Supplementary Material

Synthesis of novel imidazopyridine-oxadiazole molecular hybrids by a regioselective sulfonylation of imidazo[1,2-a]pyridines with 1,3,4-oxadiazole-2-thiols using I$_2$-FeCl$_3$ catalytic system and O$_2$/air as co-oxidant

Kartik Duttaa,b, Nisha Kushwahc, Amey P. Wadawalec, and Sunil K. Ghosha,b

aBio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085
bHomi Bhabha National Institute, Anushaktinagar, Mumbai 400094
cChemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
Email: ghsunil@barc.gov.in

Table of Contents

1. General procedure for synthesis imidazo[1,2-a]pyridine 1a-h .. S2
2. General procedure for synthesis 2a-I ... S2
3. Characterization data for 2b, 2d and 2i .. S2
4. X-ray crystallographic Characterization of compound 3c ... S3
5. 1H and 13C NMR spectra .. S5
6. References .. S24
1. General procedure for synthesis imidazo[1,2-a]pyridine derivatives 1a-h

Following the reported procedure,\(^1\) sodium bicarbonate (1.6 g, 20 mmol) was added to a stirred solution of 2-bromoacetophenone derivatives (10 mmol) and 2-aminopyridine derivatives (10 mmol) in 50 mL of acetonitrile and the mixture was refluxed for 2 h. After completion of reaction as monitored by TLC, the reaction mixture was diluted with water and extracted with ethyl acetate. The organic phase was then dried over anhydrous Na\(_2\)SO\(_4\), filtered, and concentrated under reduced pressure. The resulting crude product was purified by silica gel column chromatography using petroleum ether and ethyl acetate as the eluent to afford pure 1a-h. Spectroscopic data for 1a,f\(^2\); 1b-e\(^3\) and 1g,h\(^4\) were similar as reported.

2. General procedure for synthesis 2a-i

Following the reported procedure,\(^5\) a vigorously stirred solution of appropriately substituted carboxy benzohydrazide (10 mmol) in 30 mL absolute ethanol was basified with potassium hydroxide (10 mmol) until a solid precipitate came out. Carbon disulphide (15 mmol) was added to the mixture and refluxed for 6 h. After completion of the reaction as verified by TLC, ethanol was removed under vacuum. Then sticky mass was diluted with cold water and acidified with 0.5 M HCL to maintain pH = 3-4. The precipitated crude product was filtered, washed with water and air dried. Recrystallization from ethanol gave pure 2a-i in 68-75% yield. Spectroscopic data for 2a,c\(^5\) and 2e-h\(^5\) were similar as reported.

![Scheme S1 synthesis of 1,3,4-oxadiazole-2-thiols 2a-i](image)

<table>
<thead>
<tr>
<th>Ar</th>
<th>2a</th>
<th>2b</th>
<th>2c</th>
<th>2d</th>
<th>2e</th>
<th>2f</th>
<th>2g</th>
<th>2h</th>
<th>2i</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4-OMeC(_6)H(_4)</td>
<td>Ph</td>
<td>Me</td>
<td>3,4,5-OMeC(_6)H(_4)</td>
<td>4-OHC(_6)H(_4)</td>
<td>4-FC(_6)H(_4)</td>
<td>4-ClC(_6)H(_4)</td>
<td>4-BrC(_6)H(_4)</td>
<td>4-NO(_2)C(_6)H(_4)</td>
</tr>
</tbody>
</table>

3. Characterization data for 2b, 2d and 2i

5-phenyl-1,3,4-oxadiazole-2-thiol (2b) White solid (1.3 g, 75% yield); mp 202.2 – 221.9 °C; \(^1\)H NMR (300 MHz, DMSO-\(d_6\)) \(\delta\) (ppm) 7.86 (d, \(J = 6.9\) Hz, 2 H), 7.62–7.55 (m, 3 H); \(^{13}\)C NMR (75
MHz, DMSO-\(d_6\) \(\delta\) (ppm) 177.8, 160.9, 132.7, 129.9, 126.5, 122.9; Elemental Anal. Calcd. for C\(_8\)H\(_6\)N\(_2\)O\(_2\)S C, 53.92; H, 3.39; N, 15.72; S, 17.99%. Found C, 54.25; H, 3.52; N, 15.69; S, 18.24%.

5-(3,4,5-trimethoxyphenyl)-1,3,4-oxadiazole-2-thiol (2d) White solid (1.9 g, 71% yield); mp 185.6-186.9 °C; \(^1\)H NMR (300 MHz, DMSO-\(d_6\)) \(\delta\) (ppm) 7.09 (s, 2 H), 3.85 (s, 6 H), 3.73 (s, 3.09); NMR (75 MHz, DMSO-\(d_6\)) \(\delta\) (ppm) 177.7, 160.8, 153.9, 141.2, 117.9, 103.8, 60.7, 56.6; Elemental Anal. Calcd. for C\(_{11}\)H\(_{12}\)N\(_2\)O\(_4\)S C, 49.25; H, 4.51; N, 10.44; S, 11.95%. Found C, 49.25; H, 4.37; N, 10.31; S, 12.26%.

5-(4-nitrophenyl)-1,3,4-oxadiazole-2-thiol (2i) Yellow solid (1.5 g, 68% yield); mp 190.1-191.9 °C; \(^1\)H NMR (300 MHz, DMSO-\(d_6\)) \(\delta\) (ppm) 8.37 (d \(J = 8.7\) Hz 2 H), 8.10 (d \(J = 8.7\) Hz 2 H); NMR (75 MHz, DMSO-\(d_6\)) \(\delta\) (ppm) 178.1, 159.3, 149.6, 128.5, 127.9, 125.0; Elemental Anal. Calcd. for C\(_8\)H\(_5\)N\(_3\)O\(_3\)S C, 43.05; H, 2.26; N, 18.83; S, 14.36%. Found C, 43.18; H, 2.54; N, 18.70; S, 14.67%.

3. X-ray crystallographic Characterization of compound 3c

Table S1. Crystal data and structure refinement for 3c

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCDC number</td>
<td>2184609</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C({22})H({16})N(_4)O(_2)S</td>
</tr>
<tr>
<td>Formula weight</td>
<td>384.45</td>
</tr>
<tr>
<td>Temperature [K]</td>
<td>298(2)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>orthorhombic</td>
</tr>
<tr>
<td>Space group (number)</td>
<td>P2(_1)2(_1)2(_1) (19)</td>
</tr>
<tr>
<td>(a) [Å]</td>
<td>8.3230(3)</td>
</tr>
<tr>
<td>(b) [Å]</td>
<td>10.8098(3)</td>
</tr>
<tr>
<td>(c) [Å]</td>
<td>20.8096(6)</td>
</tr>
<tr>
<td>(\alpha) [Å]</td>
<td>90</td>
</tr>
<tr>
<td>(\beta) [Å]</td>
<td>90</td>
</tr>
<tr>
<td>(\gamma) [Å]</td>
<td>90</td>
</tr>
<tr>
<td>Volume [Å(^3)]</td>
<td>1872.24(10)</td>
</tr>
<tr>
<td>(Z)</td>
<td>4</td>
</tr>
<tr>
<td>(\rho)(_{\text{calc}}) [g/cm(^3)]</td>
<td>1.364</td>
</tr>
</tbody>
</table>
\(\mu \) [mm\(^{-1}\)] \quad 1.699

\(F(000) \) \quad 800

Crystal size [mm\(^3\)] \quad 0.150 \times 0.050 \times 0.050

Crystal colour \quad colorless

Crystal shape \quad needle

Radiation \quad Cu K\(\alpha\) (\(\lambda=1.54184\ \text{Å}\))

2\(\theta\) range [°] \quad 9.22 to 153.70
\quad (0.79 \text{ Å})

Index ranges \quad -9 \leq h \leq 10
\quad -13 \leq k \leq 13
\quad -24 \leq l \leq 26

Reflections collected \quad 29635

Independent reflections \quad 3791
\quad \(R_{\text{int}} = 0.1362 \)
\quad \(R_{\sigma} = 0.0653 \)

Completeness to \(\theta = 67.684° \) \quad 99.9 %

Data / Restraints / Parameters
\quad 3791/0/256

Goodness-of-fit on \(F^2 \) \quad 1.008

Final \(R \) indexes \quad \(R_1 = 0.0432 \)
\quad \text{[}\geq 2\sigma(\|)\text{]} \quad \text{wr}R_2 = 0.1008

Final \(R \) indexes \quad \(R_1 = 0.0629 \)
\quad \text{[all data]} \quad \text{wr}R_2 = 0.1150

Largest peak/hole \quad 0.15/-0.23
\quad [\text{eÅ}^3]

Flack X parameter \quad -0.02(3)

Extinction coefficient \quad 0.0021(5)
4. 1H & 13C NMR Spectra

Figure S1. 1H NMR spectrum of 3a

Figure S2. 13C NMR spectrum of 3a
Figure S3. 1H NMR spectrum of 3b

Figure S4. 13C NMR spectrum of 3b
Figure S5. 1H NMR spectrum of 3c

Figure S6. 13C NMR spectrum of 3c
Figure S7. 1H NMR spectrum of 3d

Figure S8. 13C NMR spectrum of 3d
Figure S9. 1H NMR spectrum of $3e$

Figure S10. 13C NMR spectrum of $3e$
Figure S11. 1H NMR spectrum of 3f

Figure S12. 13C NMR spectrum of 3f
Figure S13. 1H NMR spectrum of 3g

Figure S14. 13C NMR spectrum of 3g
Figure S15. 1H NMR spectrum of $3h$

Figure S16. 13C NMR spectrum of $3h$
Figure S17. 1H NMR spectrum of 4a

Figure S18. 13C NMR spectrum of 4a
Figure S19. 1H NMR spectrum of 4b

Figure S20. 13C NMR spectrum of 4b
Figure S21. 1H NMR spectrum of 4c

Figure S22. 13C NMR spectrum of 4c
Figure S23. 1H NMR spectrum of 4d

Figure S24. 13C NMR spectrum of 4d
Figure S25. 1H NMR spectrum of 4e

Figure S26. 13C NMR spectrum of 4e
Figure S27. 1H NMR spectrum of 4f

Figure S28. 13C NMR spectrum of 4f
Figure S29. 1H NMR spectrum of 4g

Figure S30. 13C NMR spectrum of 4g
Figure S31. 1H NMR spectrum of 2b

Figure S32. 13C NMR spectrum of 2b
Figure S33. 1H NMR spectrum of $2d$

Figure S34. 13C NMR spectrum of $2d$
Figure S35. 1H NMR spectrum of 2i

Figure S36. 13C NMR spectrum of 2i
5. **References**

 https://doi.org/10.1021/acs.jchemed.6b00286

 https://doi.org/10.1021/jo402134x

 https://doi.org/10.1021/acs.orglett.0c02929

 http://dx.doi.org/10.1098/rspa.2019.0238

 https://scholar.google.co.in/scholar?cluster=7970997639781650167&hl=en&as_sdt=0,5&as_vis=1