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Abstract 

Azabicyclo[1.1.0]butanes (ABBs) are important synthetic tools for the preparation of functionalized azetidines. 

The transformations of azabicyclo[1.1.0]butanes generally involve the C3-N bond cleavage, which allows for the 

functionalization of the azacycles in the 1,3 positions. Recently, important advances in the field have led to the 

preparation of novel strained compounds from ABBs. Diverse spirocyclic and heterocyclic-substituted azetidines 

could be prepared, also harnessing enabling technologies. This review aims to discuss the most recent reports 

regarding the synthesis and transformations of ABBs as versatile synthons for the construction of 

pharmaceutically relevant heterocycles. 
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1. Introduction  
 

Strained nitrogen-containing heterocycles are important scaffolds for the development of new small-molecule 

pharmaceuticals.1 In particular, the use of azetidines in medicinal chemistry has grown over the recent years 

because of their improved pharmacokinetic properties compared with their cyclic homologs. 2,3 The presence of 

the azetidine ring in biologically active molecules confers greater bioavailability and metabolic stability than non 

strained rings and can improve clinical success due to its 3D character. 4 These advances have led to the 

development of several marketed drugs that contain an azetidine ring. In parallel with this innovation, organic 

chemists devoted their efforts to the development of efficient methods for the construction and 

functionalization of the azetidine ring.5-10 The strategies that allow for the preparation of azetidines generally 

involve cycloaddition, cyclization, ring-expansion, and ring-contraction transformations.11 Aside from these 

general methods, the exploitation of azabycliclo[1.1.0]butanes (ABBs) represents an innovative approach and 

recently enabled the access to an unexplored chemical space. The reactivity of ABBs mostly relies on strain-

release transformations involving the cleavage of the C3-N bond and the consequent functionalization on 1,3 

positions. Considering the growing interest in the manipulation of azabycliclo[1.1.0]butanes for the synthesis of 

functionalized azetidines, we recently reviewed this chemistry offering a comprehensive picture of the methods 

published until 2020.12 However, during the past two years, several relevant methods for the transformation of 

azabycliclo[1.1.0]butanes have been reported. This review covers the last recent advances in the synthesis of 

novel spirocyclic and bicyclic entities of ABBs, also exploiting the use of enabling technologies. 

 

 

2. Telescoped Flow Synthesis and Trapping of (1-Azabicyclo[1.1.0]butan-3-yl)lithium 

 

In 2021, Luisi, Kappe et al. reported a continuous and telescoped flow approach for the generation, lithiation, 

and functionalization of azabicyclo[1.1.0]butane from 2,3-dibromopropylamine.13 It is worth mentioning that 

the exploitation of the microfluidic technology required milder conditions compared with those needed in 

traditional batch reactors. The optimized flow method allows for the preparation of azabiciclo[1.1.0]butane and 

its lithiation at C3 within a few minutes at 0°C and employing 3 equivalents of  

s-BuLi, with better yields compared to the batch process (Scheme 1). ABB-Li was subsequently trapped in a 

multistep one-flow fashion with a selection of aldehydes and ketones furnishing unprecedented  

C3-functionalized-1-azabicyclobutanes 2.  
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Scheme 1. Continuous flow preparation of 3-substituted ABBs. a) The resulting intermediate boronate 

complex was treated with AcOH, then with Boc2O and Et3N.  

 

The transformation was found to be tolerant to several functionalities installed on the electrophiles 

including halogens (Cl, Br, I), a trifluoromethyl, benzyloxy, and methoxy group, and tertiary amines. It is worth 

noting that, when alkyl aryl ketones were employed, the transformation afforded smoothly the desired product 

and no enolization was observed. Moreover, the use of aryl aldehydes and ketones bearing a substituent in the 

ortho position was well tolerated, and the addition of ABB-Li to chiral optically active carvone led to the 

preparation of the corresponding product with a remarkable stereoselectivity (dr >95:5). As a further 

application, an imine and boronic esters could be efficiently trapped, proving that the flow method is not limited 

to the use of ketones and aldehydes as the electrophilic partners. In detail, when boronic esters were employed, 

the resulting boronate complexes were directly treated with AcOH and subsequently with Boc2O and 

triethylamine, promoting the 1,2-metalate rearrangement and furnishing the corresponding functionalized 

azetidines. An additional advantage of the use of microfluidic reactors is that the reaction can be easily scaled 

up by an adjusted set-up and, for a model compound, the yield remained constant for 4 h in continuous flow 

mode, ensuring the scalability of the process.  
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In 2022, Luisi and coworkers further expanded the method and opened access to unexplored structural 

motifs bearing two different heterocycles with C2-C3 connectivity (Scheme 2).14 By utilizing a similar continuous 

flow approach, various electrophiles such as α-, β-, and γ-haloalkylketones could be involved in the reaction. 

Interestingly, the use of α-haloketones resulted in the isolation of epoxides 3 derived from an intramolecular 

displacement of the chlorine atom by the alkoxy group, which in  turn is generated by the addition of the ABB-

Li to the electrophile. The reaction proceeded stereoselectively when α-substituted-α-haloalkylketones were 

employed, affording the products in good yields and with excellent diastereomeric ratios (dr > 95:5). In these 

novel species, two different heterocycles, epoxide, and azabicyclo[1.1.0]butane, are linked through a C3(Nhet)–

C2(Ohet) connectivity.  

 

 
 

Scheme 2. Continuous flow synthesis of C3-oxacyclic ABBs. 
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The use of β- and γ-haloalkylketones furnished isolable β- and γ-halohydrins 4, which could be quantitively 

converted into the corresponding oxetanes and tetrahydrofuran derivatives 5 by treatment with tBuOK. In 

general, the reaction is tolerant to the presence of diverse functionalities (CN, CF3, F, Br, OMe) installed on the 

electrophiles. Moreover, chemoselective strain-release transformations of the products were explored. The 

treatment of these compounds with lithium halides in the presence of an electrophile allowed the selective 

cleavage of the C3-N bond of the ABB system and furnished the corresponding saturated azetidines 6 in good 

yields (Scheme 3, A). Similarly, the C3-N bond cleavage could be achieved with thiols upon copper catalysis 

leading to 3-thiolated azetidines 7 bearing the saturated oxygen heterocycle with C3-C2 connectivity (Scheme 

3, B). The addition of BuMgCl proceeded differently and the nucleophile was added to the oxygenated ring, 

avoiding the transformation of the ABB system, furnishing azabicyclo[1.1.0]butyl carbinol 8 in 55% yield (Scheme 

3, C). In addition, the treatment of ABB-Li with an α-chloroimine led to the preparation of an unprecedented 3-

aziridinyl azabicyclo[1.1.0]butane 9, while the addition of a nitrone and the subsequent acidic treatment in the 

presence of Boc2O promoted the strain release, allowing for the formation of the spirocyclic azetidine-

oxazetidine 10 in excellent yield (Scheme 3, D).  

 

 
 

Scheme 3. Chemoselective transformations of C3-heterocyclic-ABB, and synthesis of 3-aziridinyl-ABB and 1-

oxa-2,6-diazaspiro[3.3]heptane. 
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3. Strain-Release Spirocyclization of 1-Azabicyclo[1.1.0]butanes 

 

In 2021, Aggarwal and co-workers developed a pioneering work investigating various strain-release 

spiricyclization reactions of azabicyclo[1.1.0]butanes. Initially, the authors reported the preparation of 

semipinacol and spiroepoxy azetidines by strain-release of azabicyclo[1.1.0]butyl carbinols 11 (Scheme 4).15 At 

first, the simple treatment of azabicyclo[1.1.0]butyl carbinols with trifluoroacetic or triflic anhydride promoted 

the semipinacol rearrangement which led to keto 1,3,3-substituted azetidines 12. The protocol utilizing triflic 

anhydride (Method B) requires the use of 2,6-lutidine for the effective migration of the alkylic or arylic group. 

Outstandingly, the reaction scope is wide, and an interesting class of spirocyclic azetidines bearing a 5- to 8- 

membered (hetero)cycle could be easily prepared from the corresponding ABB-carbinols 11 (Scheme 4).  

 

 
 

Scheme 4. Strain-release semipinacolic rearrangement of azabicyclo[1.1.0]butyl carbinols. 

 

In this regard, the reaction yield and selectivity were found to be strongly influenced by the nature of the 

electrophile used for the nitrogen functionalization. In most of the cases, the treatment with triflic anhydride 

resulted in better yields. It is worth noting that the migration of aryl groups is favored when compared to alkyl 

groups, and the reaction generally proceeded with excellent selectivity, in particular when trifluoroacetic 

anhydride was used. In addition, the observed relative migratory aptitude in the semipinacol rearrangement 

was aryl > alkenyl > more substituted alkyl > less substituted alkyl, hydrogen.  However, the reaction with triflic 
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anhydride is fast, and a loss of selectivity was observed in some cases. Alternatively, the reaction of 

azabicyclo[1.1.0]cyclobutyl carbinols with an electrophile and sodium iodide, and the subsequent addition of 

potassium carbonate, furnished spiro-epoxy azetidines 13 in good to excellent yields (Scheme 5). The reaction 

proceeds via the generation of an α-iodohydrin that undergoes a base-promoted intramolecular cyclization. It 

is worth mentioning that the cyclization rate drops severely with less substituted carbinols.  

 

 
 

Scheme 5. Strain-release spirocyclization of azabicyclo[1.1.0]butyl carbinols. 

 

In 2021, Aggarwal et al. also reported the spirocyclization of azabyciclo[1.1.0]butyl ketones.16 Freshly 

prepared ABB-Li was treated with esters or Weinreb amides bearing a silyl protected hydroxy group in α-, β-, γ,- 

or δ- position, furnishing stable azabicyclo[1.1.0]butyl ketones 14 (Scheme 6). Interestingly, these compounds 

could be engaged in an intramolecular cyclization/desilylation reaction upon treatment with an electrophile. 

While Lewis acids such as boron trifluoride failed in promoting the cyclization, the use of triflic and 

trifluoroacetic anhydrides successfully furnished the spirocyclic products in good yields.  

 

 
 

Scheme 6. Synthesis of azabicyclo[1.1.0]butyl ketones. 
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The method allowed for the preparation of a selection of oxa-azaspiro[3.3]heptane, oxa-

azaspiro[3.4]octanes, and larger ring analogues 15 (Scheme 7). The synthesis of a selection of aromatic fused 

spirocyclic compounds was likewise accomplished and a gram scale-up was achieved for a selected oxa-

azaspiro[3.3]heptane without any substantial loss of yield. A reaction mechanism  was proposed based on the 

isolation of different by-products. The desired products could arise from the trifluoroacetate-mediated 

desilylation of a transient spirocyclic oxonium ion III (Scheme 7). Alternatively, the generated cationic ABB I can 

be directly attacked by trifluoroacetate leading to subproduct II. In addition, the isomerization of the oxonium 

ion to the carbocation V and the subsequent attack of trifluoroacetate generated the subproduct VI (Scheme 

7).  

 

 
 

Scheme 7. Strain-release spirocyclization of azabicyclo[1.1.0]butyl ketones. 
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However, spirocyclic azetidines 15 could be obtained with good selectivity upon the optimized conditions. 

The authors additionally described the nitrogen deprotection from the trifluoroacetyl group that was achieved 

upon treatment with a large excess of potassium carbonate (8.0 equiv) in MeOH:H2O and at room temperature 

(Scheme 8). The resulting NH-spiroazetidines 16 were directly reacted with Boc2O en route to Boc-protected 

spirocyclic azetidines 17 in good yields (Scheme 8). 

 

 
 

Scheme 8. Hydrolysis of trifluoroacetyl-protected azetidine spirocycles and Boc functionalization. 

 

Subsequently, in 2021, the Aggarwal’s group reported a novel strain-release-driven Friedel-Crafts 

spirocyclization of ABBs.17 In this approach, a library of azabicyclo[1.1.0]butyl carbinols was synthesized from 

ABB-Li by treatment with a selection of β-aryl aldehydes (Scheme 9).  

 

 
 

Scheme 9. Strain-release-driven Friedel-Crafts spirocyclization of ABBs. 
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The transformation of ABB-carbinols with sodium hydride and an alkyl or silyl halide furnished the 

corresponding ethers 18 that were used for the exploitation of the strain-release transformation. In the 

optimized conditions, the Friedel-Crafts-driven spirocyclization of 18 proceeded smoothly with HBF4 followed 

by the addition of a base and Boc2O. According to the proposed mechanism, tetrafluoroboric acid activates the 

C3-N bond by protonation of the nitrogen, and the aryl fragment can add to the C3 of ABB  system according to 

a Friedel-Crafts reaction (Scheme 9). The rapid proton shift and intramolecular addition of the nitrogen to the 

cationic ring lead to the formation of a bicyclic intermediate, that affords the final product after treatment with 

Boc2O and the final base-promoted rearomatization. A range of substituted  

β-(hetero)aryl aldehydes could be efficiently transformed en route to spirocyclic compounds 19 (Scheme 9). 

Moreover, the authors envisioned that they could harness the use of other electrophiles aside from the Boc 

anhydride for the functionalization of the nitrogen atom in the second step of the transformation (Scheme 10, 

A). Interestingly, a selection of substituents such as strongly deactivated aryls, a sulfonyl, and an acyl group 

could decorate the azetidine nitrogen atom affording the corresponding products 21.  

 

 
 

Scheme 10. Further Friedel-Crafts spirocyclization of azabicyclo[1.1.0]butyl carbinol ethers. 
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Finally, the authors could interrupt the reaction before the rearomatization step by exploiting the addition 

of PTAD (4-Phenyl-1,2,4-triazole-3,5-dione) as a suitable dienophile for the Diels-Alder transformation of the 

intermediate 22 (Scheme 10, B). It is worth noting that the corresponding products 23 were obtained as a single 

diastereoisomer. The stereoselectivity has been explained considering the existence of a preferred transition 

state as shown in Scheme 10, B. 

 

 

4. Synthesis of 1,3-Bisarylazetidines from ABBs 
 

In 2022, a strain-release arylation approach was exploited by Didier and coworkers for the efficient preparation 

of 1,3-bisarylated azetidines, which are scarcely explored motifs in the literature.18 At first, the C3 

functionalization of ABB through nucleophilic ring-opening with aryl Grignard reagents was examined. In 

comparison with previous reports, the ABB system was generated by using the less nucleophilic n-BuLi as the 

lithiation agent instead of PhLi to suppress the by-product 25 derived from the addition of the organolithium 

reagent to the ABB system. Furthermore, toluene was selected as the solvent to precipitate LiBr, generated after 

the Li/Br exchange reaction, which was responsible for the formation of the by-product 26. Adopting these 

modifications, a series of ex situ generated aryl Grignard reagents were found to be suitable for the strain-

release producing a series of 3-arylated azetidines 24 (Scheme 11, A).  

 

 
 

Scheme 11. Ring opening of ABB with aryl Grignard reagents and arylation through nucleophilic aromatic 

substitution (SNAr). 
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Subsequently, the N-arylation of obtained azetidines was studied. In particular, the authors demonstrated 

how the N-azetidinylmagnesium intermediate XIII could undergo a nucleophilic aromatic substitution (SNAr) 

using 2-fluoropyridines in the presence of triethylamine (Scheme 11, B) to produce the desired 1,3-bisarylated 

azetidines 27. Although this approach was proved to be efficient, it was limited to the use of fluorinated 

pyridines. Hence, aiming for a more a general strategy to prepare 1,3-bisarylated azetidines, the 

functionalization of the nitrogen through a Buchwald-Hartwig coupling was investigated. According to the 

optimized reaction conditions, free 3-arylazetidines were successfully coupled with various aryl and heteroaryl 

bromides using xPhosPdG3/Brettphos ([(2-Di-cyclohexylphosphino-3,6-dimethoxy-2′,4′,6′- triisopropyl-1,1′-

biphenyl)-2-(2′-amino-1,1′ -biphenyl)]palladium(II) methanesulfonate) as the catalytic system in the presence of 

t-BuOK as the base (Scheme 12, A).  

 

 
 

Scheme 12. Preparation of 1,3-bisarylated azetidines through Buchwald-Hartwig coupling. 
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This approach enabled the high-yielding preparation of a series of 1,3-bisarylated azetidines 28, among 

which the azetidine analogs of adapalene and tazarotene are particularly interesting. Furthermore, to 

circumvent the preparation and purification of free 3-arylazetidines, a convenient one-pot procedure involving 

the strain-release and the Buchwald-Hartwig coupling was developed. Hence, N-azetidinylmagnesium 

intermediates, generated through the nucleophilic addition of aryl Grignard reagents to the in-situ generated 

ABB, were subjected to Pd-catalyzed C-N coupling with aryl bromides adopting the previously described reaction 

conditions, to produce the bis-functionalized azetidines 29 (Scheme 12, B).  

 

 

5. Conclusions 
 

1-Azabicyclo[1.1.0]butanes are useful precursors of functionalized azetidines. Since the late 1960s, several 

methods allowing for the functionalization at the  1,3 positions, through the cleavage of the C3-N bond, have 

been reported. However, during the past two years, some novel and interesting transformations of ABBs have 

been disclosed, accessing an unexplored chemical space. Azabicyclobutanes bearing a saturated heterocycle 

with C3(ABB)-C2(het) connectivity could be easily prepared and further manipulated to furnish diversely 

functionalized azetidines. In addition, a library of spirocyclic azetidines could be prepared through strain-release 

spirocyclization of azabicyclo[1.1.0]butyl carbinols and ketones, and the easy preparation of 1,3-diaryl azetidines 

from azabicyclo[1.1.0]butane were achieved. Considering the growing interest in the exploitation of ABBs as 

precursors of pharmaceutically relevant azetidines, further advances are expected to come soon.  
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