

A Platinum Open Access Journal for Organic Chemistry

Paper

Free to Authors and Readers

DOAJ Seal

Arkivoc 2022, part iii, 186-196

Kabachnik-Fields reactions with stable nitroxide free radicals

Mostafa Isbera, Balázs Bognár, Cecília Sár, József Jekő, Tamás Kálaia, c, *

^aInstitute of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs, Szigeti st. 12, H-7624 Pécs, Hungary

^bDepartment of Chemistry, University of Nyíregyháza, Sóstói st. 31/B, H-4440 Nyíregyháza, Hungary

^c János Szentágothai Research Center, University of Pécs, Ifjúság 20, H-7624 Pécs, Hungary

Email: tamas.kalai@aok.pte.hu

This paper is dedicated to Professor György Keglevich on the occasion of his 65th birthday

Received 08-11-2022

Accepted Manuscript 09-16-2022

Published on line 10-12-2022

Abstract

The Kabachnik–Fields reaction is a multicomponent reaction that provides α -aminophosphonates and phosphorus analogs of α -amino acids. While paramagnetic α -amino acids are well known, to the best of our knowledge, this is the first report on paramagnetic α -aminophosphonate syntheses. We present examples of nitroxide-containing α -aminophosphonates starting from five- and six-membered paramagnetic aldehydes, a paramagnetic ketone, and five- and six-membered paramagnetic amines. Starting from a β -bromo- α , β unsaturated aldehyde, we constructed a pyrroline-nitroxide-condensed heterocycle with a phosphonate ester substituent.

Keywords: Heterocycles, Kabachnik-Fields reaction, nitroxides, T3P®, TOAC

Introduction

Nitroxides, as stable free radicals, have become invaluable tools for a diverse range of research fields, including biology, medicine, synthetic chemistry, materials science, and polymer chemistry.¹⁻⁴ These research fields require stable nitroxide free radicals with diverse substitution patterns of pyrrolidine, piperidine, pyrroline and tetrahydropyridine rings. A possible access to these multifariously substituted stable nitroxide free radicals is through the utilization of multicomponent reactions (MCRs).⁵ In the case of stable nitroxide free radicals, only limited cases have been reported to construct complex paramagnetic structures with MCRs. Such reactions included the Hantzsch, ⁶ Biginelli, ⁷ Morita-Baylis-Hillman ⁸ Mannich ⁹ and Ugi ¹⁰ reactions; in addition, the latter two methodologies were used directly in spin-labeling reactions. Continuing our research interest in phosphorus-containing stable nitroxide free radicals, 11,12 we decided to investigate the possibilities of the Kabachnik-Fields reaction, 13,14 which involves the condensation of a primary or secondary amine, an aldehyde or ketone and a >P(O)H-containing reagent, which is, in most cases, a dialkyl phosphite. The classical version of the "phospha-Mannich" reactions was discovered independently by Kabachnik and Fields more than sixty years ago, 15,16 practically in parallel with the discovery of stable nitroxide free radicals. 17 A modified Kabachnik-Fields reaction was reported by Tordo's group in the 1990s to construct β-phosphorylated pyrrolidine nitroxides by the reaction of nitrones with dialkylphosphites. 18 As far as we know, however, no other occurrence of the Kabachnik-Fields reaction with regards to nitroxide can be found in the literature. There is tremendous interest in α -amino phosphonic acids and their phosphonate esters, which are analogs of α -amino carboxylic acids and amino acid esters, respectively. They exhibit various biological activities, such as enzyme inhibitory, ¹⁹ antibacterial, ²⁰ antiviral, ²¹ and antiproliferative ²² activities, and can be used as building blocks for peptide mimetics. These results inspired us to adopt the Kabachnik-Fields reaction for carbonyl (aldehyde or ketone)- or amino-group-containing nitroxides to give paramagnetic α -aminophosphonates, including a phosphonate ester-substituted pyrrolo[3,4-f][1,4]thiazepine scaffold and a biradical.

Results and Discussion

Initially, an equimolar mixture of paramagnetic aldehydes ${\bf 1a}$, 23 ${\bf 1b}^{24}$ or ${\bf 1c}^{25}$ and aniline ${\bf 2a}$ in the presence of 1.0 eq. of diethyl phosphite, treated with an equimolar amount of propyl phosphonic anhydride T3P® (50% EtOAc solution) in ethyl acetate, yielded α -aminophosphonates 3-5 within three hours smoothly in good-to-moderate yields (72-58%) at room temperature. We also attempted the combination reaction of paramagnetic aldehyde ${\bf 1a}$ with benzylamine ${\bf 2b}$ and obtained the expected ${\bf 6}$ derivative in 45% yield (Scheme 1).

Although several other catalysts, such $CeCl_3 \cdot 7H_2O$, 26 Mg(ClO_4) $_2^{27}$ or $^tBu_4PcAlCl^{28}$ were tested, the well-known green coupling reagent $(T3P^*)^{29}$ with its low toxicity, low allergenic potential, easy work-up and broad functional-group tolerance was the most suitable catalyst, including the retention of the nitroxide functional group also (Table 1).

Page 187 [©]AUTHOR(S)

Scheme 1. Synthesis of α -aminophosphonates from paramagnetic aldehydes.

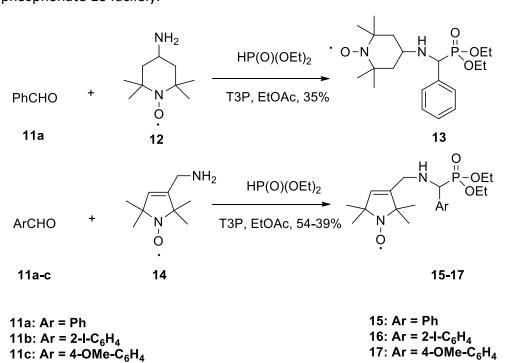
Table 1. Optimalization of the conditions for synthesis of compound **3**

Entry	Solvent	Temperature °C	Catalyst (mol %)	Yield (%) ^a
1	EtOAc	25	-	0 ^c
2	EtOAc	25	CeCl ₃ ·7H ₂ O (10)	3
3	EtOAc	25	$Mg(CIO_4)_2(5)$	0^{c}
4	EtOH	25	$Mg(CIO_4)_2(5)$	0^{c}
5	EtOH	50	$Mg(CIO_4)_2(5)$	13
6	CH_2CI_2	25	^t Bu ₄ PcAlCl ^b (1)	25
7	EtOAc	25	T3P® (100)	65

^aIsolated yield after 3h reaction time. ^b4Å molecular sieves were added.

An intramolecular version of this reaction was also conducted, and the reaction of compound 1b with cysteamine hydrochloride in acetonitrile²⁴, in the presence of 2.1 eq. of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) at room temperature, gave a non-isolable ε -amino-aldehyde compound after 12 h. This was treated with an equimolar amount of T3P® and diethyl phosphite in EtOAc, offering (diethyl (6,6,8,8-tetramethyl-3,4,5,6,7,8-hexahydro-2*H*-pyrrolo[3,4-f][1,4]thiazepin-5-yl)phosphonate-7-yl)oxydanyl radical **7** (Scheme 2).

Scheme 2. Synthesis of a heterocyclic phosphonate annulated with a pyrroline nitroxide.


Page 188 [©]AUTHOR(S)

^cOnly imine formation was observed.

The Kabachnik-Fields reaction was also tested on ketone (TEMPONE) **8**.¹⁷ Its treatment with diethyl phosphite and benzylamine in an equimolar amount of T3P® yielded aminophosphonate **9** in a 28% yield. Debenzylation of compound **9** with hydrogenation failed to form compound **10** without deterioration of the radical center (a parallel reduction to a secondary amine occurred). Therefore, we used the methodology of Sobhani et al. utilizing hexamethyldisilazane as an amine source and Yb(OTf)₃ as a catalyst in the Kabachnik-Fields transformation.³⁰ The resulting compound **10** can be considered a phosphorus analog of 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) (Scheme 3).

Scheme 3. Synthesis of the phosphorus analog of TOAC.

We wished to gauge the utility of the Kabachnik-Fields reaction on paramagnetic amines such as 4-amino-TEMPO $\mathbf{12}^{17}$ and allyl amine $\mathbf{14}^{31}$. The amines mentioned above reacted with aromatic aldehydes $\mathbf{11a-c}$ and diethyl phosphite in the presence of T3P® furnishing compounds $\mathbf{13}$ and $\mathbf{15-17}$ in 35-54% yields, respectively (Scheme 4). Among the aldehydes, 2-iodobenzaldehyde $\mathbf{11b}$, with a bulky ortho substituent, also furnished the desired α -aminophosphonate $\mathbf{16}$ facilely.

Scheme 4. Synthesis of α -aminophosphonates from paramagnetic amines.

Recognizing the importance of biradicals,³² we attempted to use this methodology to produce bisnitroxides. We are pleased to report, that the reaction of amine **14** with aldehyde **1a** in the presence of diethyl phosphite and T3P® gave compound **18** (Scheme 5).

Scheme 5. Synthesis of a biradical with the Kabachnik-Fields reaction.

Conclusions

In conclusion, the Kabachnik–Fields reaction was successfully adapted on paramagnetic aldehydes, ketones and amines as components with diethyl phosphite in T3P $^{\circ}$ - or Yb(OTf)₃- catalyzed reactions to offer variously substituted paramagnetic α -aminophosphonates, including a biradical and an *N*, *S*-containing heterocycle with a phosphonate substituent. To the best of our knowledge, this is the first adaptation of the Kabachnik-Fields reaction on pyrroline, piperidine, and tetrahydropyridine nitroxides. Biological evaluations of these newly synthesized compounds are in progress.

Experimental Section

General. The mass spectra were recorded with a GCMS-2020 (Shimadzu, Tokyo, Japan) operated in El mode (70 eV) and a ThermoScientific Q-Extractive HPLC/MS/MS with ESI(+) ionization (Thermo Scientific, Waltham, MA, USA). Elemental analyses were carried out with a Fisons EA 1110 CHNS elemental analyzer (Fisons Instruments, Milan, Italy). The melting points were determined with a Boetius micro melting point apparatus (Franz Küstner Nachf. K. G., Dresden, Germany). ¹H NMR spectra were recorded with a Bruker Avance 3 Ascend 500 system (Bruker BioSpin Corp., Karlsruhe, Germany) operated at 500 M, and ¹³C NMR spectra were obtained at 125 M and ³¹P NMR 202 M in CDCl₃ at 298 K. The "in situ" reduction of nitroxides was achieved by adding five equivalents of hydrazobenzene (DPPH/radical). The chemical shifts (δ) and coupling constant (J) are expressed in ppm and hertz respectively. The EPR spectra were recorded using a MiniScope MS 200 (Magnettech GMBH, Berlin, Germany) in CHCl₃ solution, and the sample concentrations were 1.0×10^{-4} M. All monoradicals gave a triplet line at a_N = 14.4 G-15.6 G. In contrast, biradical 18 gave a quintet line a_{N1} = 7.6 G, a_{N2}= 14.6 G. IR spectra were obtained with a Bruker Alpha FT-IR instrument (Bruker Optics, Ettlingen, Germany) with ATR support on a diamond plate. Flash column chromatography was performed using a Merck Kieselgel 60 (0.040–0.063 mm). Qualitative TLC was carried out using commercially available plates (20 × 20 × 0.02 cm) coated with Merck Kieselgel (Darmstadt, Germany) GF₂₅₄. Compounds **1a**, ²³ **1b**, ²⁴ **1c**, ²⁵ **8**, ¹⁷ **12**, ¹⁷ and 14³¹ were synthesized as previously reported. All the other reagents were purchased from Merck (Darmstadt, Germany) and Molar Chemicals (Halásztelek, Hungary).

Page 190 [®]AUTHOR(S)

General procedure for synthesis of α-aminophosphonates, compounds 3, 4, 5, 6, 9, 13, 15, 16, 17, 18. To the stirred mixture of aldehyde (2.0 mmol), amine (2.0 mmol), T3P® (1.2 mL, 2.0 mmol, Aldrich, 50% solution in EtOAc) in EtOAc (2 mL) after 5 min. diethyl phosphite (258 μ L, 2.0 mmol) was added, and the mixture was stirred at 25 °C. After completion of the reaction (~ 3h) as monitored by thin layer chromatography, the mixture was diluted with EtOAc (15 mL) and washed with sat. aq. NaHCO₃ solution (10 mL), the organic phase, was separated, dried (MgSO₄), filtered, and evaporated. The residue was purified by flash column chromatography (hexane/EtOAc or CHCl₃/Et₂O) to afford α-aminophosphonates as a solid or as an oil in 72 - 28% yields.

(Diethyl ((phenylamino)(2,2,5,5-tetramethyl-2,5-dihydro-1*H*-pyrrol-3-yl)methyl)phosphonate-1-yl)oxydanyl (3). 495 mg (65%), yellow powder, mp 123-125 °C, R_f: 0.51 (CHCl₃/MeOH, 59/1). IR (ν) cm⁻¹: 3269, 2976, 1600, 1530. ³¹P NMR (CDCl₃ + (PhNH)₂) δ : 22.6; ¹H NMR (CDCl₃ + (PhNH)₂) δ : 1.22 (s, 3H, 1 × C(CH₃)), 1.25 (s, 6H, 1 × C(CH₃)₂), 1.34 (t, 6H, CH₂CH₃, J_{HH} 7), 1.39 (s, 3H, C(CH₃)), 3.84 (m, 1H, NH), 4.05 (d, 1H, CH, J_{HH} 8) 4.17-4.22 (m, 4H, OCH₂), 6.25 (s, 1H, HC=C), 6.75-6.84 (m, 3H, ArH), 2 aromatic protons overlap with (PhNH)₂ protons. ¹³C NMR (CDCl₃ + (PhNH)₂) δ : 16.51 (d, 1C, CH₂CH₃, J_{CP} 6), 16.54 (d, 1C, CH₂CH₃, J_{CP} 6), 24.5 (s, 1C, C(CH₃)), 25.1 (s, 1C, C(CH₃)) 25.4 (s, 1C, C(CH₃)), 25.7 (s, 1C, C(CH₃)), 48.6 (d, 1C, CHP, J_{CP} 164), 62.6 (d, 1C, OCH₂, J_{CP} 7), 63.2 (d, 1C, OCH₂, J_{CP} 7), 68.0 (s, 1C, C(CH₃)₂), 71.0 (d, 1C, C(CH₃)₂, J_{CP} 9), 113.8 (s, 2C, ArC), 118.5 (s, 2C, ArC), 129.3 (s, 1C, HC=C), 134.7 (s, 1C, ArC), 140.5 (d, 1C, C=CCHP, J_{CP} 3), 146.5 (d, 1C, ArC, J_{CP} 3). MS (EI): m/z (%): 381 (M⁺, 4), 351 (1), 229 (23), 214 (77), 55 (100). Anal calcd. for C₁₉H₃₀N₂O₄P: C, 59.83; H, 7.93; N, 7.34. Found: 59.80; H, 7.77; N, 7.32

(Diethyl ((phenylamino)(4-bromo-2,2,5,5-tetramethyl-2,5-dihydro-1*H*-pyrrol-3-yl)methyl)phosphonate-1-yl) oxydanyl (4). 662mg (72%), off-white powder, mp 177-179 °C, R_f : 0.41 (CHCl₃/Et₂O, 2/1), IR (ν) cm⁻¹: 3315, 2977, 1602, 1519. ³¹P NMR (CDCl₃ + (PhNH)₂) δ : 20.7; ¹H NMR (CDCl₃ + (PhNH)₂) δ : 1.22 (s, 3H, 1 × C(CH₃)), 1.34 (m, 9H, CH₂CH₃ and 1 × C(CH₃)₂), 1.37 (t, 3H, CH₂CH₃, J_{HH} 7), 1.48 (s, 3H, C(CH₃), 4.21-4.25 (m, 4H, OCH₂), 4.58 (m, 1H, NH), 4.90 (dd, 1H, CH, ¹ J_{PH} 29 , ² J_{HH} 8), 6.80-7.25 (m, 3H, ArH), 2 aromatic protons overlap with (PhNH)₂ protons. ¹³C NMR (CDCl₃ + (PhNH)₂) δ : 16.4 (d, 1C, CH₂CH₃, J_{CP} 6), 16.5 (d, 1C, CH₂CH₃, J_{CP} 6), 23.5 (s, 1C, C(CH₃)), 24.4 (s, 1C, C(CH₃)) 25.0 (s, 1C, C(CH₃)), 25.4 (s, 1C, C(CH₃)), 51.7 (d, 1C, CHP, J_{CP} 155), 62.9 (d, 1C, OCH₂, J_{CP} 7), 63.0 (d, 1C, OCH₂, J_{CP} 7), 70.3 (d, 1C, C(CH₃)₂, J_{CP} 3), 71.0 (s, 1C, C(CH₃)₂), 112.4 (s, 1C, BrC=C), 119.8 (s, 1C, ArC), 129.3 (s, 2C, ArC), 136.7 (s, 1C, BrC=C), 146.5 (d, 1C, ArC J_{CP} 13). A band of two aromatic carbons overlaps with carbon signal of (PhNH)₂. MS (EI): m/z (%): 461/459 (M⁺, 7/7), 350 (13), 324/322 (20/20), 294/292 (100/100), 77 (47). Anal calcd. for C₁₉H₂₉BrN₂O₄P: C, 49.57; H, 6.35; N, 6.09. Found: C, 49.67; H, 6.10; N, 6.18.

(phenylamino)(2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridin-4-yl)methyl)phosphonate-1-yl)oxydanyl (5). 458 mg (58%), dark yellow powder mp: 82-84 °C, R_f : 0.40 (CHCl₃/Et₂O, 2/1). IR (ν) cm⁻¹: 3301, 2979, 1600, 1516. ³¹P NMR (CDCl₃ + (PhNH)₂) δ : 22.7; ¹H NMR (CDCl₃ + (PhNH)₂) δ : 1.12 (s, 3H, 1 × C(CH_3)), 1.29 (s, 6H, 1 × C(CH_3)₂), 1.35 (s, 3H, C(CH_3), 1.38 (t, 6H, CH₂C H_3 , J_{HH} 7), 2.26 (s, 2H, C=CC H_2), 4.16-4.25 (m, 4H, OC H_2), 4.54 (m, 1H, CHP), 5.66 (d, 1H, HC=C, J_{HH} 3), 6.79-7.28 (m, 3H, ArH), 2 aromatic protons overlap with (PhNH)₂ protons, NH band is missing. ¹³C NMR (CDCl₃ + (PhNH)₂) δ : 16.5 (t, 2C, 2 × CH₂C H_3 , J_{CP} 7), 24.8 (s, 2C, C(CH_3)₂), 26.1 (s, 2C, C(CH_3)₂), 40.4 (s, 1C, C=C CH_2), 56.2 (s, 1C, $C(CH_3)_2$, 57.6 (d, 1C, $C(CH_3)_2$, J_{CP} 33), 59.8 (s, 1C, $C(CH_3)_2$), 62.7 (d, 1C, OCH₂, J_{CP} 7), 63.3 (d, 1C, OCH₂, J_{CP} 7), 114.1 (s, 2C, ArC), 118.6 (s, 2C, ArC), 126.1 (s, 1C, HC=C), 134.7 (d, 1C, HC=C, J_{CP} 6), 146.5 (d, ArC, 1C, J_{CP} 14). A band of an aromatic carbons overlaps with carbon signal of (PhNH)₂. MS (EI): m/z (%): 395 (M⁺, 14), 365 (2), 309 (10), 294 (14), 258 (12), 228 (100). Anal calcd. for C₂₀H₃₂N₂O₄P: C, 60.74; H, 8.16; N, 7.08. Found: C, 60.69; H, 7.93; N, 7.08.

(Diethyl ((benzylamino)(2,2,5,5-tetramethyl-2,5-dihydro-1*H*-pyrrol-3-yl)methyl)phosphonate-1-yl)oxydanyl (6). 221 mg (28%), yellow oil, R_f: 0.40 (CHCl₃/MeOH, 59/1). IR (ν) cm⁻¹: 3286, 2979, 1600. ³¹P NMR (CDCl₃ +

(PhNH)₂) δ: 23.3; ¹H NMR (CDCl₃ + (PhNH)₂) δ: 1.32 (s, 6H, 1 × C(CH₃)₂), 1.34 (s, 6H, 1 × C(CH₃)₂), 1.42 (t, 6H, 2 × CH₂CH₃, J_{HH} 7), 2.11 (s, 1H, NH), 3.46 (d, 1H, CHP, J_{HH} 19), 3.84 (d, 1H, CHPh, J_{HH} 13), 4.00 (d, 1H, CHPh, J_{HH} 13), 4.18-4.30 (m, 4H, OCH₂) 6.05 (s, 1H, C=CH), 7.32-7.39 (m, 5H, ArH). ¹³C NMR (CDCl₃ + (PhNH)₂) δ: 16.5 (d, 1C, CH₂CH₃, J_{CP} 6), 16.6 (d, 1C, CH₂CH₃, J_{CP} 6), 24.1 (s, 1C, C(CH₃)), 24.2 (s, 1C, C(CH₃)) 25.1 (s, 1C, C(CH₃)), 25.2 (s, 1C, C(CH₃)), 51.6 (d, 1C, CH₂Ph, J_{CP} 11), 51.8 (d, 1C, CHP, J_{CP} 156), 62.8 (d, 1C, OCH₂, J_{CP} 7), 62.9 (d, 1C, OCH₂, J_{CP} 7), 69.1 (s, 1C, C(CH₃)₂), 69.2 (s, 1C, C(CH₃)₂), 127.2 (s, 1C, HC=C), 128.3 (s, 2C, ArC), 128.4 (s, 2C, ArC), 133.7 (s, 1C, ArC), 139.5 (s, 1C, ArC), 140.2 (s, 1C, C=CCHP). MS (EI): m/z (%): 395 (M⁺, 2), 365 (1), 258 (30), 228 (74), 91 (100). Anal calcd. for C₂₀H₃₂N₂O₄P: C, 60.74; H, 8.16; N, 7.08. Found: C, 60.79; H, 7.96; N, 7.09

(Diethyl (4-(benzylamino)-2,2,6,6-tetramethylpiperidin-4-yl)phosphonate-1-yl)oxydanyl (9). 246 mg (31%, orange oil, R_f: 0.48 (CHCl₃/MeOH, 59/1). IR (ν) cm⁻¹: 3319, 2972, 2927, 1663, 1601. ³¹P NMR (CDCl₃ + (PhNH)₂) δ : 27.8; ¹H NMR (CDCl₃ + (PhNH)₂) δ : 1.28 (s, 6H, 1 × C(C H_3)₂), 1.41 (t, 6H, CH₂C H_3 , J_{HH} 7), 1.58 (s, 6H, C(C H_3)), 1.96 (dd, 2H, C H_2 , ¹ J_{HH} 14, ² J_{HH} 2), 2.09 (dd, 2H, C H_2 , ¹ J_{HH} 6, ² J_{HH} 8), 4.11 (dd, 2H, PhC H_2 , ¹ J_{HH} 2, ² J_{HH} 4), 4.19-4.25 (q, 4H, OC H_2 J_{HH} 7), 7.29-7.42 (m, ArH, 5H), NH band is not detected. ¹³C NMR (CDCl₃ +(PhNH)₂) δ : 16.7 (d, 2C, CH₂C H_3 , J_{CP} 5), 20.8 (s, 4C, 2 × C(CH₃)₂), 33.1 (s, 1C, CH₂), 40.8 (s, 1C, CH₂), 48.1 (s, 1C, PhCH₂), 57.2 (d, 1C, H₂NCP, J_{CP} 131), 57.9 (s, 1C, C(CH₃)₂), 58.1 (s, 1C, C(CH₃)₂), 61.9 (d, 2C, 2 × OCH₂, J_{CP} 8). 126.9 (s, 1C, ArC), 128.1 (s, 2C, ArC), 128.5 (s, 2C, ArC), 140.7 (s, 1C, ArC). MS (EI): m/z (%): 397 (M⁺, 1), 260 (14), 245 (2), 214 (13), 91 (100). Anal calcd. for C₂₀H₃₄N₂O₄P: C, 60.44; H, 8.62; N, 7.05. Found: C, 60.22; H, 8.49; N, 6.85.

(Diethyl (((2,2,6,6-tetramethylpiperidin-4-yl)amino)(phenyl)methyl)phosphonate-1-yl)oxydanyl (13). 278 mg (35%), pink solid, mp: 81-83 °C, R_f: 0.31 (CHCl₃/Et₂O, 2/1). IR (ν) cm⁻¹: 3311, 2974, 1601. ³¹P NMR (CDCl₃ + (PhNH)₂) δ : 23.8; ¹H NMR (CDCl₃ + (PhNH)₂) δ : 1.00 (s, 3H, 1 × C(CH₃)), 1.04 (s, 3H, 1 × C(CH₃), 1.17 (m, 2H, 2 × CHHCHP), 1.20 (s, 3H, 1 × C(CH₃), 1.24 (s, 3H, 1 × C(CH₃),) 1.34 (t, 6H, CH₃CH₂, J_{HH} 7), 1.67 (d, 1H, CHHCPN, J_{HH} 12), 1.90 (d, 1H, CHHCPN, J_{HH} 12), 2.82 (1H, m, CH₂CHCH₂), 3.83-4.16 (m, 4H, OCH₂), 4.20 (d, 1H, CHP, J_{PH} 21), 7.23-7.43 (m, 3H, ArH), 2 aromatic protons overlap with (PhNH)₂ protons, NH band is not detected. ¹³C NMR (CDCl₃ + (PhNH)₂) δ : 16.3 (d, 1C, CH₂CH₃, J_{CP} 5), 16.5 (d, 1C, CH₂CH₃, J_{CP} 5), 19.9 (s, 2C, 2 × C(CH₃)₂), 20.1 (s, 2C, 2 × C(CH₃)₂), 32.0 (s, 1C, CH₂), 32.2 (s, 1C, CH₂), 45.6 (d, 1C, CH₂CHCH₂, J_{CP} 15.1), 46.2 (d, 1C, CHPNH, J_{CP} 112), 57.5 (s, 1C, C(CH₃)₂), 58.7 (s, 1C, C(CH₃)₂), 62.8 (d, 1C, OCH₂, J_{CP} 7), 63.1 (d, 1C, OCH₂, J_{CP} 7), 127.8 (s, 1C, ArC), 127.9 (s, 2C, ArC), 128.3 (s, 2C, ArC), 136.5 (d, 1C, ArC, J_{CP} 4). High-resolution MS (ESI): m/z [M]⁺ calc. for C₂₀H₃₅N₂O₄P⁺: 398.2334; found: 398.2328. Anal calcd. for C₂₀H₃₄N₂O₄P: C, 60.44; H, 8.62; N, 7.05. Found: C, 60.13; H, 8.57; N, 6.95.

(Diethyl ((((2,2,5,5-tetramethyl-2,5-dihydro-1*H*-pyrrol-3-yl)methyl)amino)(phenyl)methyl)phosphonate-1-yl)oxydanyl (15). 426 mg (54%), yellow oil, R_f : 0.30 (CHCl₃/Et₂O, 2/1). IR (ν) cm⁻¹: 3287, 2972, 2930, 1495. ³¹P NMR (CDCl₃ + (PhNH)₂) δ : 23.6; ¹H NMR (CDCl₃ + (PhNH)₂) δ : 1.21 (t, 6H, 2 × CH₃CH₂, J_{HH} 7), 1.24 (s, 3H, 1 × C(CH₃)), 1.28 (s, 3H, 1 × C(CH₃)) 1.36 (s, 6H, C(CH₃)₂), 2.10 (s, 1H, NH), 3.17 (dd, 2H, CH₂NH, ¹ J_{PH} 86, ² J_{HH} 14), 3.87-4.13 (m, 4H, OCH₂), 4.16 (d, 1H, CHP, J_{HH} 10), 5.57 (s, 1H, HC=C), 7.37-7.44 (m, 4H, ArH), 1 aromatic proton overlap with (PhNH)₂ protons. ¹³C NMR (CDCl₃ + (PhNH)₂) δ : 16.3 (d, 1C, CH₂CH₃, J_{CP} 5), 16.5 (d, 1C, CH₂CH₃, J_{CP} 5), 24.0 (s, 1C, C(CH₃)₂)), 24.1 (s, 1C, C(CH₃)₂), 25.3 (s, 1C, C(CH₃)₂), 25.4 (s, 1C, C(CH₃)₂), 44.5 (d, 1C, CH₂N, J_{CP} 17), 60.3 (d, 1C, CHP, J_{CP} 153), 62.8 (d, 1C, OCH₂, J_{CP} 7), 63.0 (d, 1C, OCH₂, J_{CP} 7), 71.5 (s, 1C, C(CH₃)₂), 71.6 (s, 1C, C(CH₃)₂), 123.1 (s, 1C, HC=C), 128.0 (s, 1C, ArC), 128.1 (s, 2C, ArC), 128.6 (s, 2C, ArC), 135.6 (d, 1C, ArC, J_{CP} 4), 142.4 (s, 1C, HC=C). MS (EI): m/z (%): 395 (M⁺, 13), 365 (1), 258 (55), 228 (33), 57 (100). Anal calcd. for C₂₀H₃₂N₂O₄P: C, 60.74; H, 8.16; N, 7.08. Found: C, 60.66; H, 8.12; N, 6.92

(Diethyl ((((2,2,5,5-tetramethyl-2,5-dihydro-1*H*-pyrrol-3-yl)methyl)amino)(2-iodophenyl)methyl)phosphonate-1-yl)oxydanyl (16). 427 mg (41%), yellow solid, mp: 93-95 °C, R_f: 0.34 (CHCl₃/MeOH, 59/1). IR (ν) cm⁻¹: 3319, 2980, 2926, 1583, 1562. ³¹P NMR (CDCl₃ + (PhNH)₂) δ : 23.2; ¹H NMR (CDCl₃ + (PhNH)₂) δ : 1.19 (t, 3H, CH₃CH₂, J_{HH} 7), 1.27 (s, 3H, 1 × C(CH₃)), 1.29 (s, 3H, 1 × C(CH₃)), 1.34 (s, 3H, C(CH₃)₂), 1.35 (s, 3H, C(CH₃)₂), 1.42

(t, 3H, CH_3CH_2 , J_{HH} 7), 2.09 (s, 1H, NH), 3.15 (dd, 2H, CH_2NH , ${}^1J_{PH}$ 75, ${}^2J_{HH}$ 15), 3.82-4.31 (m, 4H, OCH_2), 4.67 (d, 1H, CHP, J_{PH} 20), 5.58 (s, 1H, HC=C), 7.05 (m, 1H, ArH), 7.45 (t, 2H, ArH, J_{HH} 7), 7.69 (d, 1H, ArH, J_{HH} 8), 7.92 (d, 1H, ArH, J_{HH} 8). ${}^{13}C$ NMR ($CDCl_3$ +(PhNH)₂) δ : 16.3 (d, 1C, CH_2CH_3 , J_{CP} 5), 16.5 (d, 1C, CH_2CH_3 , J_{CP} 5), 24.1 (s, 1C, $C(CH_3)$), 24.4 (s, 1C, $C(CH_3)$), 25.5 (s, 1C, $C(CH_3)$), 25.7 (s, 1C, $C(CH_3)$), 44.3 (d, 1C, CH_2N , J_{CP} 17), 63.0 (d, 1C, CCH_2 , J_{CP} 7), 63.1 (d, 1C, CCH_2 , J_{CP} 7), 63.4 (d, 1C, CHP, J_{CP} 153), 68.3 (s, 1C, $C(CH_3)_2$), 70.8 (s, 1C, $C(CH_3)_2$), 102.1 (d, 1C, CCH_2), 128.6 (s, 1C, CCH_2), 129.5 (s, 1C, CCH_2), 129.6 (s, 1C, CCH_2), 129.7 (s, 1C, CCH_2), 138.9 (d, 1C, CCH_2), 139.7 (s, 1C, CCH_2), 142.2 (s, 1C, CCH_2). MS (EI): CCH_2 0: 521 (CCH_2 1), 491 (<1), 384 (18), 232 (35), 57 (100). Anal calcd. for CCH_2 1, 181.0204P: CCH_2 1, 5.99; N, 5.37. Found: CCH_2 1, 5.77; N, 5.23

(Diethyl ((2,2,5,5-tetramethyl-2,5-dihydro-1*H*-pyrrol-3-yl)((((2,2,5,5-tetramethyl-2,5-dihydro-1*H*-pyrrol-3-yl)methyl)amino)methyl)phosphonate)-1,1-diyl)dioxydanyl (18). 648 mg, (71%), red oil, R_f: 0.34 (CHCl₃/MeOH, 59/1). IR (ν) cm⁻¹: 3466, 2975, 2930, 1647. ³¹P NMR (CDCl₃ + (PhNH)₂) δ : 23.6; ¹H NMR (CDCl₃ + (PhNH)₂) δ : 1.35 (s, 12H, 2 × C(C*H*₃)₂), 1.37 (s, 9H, 1.5 × C(C*H*₃)₂), 1.41 (s, 3H, C(C*H*₃)), 1.43 (t, 6H, C*H*₃CH₂, J_{HH} 7), 3.36 (dd, 2H, ${}^{1}J_{PH}$ 105, ${}^{2}J_{HH}$ 15), 3.48 (d, 1H, J_{HH} 15), 4.22-4.31 (m, 4H, OC*H*₂), 5.68 (s, 1H, 4'-HC=C), 6.02 (d, 1H, 4-HC=C, J_{HP} 2.5), NH is signal is missing. ¹³C NMR (CDCl₃ + (PhNH)₂) δ : 16.6 (d, 2C, CH₂C*H*₃, J_{CP} 6), 24.7 (s, 2C, C(CH₃)₂)), 24.8 (s, 2C, C(CH₃)₂), 25.0 (s, 1C, C(CH₃)), 25.82 (s, 1C, C(CH₃)), 25.87 (s, 1C, C(CH₃)), 26.0 (s, 1C, C(CH₃)), 45.0 (d, 1C, 6'-CH₂N, J_{CP} 13), 52.9 (d, 1C, 6-CHP, J_{CP} 155), 62.7 (d, 1C, OCH₂, J_{CP} 7), 62.9 (d, 1C, OCH₂, J_{CP} 7), 67.9 (s, 2C, 2'-C(CH₃)₂) and 5'-C(CH₃)₂), 70.5 (s, 1C, 5-C(CH₃)₂), 71.1 (d, 1C, 2-C(CH₃)₂), J_{CP} 7), 128.9 (s, 1C, 4-HC=C), 134.5 (d, 1C, 3-HC=C, J_{CP} 7), 139.9 (s, 1C, 4'-HC=C), 143.1 (s, 1C, 3'-HC=C). See numbering in SM. MS (EI): m/z (%): 457 (M⁺, 8), 427 (2), 320 (30), 290 (81), 260 (59), 138 (100). Anal calcd. for C₂₂H₄₀N₃O₅P: C, 57.75; H, 8.81; N, 9.18. Found: C, 57.50; H, 8.56; N, 8.98.

(Diethyl (6,6,8,8-tetramethyl-3,4,5,6,7,8-hexahydro-2*H*-pyrrolo[3,4-f][1,4]thiazepin-5-yl)phosphonate-7yl)oxydanyl (7).

To a suspension of compound **1b** (494 mg, 2.0 mmol) and cysteamine hydrochloride (227 mg, 2.0 mmol) in acetonitrile (10 mL) DBU (638 mg, 4.2 mmol) was added in one portion, and the mixture was stirred overnight at 25 °C. The solvent was evaporated off, the residue was dissolved in EtOAc (20 mL), the organic phase washed with water (10 mL), separated, dried, filtered, and then T3P® (1.2 mL, 2.0 mmol, Aldrich, 50% solution in EtOAc) was added followed by addition of diethyl phosphite (258 μ L, 2.0 mmol). The reaction mixture was heated at reflux temperature for 8h. After cooling, the solution was washed with sat. aq. NaHCO₃ solution (10 mL), the organic phase, was separated, dried (MgSO₄), filtered, and evaporated. The residue was purified by flash column chromatography to give the title compound as a thick yellow oil of 138 mg (19%), R_f: 0.39 (CHCl₃/MeOH, 59/1). IR (ν) cm⁻¹: 3636, 2976, 2928, 1635. ³¹P NMR (CDCl₃ + (PhNH)₂) δ : 23.4; ¹H NMR (CDCl₃ + (PhNH)₂) δ : 1.30 (s, 3H, 1 × C(CH₃)), 1.32 (s, 3H, 1 × C(CH₃)) 1.37 (s, 6H, 1 × C(CH₃)₂), 1.40 (t, 6H, CH₃CH₂, J_{HH} 7),

2.75 (m, 1H, SCH*H*), 3.10 (m, 1H, SCH*H*), 3.29 (m, 1H, CH*H*NH), 3.74 (m, 1H, CH*H*NH), 4.01 (d, 1H, C*HP*, J_{HP} 26), 4.21-4.23 (q, 4H, OC*H*₂, J_{HH} 7), N*H* band is not detected. ¹³C NMR (CDCl₃ +(PhNH)₂) δ : 16.4 (d, 1C, CH₂C*H*₃, J_{CP} 5), 16.6 (d, 1C, CH₂C*H*₃, J_{CP} 5), 23.8 (s, 1C, C(*C*H₃)), 23.9 (s, 1C, C(*C*H₃)), 24.4 (s, 1C, C(*C*H₃)), 24.7 (s, 1C, C(*C*H₃)), 35.2 (d, 1C, *C*H₂S, J_{CP} 4), 48.7 (d, 1C, *C*H₂NH J_{CP} 5), 54.4 (d, 1C, *C*HP, J_{CP} 141), 62.1 (d, 1C, O*C*H₂, J_{CP} 7), 70.96 (s, 1C, *C*(CH₃)₂), 70.98 (s, 1C, *C*(CH₃)₂), 138.5 (s, 1C, S*C*=C), 141.0 (d, 1C, SC=*C*, J_{CP} 7.5). MS (EI): m/z (%): 363 (M⁺, 4), 333 (<1), 226 (34), 21 (100). Anal calcd. for C₁₅H₂₈N₂O₄PS: C, 49.57; H, 7.77; N, 7.71; S, 8.82. Found: C, 49.47; H, 7.65; N, 7.49; S, 8.74.

(Diethyl (4-amino-2,2,6,6-tetramethylpiperidin-4-yl)phosphonate-1-yl)oxydanyl (10).

A mixture of TEMPONE **8** (1.7 g, 10.0 mmol), hexamethyldisilazane (1.67 mL, 8.0 mmol), diethyl phosphite (1.03 mL, 8.0 mmol), and ytterbium triflate (100 mg, 0.16 mmol) was stirred in an oil bath at 80 °C for 2h. The reaction mixture was cooled, and 1.0 M aq. HCl (30 mL) was added and extracted with EtOAc (2 × 10 mL), and the organic phase was discarded. The aqueous phase was transferred to a 500 mL beaker and basified by adding solid K_2CO_3 to pH=9 (**caution: vigorous foaming!**), and the product was extracted with EtOAc (2 × 20 mL). The combined organic phase was dried over MgSO₄, filtered, and evaporated, and the residue was purified by flash column chromatography to afford a pink solid of 1.59 g (65%), mp: 80-82 °C, R_f : 0.41 (CHCl₃/MeOH, 59/1). IR (ν) cm⁻¹: 3514, 3423, 3370, 2976, 2929. ³¹P NMR (CDCl₃ + (PhNH)₂) δ: 28.8; ¹H NMR (CDCl₃ + (PhNH)₂) δ: 1.27 (s, 6H, 1 × C(CH₃)₂), 1.39 (t, 6H, CH₂CH₃, J_{HH} 7), 1.56 (s, 6H, 1 × C(CH₃)₂), 1.73 (d, 2H, CH₂, J_{HH} 13), 2.04 (m, 2H, CH₂), 4.15-4.21 (m, 4H, OCH₂), NH₂ band is not detected. ¹³C NMR (CDCl₃ + (PhNH)₂) δ: 16.6 (d, 2C, CH₂CH₃, J_{CP} 6), 21.6 (s, 4C, 2 × C(CH₃)₂), 33.4 (s, 1C, CH₂), 42.4 52.3 (d, 1C, H₂NCP, J_{CP} 142), 58.0 (s, 1C, C(CH₃)₂), 58.2 (s, 1C, C(CH₃)₂), 62.4 (d, 2C, 2 × OCH₂, J_{CP} =8). MS (EI): m/z (%): 307 (M⁺, 7), 275 (3), 221 (13), 170 (35), 138 (33), 97 (100). Anal calcd. for C₁₃H₂₈N₂O₄: C, 50.80; H, 9.18; N, 9.11. Found: C, 50.69; H, 8.98; N, 9.01.

Acknowledgments

The project was supported by the National Research, Development, and Innovation Fund of Hungary NKFI FK 124331 and NKFI K 137793. The authors thank the assistance of Mária Balog, Noémi Lazsányi, Kristina Kish, and Éva Lamperth for assistance and Viola Csokona for elemental analysis.

Supplementary Material

¹H and ¹³C NMR spectra and EPR of the biradical are provided in the supplementary material associated with this manuscript.

References

- Miao, Q.; Nitsche, C.; Orton, H.; Overhand, M.; Otting, G.; Ubbink, M. Chem. Rev. 2022, 122, 9571-9642. https://doi.org/10.1021/acs.chemrev.1c00708
- 2. Likhtenshtein, G. I. Nitroxides; Springer: Cham, 2020. https://doi:10.1007/978-3-030-34822-9

Page 194 [©]AUTHOR(S)

3. Ouari, O.; Gigmes, D. (Eds.) Nitroxides: Synthesis, Properties, and Applications; The Royal Society of Chemistry: Cambridge, UK, 2021.

https://doi.org/10.1039/9781788019651

- Verdhi, K. L.; Fridman, N.; Szpilman, A. M. Org. Lett. 2022, 24, 5078-5083. https://doi.org/10.1021/acs.orglett.2c01860
- 5. Müller, T. J. J. Ed. Multicomponent reactions Vols. 1-2; Thieme: Stuttgart, 2014. DOI: 10.1055/b-003-125816
- 6. Hankovszky, H. O.; Sár, P. C.; Hideg, K.; Jerkovich, Gy. *Synthesis* **1991**, 91-97. https://doi.org/10.1055/s-1991-26389
- 7. Sár, P. C.; Hankovszky, H. O.; Jerkovich, Gy.; Pallagi I.; Hideg, K. *Acta Chim. Hung.- Models in Chemistry* **1994**, *131*, 363-376.
- 8. Zakrewski, J. *Beilstein J. Org. Chem.* **2012**, *8*, 1515-1522. https://doi.org/10.3762/bjoc.8.171
- 9. Lorenzi, M.; Puppo, C.; Lebrun, R.; Lignon, S.; Rouband, V.; Martinho, M.; Mileo, E.; Tordo, P.; Marque, S. R. A.; Gontero, B.; Guigliarelly, B.; Belle, V. *Angew. Cherm. Int. Ed.* **2011**, *50*, 9108-9111. https://doi.org/10.1002/anie.201102539
- 10. Sultani, H. N.; Haeri, h. H.; Hinderberger, D.; Westermann, B. *Org. Biomol. Chem.* **2016**, 14, 11336-11341. https://doi.org/10.1039/c6ob02194h
- 11. Isbera, M.; Bognár, B.; Jekő, J.; Sár, C.; Hideg, K.; Kálai, T.; *Molecules* **2020**, *25*, 2430. https://doi.org/10.3390/molecules25102430
- 12. Isbera, M.; Bognár, B.; Gallyas, F.; Bényei, A.; Jekő, J.; Kálai, T. *Molecules* **2021**, *26*, 4366. https://doi.org/10.3390/molecules26144366
- 13. Zefirov, N. S.; Matveeva, E. D. *Arkivoc* **2008**, *(i)* 1-17. https://doi.org/10.3998/ark.5550190.0009.101
- 14. Varga, P. R.; Keglevich, Gy. *Molecules*, **2021**, *26*, 2511. https://doi.org/10.3390/molecules26092511
- 15. Kabachnik, M.I.; Medved, T.Y. Dokl. Akad. Nauk SSSR 1952, 83, 689–692.
- 16. Fields, E.K. *J. Am. Chem. Soc.* **1952**, *74*, 1528–1531. https://doi.org/10.1021/ja01126a054
- 17. Rozantsev, E. G. Free Nitroxide Radicals; Plenum Press: New York, 1970.
- 18. Mercier, A.; Berchadsky, Y.; Pietri, S.; Tordo, P. *Tetrahedron Lett.* **1991**, *32*, 2125-2128. https://doi.org/10.1016/S0040-4039(00)71253-6
- 19. Zhang, B.; Hu, X-T; Zhou, K-M.; Yang, Y-S.; Zhu, H-L. *Bioorg. Chem.* **2020**, *102*, 104096. https://doi.org/10.1016/j.bioorg.2020.104390
- 20. Abdel-Megeed, M. F.; Badr, E. B.; Azaam, M. M.; El-Hiti, G. A. *Arch. Pharm. Chem. Life Sci.* **2012**, *345*, 784-789.

https://doi.org/10.1002/ardp.201200109

- Ouahrouch, A.; Taourite, M.; Schols, D.; Snoeck, R.; Andrei, G.; Engels, J. W; Lazrek, H. B. Arch. Pharm. Chem. Life Sci. 2016, 349, 30-41. https://doi.org/10.1002/ardp.201500292
- 22. López-Francés, A.; del Corte, X.; de Marigorta, E. M.; Palacios, F.; Vicario, J. *Molecules* **2021**, *26*, 1654. https://doi.org/10.3390/molecules26061654
- 23. Hideg, K.; Hankovszky, H. O.; Lex, L.; Kulcsár, Gy. *Synthesis* **1980**, 911-914. https://doi.org/10.1055/s-1980-29268

- 24. Kálai, T.; Balog, M.; Jekő, J.; Hideg, K. *Synthesis* **1998**, 1476-1482. https://doi.org/10.1055/s-1998-2178
- 25. Csekő, J.; Hankovszky, H. O.; Hideg, K. *Can. J. Chem.* **1985**, *63*, 940-943. https://doi.org/10.1139/v85-156
- 26. Jafari, A. A.; Mahsid, N.; Abdollahi-Alibeik, M. *Heteroatom Chem.* **2010**, *21*, 397-403. https://doi.org/10.1002/hc.20635
- 27. Wu, J.; Sun, W.; Xia, H-G.; Sun, X. *Org. Biomol. Chem.* **2006**, *4*, 1663-1666. https://doi.org/10.1039/B602536F
- 28. Matveeva, E. D.; Podrugina, T. A.; Prisyajnoy, M. V.; Zefirov, N. S. Rus. Chem. Bull. Int. Ed. **2006**, 55, 1209-1214.

https://doi.org/10.1007/s11172-006-0400-2

- 29. Milen, M.; Ábrányi-Balogh, P.; Dancsó, A.; Frigyes, D.; Pongó, L.; Keglevich, Gy. *Tetrahedron Lett.* **2013**, *54*, 5430-5433.
 - https://doi.org/10.1016/j.tetlet.2013.07.145
- 30. Sobhani, S.; Tashrifi, Z. *Heteroatom Chem.* **2009**, *20*, 109-115. https://doi.org/10.1002/hc.20517.
- 31. Hankovszky, H. O.; Hideg, K.; Lex, L. *Synthesis* **1981**, 147-149. https://doi.org/10.1055/s-1981-29370
- 32. Matsuki, Y.; Maly, T.; Ouari, O.; Karoui, H.; LeMoigne, H.; Rizzato, E.; Lyubenova, S.; Herzfeld, J.; Prisner, T.; Tordo, P.; Griffin, R. G. *Angew. Chem. Int. Ed.* **2009**, *48*, 4996-5000. https://doi.org/10.1002/anie.200805940.

This paper is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

Page 196 [©]AUTHOR(S)