Supplementary Material

Electrochemical synthesis of 4-quinazolinone derivatives mediated by acetic acid

Tanay Ghoshal*

Shri MM Patel Institute of Sciences and Research, Department of Chemistry, Kadi Sarva Vishwavidyalaya, Gandhinagar-382024, Gujarat, India
Email: ghoshal.tanay@gmail.com

Table of Contents

Electrochemical reaction set up ...S2
Analytical data of compounds 3a-3q,4,5 ..S3
1. Electrochemical Reactor set up

The electrochemical reactor was set up starting with a 5v mobile charger and a multiple USB port. A mobile phone charger was attached to a multiple USB port to divert the current to different reaction vessels. The wire from USB port was attached to electrodes through alligator clips, the electrodes were mainly carbon (0.5 mm diameter) and wire of aluminium (0.5 mm diameter) (Figure 1). Constant electric current of 0.35A cm\(^{-2}\) was passed through the reaction mixture for required time at room temperature for complete conversion. This was helpful in carrying out multiple reactions at a time.

![Figure 1. Multiple reaction assembly.](image)

Scale up assembly to keep reaction in bigger scale. 5g batches were done. (Figure 2)

![Figure 2. Electrochemical batch of a 5g reaction.](image)
2. Analytical data of Compound 3a to 3q, 4 and 5.

1H NMR of Compound 3a

Molecular Weight: 222.25

13C NMR of Compound 3a
LCMS of Compound 3a

$\text{Molecular Weight: 222.25}$

Peak Results

<table>
<thead>
<tr>
<th>Retention Time (min)</th>
<th>Base Peak (m/z)</th>
<th>Height (a.u.)</th>
<th>Area (\text{f.u.})</th>
<th>% Area</th>
<th>Channel</th>
<th>Channel Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.562</td>
<td>222.16</td>
<td>723000000</td>
<td>130000000</td>
<td>100.00</td>
<td>PDA Spectrum</td>
<td>PDA Spectrum</td>
</tr>
</tbody>
</table>

$\text{1H NMR of Compound 3b}$

$\text{Molecular Weight: 252.27}$

$\text{Current Data Parameters}$

$\text{F1 - Acquisition parameters}$

$\text{Current Data Parameters}$

$\text{F2 - Processing parameters}$
13C NMR of Compound 3b
LCMS of Compound 3b

![LCMS Graphs]

Peak Results

<table>
<thead>
<tr>
<th>Retention Time (min)</th>
<th>Base Peak (m/z)</th>
<th>Height (µV)</th>
<th>Area (µV*sec)</th>
<th>% Area</th>
<th>Channel</th>
<th>Channel Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.46</td>
<td>26032</td>
<td>2282</td>
<td>4.18</td>
<td>PDA Spectrum</td>
<td>225.0mm</td>
</tr>
<tr>
<td>2</td>
<td>1.46</td>
<td>12023</td>
<td>13000</td>
<td>2.34</td>
<td>PDA Spectrum</td>
<td>250.0mm</td>
</tr>
<tr>
<td>3</td>
<td>1.55</td>
<td>58097</td>
<td>54181</td>
<td>9.65</td>
<td>PDA Spectrum</td>
<td>250.0mm</td>
</tr>
<tr>
<td>4</td>
<td>1.55</td>
<td>58097</td>
<td>53480</td>
<td>9.62</td>
<td>PDA Spectrum</td>
<td>225.0mm</td>
</tr>
</tbody>
</table>

Molecular Weight

Molecular Weight: 252.27
^{1}H NMR of Compound 3c

Molecular Weight: 282.30

^{13}C NMR of Compound 3c
LCMS of Compound 3c

\[
\text{Molecular Weight: } 2030
\]

<table>
<thead>
<tr>
<th>Retention Time (min)</th>
<th>Base Peak (m/z)</th>
<th>Height (a.u.)</th>
<th>Area (c.p.s.)</th>
<th>% Area</th>
<th>Channel</th>
<th>Channel Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.40</td>
<td>200.0</td>
<td>400.0</td>
<td>800.0</td>
<td>90.0</td>
<td>PD</td>
<td>Channel Name</td>
</tr>
<tr>
<td>1.60</td>
<td>180.0</td>
<td>360.0</td>
<td>720.0</td>
<td>80.0</td>
<td>PD</td>
<td>Channel Name</td>
</tr>
</tbody>
</table>

\[^1H\) NMR of Compound 3d

Exact Mass: 229.03

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 ppm
13C NMR of Compound 3d

LCMS of Compound 3d

Exact Mass: 229.03
1H NMR of Compound 3e

13C NMR of Compound 3e
LCMS of Compound 3e

![LCMS Graph]

Exact Mass: 212.0688

1H NMR of Compound 3f

![NMR Spectrum]
13C NMR of Compound 3f

![NMR Spectrum Image]

LCMS of Compound 3f

![LCMS Image]

Molecular Weight: 292.27
1H NMR of Compound 3g

Molecular Weight: 252.27

13C NMR of Compound 3g
LCMS of Compound 3g
1H NMR of Compound 3h

Molecular Weight: 282.30

13C NMR of Compound 3h
LCMS of Compound 3h

![LCMS Graph]

Peak Results

<table>
<thead>
<tr>
<th>Retention Time (min)</th>
<th>Base Peak (m/z)</th>
<th>Height (pF)</th>
<th>Area (µA*sec)</th>
<th>% Area</th>
<th>Channel</th>
<th>Channel Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1317</td>
<td>1337</td>
<td>0.45</td>
<td>PDA Spectrum 254.0 nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>995224</td>
<td>99527</td>
<td>99.55</td>
<td>PDA Spectrum 254.0 nm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Molecular Weight: 262.36

<table>
<thead>
<tr>
<th>Retention Time (min)</th>
<th>Base Peak (m/z)</th>
<th>Height (pF)</th>
<th>Area (µA*sec)</th>
<th>% Area</th>
<th>Channel</th>
<th>Channel Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>453.77</td>
<td>2663562</td>
<td>2390565</td>
<td>7.02</td>
<td>SQ 2: MS Scan</td>
<td>MS TIC</td>
</tr>
<tr>
<td>2</td>
<td>156676</td>
<td>148474</td>
<td>4.36</td>
<td>SQ 2: MS Scan</td>
<td>MS TIC</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>233355</td>
<td>37418193</td>
<td>80.63</td>
<td>SQ 2: MS Scan</td>
<td>MS TIC</td>
<td></td>
</tr>
</tbody>
</table>
1H NMR of Compound 3i

13C NMR of Compound 3i
LCMS of Compound 3i

Exact Mass: 146.05
\(^1\)H NMR of Compound 3j

\(^{13}\)C NMR of Compound 3j
LCMS of Compound 3j

![LCMS Graph]

Peak Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Base Peak</th>
<th>Height (pF)</th>
<th>Area (pA/sec)</th>
<th>% Area</th>
<th>Channel</th>
<th>Channel Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.988</td>
<td>1249223</td>
<td>1293360</td>
<td>100.00</td>
<td></td>
<td>225.3 nm</td>
<td></td>
</tr>
</tbody>
</table>

Peak Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Base Peak</th>
<th>Height (pF)</th>
<th>Area (pA/sec)</th>
<th>% Area</th>
<th>Channel</th>
<th>Channel Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.964</td>
<td>161.06</td>
<td>962.035</td>
<td>100.00</td>
<td></td>
<td>2: MS Scan</td>
<td></td>
</tr>
</tbody>
</table>

Exact Mass: 160.06

1H NMR of Compound 3k

![NMR Spectrum]
13C NMR of Compound 3k

<table>
<thead>
<tr>
<th>Peak</th>
<th>Base Width (ppm)</th>
<th>Area (ppm)</th>
<th>% Area</th>
<th>Channel</th>
<th>Channel Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.040</td>
<td>137,364</td>
<td>91.70</td>
<td>POA Spectrum</td>
<td>248.0 ppm</td>
</tr>
<tr>
<td>2</td>
<td>0.090</td>
<td>205,027</td>
<td>9.30</td>
<td>POA Spectrum</td>
<td>248.0 ppm</td>
</tr>
</tbody>
</table>

LCMS of Compound 3k

Molecular Weight: 176.18
1H NMR of Compound 3l

Molecular Weight: 272.05

13C NMR of Compound 3l

Molecular Weight: 272.05
LCMS of Compound 3l

<table>
<thead>
<tr>
<th>Retention Time (min)</th>
<th>Base Peak (m/z)</th>
<th>Height (a.U.)</th>
<th>Area (a.U.%)</th>
<th>% Area</th>
<th>Channel</th>
<th>Channel Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.691</td>
<td>392.28</td>
<td>0.01</td>
<td>0.2</td>
<td>0.38</td>
<td>Channel 2</td>
<td>Channel 2</td>
</tr>
<tr>
<td>1.058</td>
<td>1052.98</td>
<td>102.9</td>
<td>100</td>
<td>100</td>
<td>Channel 2</td>
<td>Channel 2</td>
</tr>
</tbody>
</table>

Molecular Weight: 272.05

1H NMR of Compound 3m

Molecular Weight: 160.2
13C NMR of Compound 3m

Molecular Weight: 160.2

LCMS of Compound 3m

Molecular Weight: 160.2
1H NMR of Compound 3n

Chemical Formula: C$_8$H$_6$N$_2$O
Molecular Weight: 174.20

13C NMR of Compound 3n

Chemical Formula: C$_8$H$_4$N$_2$O
Molecular Weight: 174.20
LCMS of Compound 3n

<table>
<thead>
<tr>
<th>Retention Time (min)</th>
<th>Base Peak (m/z)</th>
<th>Height (µl)</th>
<th>Area (µl*sec)</th>
<th>% Area</th>
<th>Channel</th>
<th>Channel Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.916</td>
<td>89481</td>
<td>97217</td>
<td>100.00</td>
<td>PDA Spectrum</td>
<td>228.0 nm</td>
</tr>
</tbody>
</table>

Chemical Formula: C_{12}H_{10}N_{2}O
Molecular Weight: 174.20
1H NMR of Compound 3o

6-Chloro-2-methylquinazolin-4(3H)-one
Chemical Formula: C$_7$H$_5$ClN$_2$O$_2$
Molecular Weight: 191.6

13C NMR of Compound 3o

6-Chloro-2-methylquinazolin-4(3H)-one
Chemical Formula: C$_7$H$_5$ClN$_2$O$_2$
Molecular Weight: 191.6
LCMS of Compound 3o

Peak Results
Channel 1 PDA Spectrum

<table>
<thead>
<tr>
<th>Reaction Time (min)</th>
<th>Base Peak (m/z)</th>
<th>Height (a.u.)</th>
<th>Area (a.u. / sec)</th>
<th>% Area</th>
<th>Channel Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>263.072</td>
<td>1803600</td>
<td>100.00</td>
<td>100.00</td>
<td>PDA Spectrum</td>
</tr>
<tr>
<td>2</td>
<td>1871.52</td>
<td>1710588</td>
<td>100.00</td>
<td>100.00</td>
<td>PDA Spectrum</td>
</tr>
</tbody>
</table>

Chemical Formula: C16H15N2
Molecular Weight: 244.56

NMR Data

Page S28 © AUTHOR(S)
1H NMR of Compound 3p

13C NMR of Compound 3p
LCMS of Compound 3p

![LCMS Graphs]

Peak Results

Channel 1: ESI Spectrum

<table>
<thead>
<tr>
<th>Retention Time (min)</th>
<th>Base Peak (m/z)</th>
<th>Height (mAU)</th>
<th>Area (µA-s)</th>
<th>% Area</th>
<th>Channel</th>
<th>Channel Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.051</td>
<td>746</td>
<td>1249</td>
<td>0.13</td>
<td>0.30</td>
<td>ESI Spectrum</td>
<td>275.3m/z</td>
</tr>
<tr>
<td>1.052</td>
<td>544</td>
<td>746</td>
<td>0.30</td>
<td>0.30</td>
<td>ESI Spectrum</td>
<td>275.3m/z</td>
</tr>
<tr>
<td>1.059</td>
<td>339</td>
<td>544</td>
<td>0.99</td>
<td>0.10</td>
<td>ESI Spectrum</td>
<td>275.3m/z</td>
</tr>
<tr>
<td>1.069</td>
<td>142</td>
<td>270</td>
<td>89.99</td>
<td>0.86</td>
<td>ESI Spectrum</td>
<td>235.3m/z</td>
</tr>
<tr>
<td>1.139</td>
<td>2561</td>
<td>356</td>
<td>0.22</td>
<td>0.02</td>
<td>ESI Spectrum</td>
<td>275.3m/z</td>
</tr>
<tr>
<td>1.139</td>
<td>2561</td>
<td>810</td>
<td>0.42</td>
<td>0.05</td>
<td>ESI Spectrum</td>
<td>235.3m/z</td>
</tr>
</tbody>
</table>

Channel 2: ESI Spectrum

<table>
<thead>
<tr>
<th>Retention Time (min)</th>
<th>Base Peak (m/z)</th>
<th>Height (mAU)</th>
<th>Area (µA-s)</th>
<th>% Area</th>
<th>Channel</th>
<th>Channel Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.051</td>
<td>356</td>
<td>456</td>
<td>0.13</td>
<td>0.30</td>
<td>ESI Spectrum</td>
<td>235.3m/z</td>
</tr>
<tr>
<td>1.052</td>
<td>2561</td>
<td>456</td>
<td>0.30</td>
<td>0.30</td>
<td>ESI Spectrum</td>
<td>235.3m/z</td>
</tr>
</tbody>
</table>

Peak Results

Channel 1: MS Scan

<table>
<thead>
<tr>
<th>Retention Time (min)</th>
<th>Base Peak (m/z)</th>
<th>Height (mAU)</th>
<th>Area (µA-s)</th>
<th>% Area</th>
<th>Channel</th>
<th>Channel Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.052</td>
<td>152</td>
<td>208</td>
<td>100.00</td>
<td>100.00</td>
<td>S1: MS Scan</td>
<td>MS TIC</td>
</tr>
</tbody>
</table>

Chemical Formula: C14H13NO
Molecular Weight: 210.6
1H NMR of Compound 3q

Molecular Weight: 206.20

13C NMR of Compound 3q

Molecular Weight: 206.20
1H NMR of Compound 4

![1H NMR spectrum of Compound 4]

Exact Mass: 303.06

13C NMR of Compound 4

![13C NMR spectrum of Compound 4]

Exact Mass: 303.06
\(^1\)H NMR of Compound 5

Molecular Weight: 378.20

\(^{13}\)H NMR of Compound 5

Molecular Weight: 378.20