, 136.3, 

135.9, 131.6, 131.4, 130.4, 128.5, 127.1, 125.2, 124.9, 120.3, 118.7, 115.5, 113.7, 113.4, 70.6, 31.6, 29.6, 28.8, 

26.4, 22.7, 22.4, 14.1, 10.4; HRMS (ESI+): m/z calculated for formula C29H28
80BrNNaO3S [MNa+] 572.0866; 

found 572.0869; IR (max, solid, cm-1): 2960, 2921, 2853, 1758, 1670, 1621, 1598, 1588, 1484, 1468, 1328, 

1279, 1072, 1168, 1125. 

 

Absorption/emission measurements 

UV-Vis absorbance measurements were recorded on a Perkin-Elmer UV/VIS/NIR Spectrometer Lambda 900. 

Fluorescence measurements were performed using Jobin Yvon Horiba FluoroMax-3 in a 1 cm-pathlength cell 

without an incident ray filter and the Xenon lamp calibrated to 467 nm and water peak to 397 nm.  The 

excitation and emission slit widths were set to 1 nm. Spectrophotometric grade solvents were purchased from 

Sigma-Aldrich. Solvents were undegassed during the measurements. 9,10-Diphenylanthracene (97%) was 

purchased from Sigma-Aldrich and subsequently recrystallised from toluene to afford yellow needles.  

Solutions for absorbance and fluorescence studies were prepared prior to the experiment and used within 8 

hours.  The solutions were stored at 0 °C in the dark to prevent photodegradation. The literature value for 

fluorescence quantum yield for 9,10 diphenylanthracene32 is specified in cyclohexane ( 2 , corrected 

to 0.93 for measurements performed in DCM. Absorbance and fluorescence data for 9,10 diphenylanthracene 

in DCM and cyclohexane were recorded using solutions prepared from serial dilutions using stock solutions in 

the corresponding solvent (4.33 × 10-6 M). The emission for 9,10-diphenylanthracene in DCM and cyclohexane 

(Cy) was integrated from 363-552 nm, with excitation at 375 nm.  The quantum yield of fluorescence was 

determined by comparison of the integrated area of the corrected emission spectrum of the imide 9 to that of 

9,10-diphenylanthracene as a standard fluorescence reference.  Absorbance and fluorescence data for 9,10 

diphenylanthracene and the imides 5 were recorded using solutions in DCM prepared from serial dilutions 

from stock solutions (standard: 5.19 × 10-6 M; imide: 4.33 × 10-6 M). The emission for 9,10-diphenylanthracene 

and imides 9 was integrated from 380-545 nm with excitation at 383 nm and 375 nm, respectively.   

 

Cyclic Voltammetry 

Electrochemical measurements were conducted using an Autolab PGSTAT20 voltammetric analyser under an 

argon atmosphere, solvated in pre-dried CH3CN containing 0.10 M [nBu4N]BF4 as supporting electrolyte. 
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Voltammetric experiments utilised a Pt disk working electrode, a Pt rod auxiliary electrode and an Ag/AgCl 

reference electrode. All potentials quoted are referenced to an internal ferrocene/ferrocenium standard and 

were obtained at various scan rates of 10-1000 mVs-1. The ferrocene/ferrocenium couple under these 

conditions was observed at + 0.45 ≤ E1/2 ≤ 0.47 V vs Ag/AgCl. 
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