Bis(trifluoroacetoxy)iodo benzene (PIFA)-promoted transamidation of carboxamides and carboxylic acids with amines

Omkar S. Kamble, Rana Chatterjee, and Rambabu Dandela*

Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
Email: r.dandela@iocb.ictmumbai.edu.in

Received 04-21-2022 Accepted Manuscript 06-23-2022 Published on line 07-02-2022

Abstract

A simple and efficient method has been developed for the synthesis of amides promoted by PIFA [(bis(trifluoroacetoxy)iodo)benzene]. In this method, PIFA [(bis(trifluoroacetoxy)iodo)benzene] has been used as a useful promoter for the transamidation of dimethylformamide (DMF) with the amines. Besides, this hypervalent iodine smoothly promoted the N-formylation of various aromatic amines with formic acid. Notably, the small quantity of PIFA is found to be efficient for both strategies and large-scale synthesis can also be achieved. The present protocol involves a metal and solvent-free, mild, eco-friendly condition with a high yield of the amide products and moreover, the reactions are not air or moisture sensitive.

Keywords: Amide synthesis, PIFA [(bis(trifluoroacetoxy)iodo)benzene], carboxamides, carboxylic acids, metal-free
Introduction

In biological and pharmaceutical relevant compounds, the amide analogues are considered as an important structural unit and most the natural products and pharmaceutical compounds are associated with amide functionality.\(^1\) It is noteworthy that nearly 25% of pharmaceutical substances contain an amide group.\(^2\) Several natural products like penicillin-G, capsaicin, nacetyl, piperine, anthranilic acid, and taxol and clinical drugs such as paracetamol, lacosamide, formoterol, meptivacone, lidocaine, articaine, amoxicillin, acetazolamide, valsartan, atovastatin, protirelin, captopril, enalapril, chloramphenicol, methyprylon, benzipram, zolpidem and many more contain the eminent amide functional unit (Figure 1).\(^3\)\(^-\)\(^4\) In particular, N-formyl amides are commonly applied as a useful synthetic intermediate to synthesize many important compounds such as amines,\(^5\) N-methyl amines,\(^6\) isonitriles,\(^7\) thioamides,\(^8\) isoselenocyanates.\(^9\) Furthermore, in organic chemistry, the amides have a vast application in form of dyes, polymers, and agrochemicals substances. Significantly, the amides are known as potential functionalities of peptides and proteins and N-formyl deprotection can be accomplished without touching the peptide bond.\(^10\)\(^-\)\(^11\) Eventually, the fatty acid amides can show anti-inflammatory, antimicrobial, antitubercular, and antiproliferative activities.\(^3\)

![Figure 1. The representative drug molecules containing amide unit.](image)

Fundamentally, the amides have immensely surrounded many chemical strategies that have enriched the synthetic organic chemistry zone. Due to such valuable contribution of amide compound, many strategic methods have been developed for years. In this regard, some common effective solvents like dimethylformamide (DMF) have exhibited reactivity in the case of N-formylation reaction with various amines. In the reported literature, the transamidation of amines has been completed using DMF as carbonyl sources using various metal catalysts such as iron, palladium, nickel, cerium, manganese,\(^12\) NH₄I,\(^13\) sulfated polyborate,\(^14\) hydroxylamine hydrochloride (NH₂OH.Cl),\(^15\) H₂SO₄–SiO₂,\(^16\) K₂S₂O₈,\(^17\) graphene oxide (GO),\(^18\) boric acid,\(^19\) ionic liquids.\(^20\) On the other hand, several carboxylic acids and their derivatives like acid chloride or anhydrates have taken part in N-formylation process.\(^21\)\(^-\)\(^25\) Different types of formylating reagents have been brought in for the amidation process by employing various catalytic systems such as Brønsted acids, Lewis acids, nano-oxides and
many others. However, the previous methods still have some strategic deficiencies in terms of the condition and reagents used.

In recent advanced chemistry, iodine-containing compounds have attracted considerable attention in synthetic organic chemistry. Especially, hypervalent iodine has been raised as a useful and efficient alternative reagent for many important organic transformations. Remarkably, these novel substances show promising activity in oxidation or catalytic reactions. However, PIFA has been considered to be an active and elegant reagent to promote several important organic reactions such as amination, sulfonylation, oxidative coupling, amidation, carboxylation, ring-rearrangement, cascade reaction, alkylation, and many others. Particularly, hypervalent iodine (III) has been involved in the direct C-N bond formation and metal-free functionalization. For the last five years, we have immensely engaged in the development of green and sustainable methodologies. In this account, we have utilized the catalytic activity of PIFA for the facile and collective transamidation of dimethylformamide, and formic acid.

\[
\text{Scheme 1. Transamidation of carboxamides and carboxylic acids.}
\]

Results and Discussion

At the initial point, at 100 °C we have conducted the transamidation reaction of aniline, 1a with 2 ml of formamide, 2a in the presence of a useful hypervalent iodine reagent phenyliodine(III) diacetate (PIDA) (20 mol%) and as a result of 75% of the N-phenylformamide, 3a was produced (Table 1, entry 1). Interestingly, in the next observation, the reaction was carried out with (bis(trifluoroacetoxy)iodo)benzene (PIFA) which provided a better yield of the desired product (82%) (Table 1, entry 2). After that, the reactions were thoroughly investigated with varying amounts of the catalyst. The use of 50 mol% of the catalyst did not improve much to form the targeted product, 3a (Table 1, entry 3). On the other hand, when the quantity of the PIFA was decreased to 10 mol% and 5 mol% there was a certain decline in the product formation (Table 1, entry 4-5). Certainly, bis(tert-butylcarbonyloxy)iodobenzene (BTBI) was not found to be a suitable hypervalent iodine catalyst for this purpose (Table 1, entry 6). Next, the reaction was checked taking 1 equiv. of PIFA and surprisingly, we got 86% of N-phenylformamide (Table 1, entry 7). Thereafter, the heating process at 140 °C did not show a considerable change in the yield while a less amount of product was generated at the lower temperature, 50 °C (Table 1, entry 8 & 9). Next, we also investigated the addition of solvent to the reaction. In this regard, the presence of DMSO was not effective for this reaction (Table 1, entry 10). Interestingly, the solvent mixture with an equal ratio of DMF and other solvents (1:1) gave an unsatisfactory yield. In addition, the other solvent medium pairing DMF with DMSO, toluene and acetonitrile were found inappropriate to get a better result (Table 1, entry 11-13). Eventually, the product was formed with 66% of yield by the use of ½ ml of DMF (Table 1, entry 14). Moreover, we examined the reaction for a prolonged time of 12 hours and the formation of the desired product was not changed (Table 1, entry 15). So, the optimized condition of the present reaction was 1 equiv. of PIFA and 2 ml of DMF upon treatment with anile at 100 °C temperature to produce the
N-phenylformamide with the best yield. The reaction was also investigated in the absence of catalyst and under nitrogen atmosphere, but both conditions were not suitable (Table 1, entry 16 & 17).

Table 1. Optimization of reaction conditions for N-formylation of aniline

<table>
<thead>
<tr>
<th>Entry</th>
<th>Promoter</th>
<th>Solvents</th>
<th>Temp. (°C)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PIDA (20 mol%)</td>
<td>DMF</td>
<td>100</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>PIFA (20 mol%)</td>
<td>DMF</td>
<td>100</td>
<td>82</td>
</tr>
<tr>
<td>3</td>
<td>PIFA (50 mol%)</td>
<td>DMF</td>
<td>100</td>
<td>83</td>
</tr>
<tr>
<td>4</td>
<td>PIFA (10 mol%)</td>
<td>DMF</td>
<td>100</td>
<td>56</td>
</tr>
<tr>
<td>5</td>
<td>PIFA (5 mol%)</td>
<td>DMF</td>
<td>100</td>
<td>33</td>
</tr>
<tr>
<td>6</td>
<td>BTBI (20 mol%)</td>
<td>DMF</td>
<td>100</td>
<td>47</td>
</tr>
<tr>
<td>7</td>
<td>PIFA (1 equiv.)</td>
<td>DMF</td>
<td>100</td>
<td>86</td>
</tr>
<tr>
<td>8</td>
<td>PIFA (1 equiv.)</td>
<td>DMF</td>
<td>140</td>
<td>84</td>
</tr>
<tr>
<td>9</td>
<td>PIFA (1 equiv.)</td>
<td>DMF</td>
<td>50</td>
<td>62</td>
</tr>
<tr>
<td>10</td>
<td>PIFA (1 equiv.)</td>
<td>DMSO</td>
<td>100</td>
<td>55</td>
</tr>
<tr>
<td>11</td>
<td>PIFA (1 equiv.)</td>
<td>DMF/DMSO (1:1)</td>
<td>100</td>
<td>46</td>
</tr>
<tr>
<td>12</td>
<td>PIFA (1 equiv.)</td>
<td>DMF/toluene (1:1)</td>
<td>100</td>
<td>38</td>
</tr>
<tr>
<td>13</td>
<td>PIFA (1 equiv.)</td>
<td>DMF/CH$_3$CN (1:1)</td>
<td>100</td>
<td>53</td>
</tr>
<tr>
<td>14</td>
<td>PIFA (1 equiv.)</td>
<td>DMF</td>
<td>100</td>
<td>66c</td>
</tr>
<tr>
<td>15</td>
<td>PIFA (1 equiv.)</td>
<td>DMF</td>
<td>100</td>
<td>86d</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>DMF</td>
<td>100</td>
<td>nr</td>
</tr>
<tr>
<td>17</td>
<td>PIFA (1 equiv.)</td>
<td>DMF</td>
<td>100</td>
<td>24e</td>
</tr>
</tbody>
</table>

aReaction conditions: aniline (1a, 1 mmol), DMF (2a, 2 ml), HVIs (5 mol%-1 equiv.); 100 °C; 6 h. bIsolated yield. cDMF (0.5 ml) was used. dReaction carried out for 12 h. eThe reaction was performed under a nitrogen atmosphere.

After getting the optimized reaction condition we then engaged to increase the substrate scope (Table 2). To check the tolerance of the electron-withdrawing groups in the nucleophile, we have used 2-F and 4-F aniline and notably, both the anilines smoothly converted to the corresponding formamide products 3b and 3c in excellent yields. Even, 2-nitroaniline and 4-nitroaniline easily underwent the reaction to give the desired formamides 3d and 3e in 69% and 72% yields respectively. Importantly, sterically hindered 2,6-difluoroaniline easily underwent the reaction to produce the desired product 3f in good yield. Other difluoro substituted anilines such as 2,4-F, 3,4-F also afforded the respective compounds 3g and 3h in high yields. Interestingly, other
halogen-containing anilines like 2-fluoro-4-bromoaniline, 2-bromo-4-fluoroaniline, 3-chloro-4-fluoroaniline, 3-bromoaniline, 2-bromo-4-methylaniline, 2-iodo-3-bromoaniline were also equally effective for the N-formylation reaction and the corresponding formamide compounds (3i-3n) were obtained in good yields. In addition, DMA was also found to be an effective agent for the N-acylation of aniline and the N-(m-tolyl)acetamide, 3o was obtained in 65% yield.

Table 2. Synthesis of amides using DMF and DMA

<table>
<thead>
<tr>
<th>R1</th>
<th>NH2</th>
<th>H/H2C-O</th>
<th>N/CH3</th>
<th>100 °C, 6-12 h</th>
<th>R1</th>
<th>NH2</th>
<th>H/H2C-O</th>
<th>N/CH3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3a</td>
<td>86%</td>
<td></td>
<td></td>
<td></td>
<td>3b</td>
<td>72%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3c</td>
<td>76%</td>
<td></td>
<td></td>
<td></td>
<td>3d</td>
<td>69%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3e</td>
<td>72%</td>
<td></td>
<td></td>
<td></td>
<td>3f</td>
<td>68%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3g</td>
<td>73%</td>
<td></td>
<td></td>
<td></td>
<td>3h</td>
<td>76%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3i</td>
<td>73%</td>
<td></td>
<td></td>
<td></td>
<td>3j</td>
<td>67%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3k</td>
<td>70%</td>
<td></td>
<td></td>
<td></td>
<td>3l</td>
<td>75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3m</td>
<td>74%</td>
<td></td>
<td></td>
<td></td>
<td>3n</td>
<td>66%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3o</td>
<td>65%, 12 h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*aReaction conditions: aniline (1a, 1 mmol), DMF (2a/2b, 2 ml); PIFA (1 equiv.); 100 °C. bIsolated yield.

To our delight, we have applied our present method for the transamidation of various carboxylic acids namely, HCO2H, and CH3CO2H (Table 3). Notably, these carboxylic acids were easily converted to the corresponding amides under solvent-free conditions and 80 °C heating. At first, we successfully prepared the N-formylated product by the reaction of aniline with formic acid. The N-phenylformamide 3a was resulted in an excellent yield of 87%. Later on, we investigated the reaction with a few electron-withdrawing halogen and nitro-substituted anilines to get the desired products 3b-3h in high yields. It is noteworthy that formic acid also reacted with halogen-containing anilines to afford the expected compounds 3i-3n in very high yields. In addition, upon reaction with substituted anilines with acetic acid, the respective acetamide product was formed in 79% yield.
Table 3. Synthesis of amides using carboxylic acids

![Chemical structure](image)

\[
\text{R} + \text{R}^\prime \xrightarrow{\text{PIFA} (20 \text{ mol%)}} \text{R}^\prime \text{N} = \text{O} \quad (\text{R} = \text{H}, \text{Me})
\]

<table>
<thead>
<tr>
<th>Compound</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>87%</td>
</tr>
<tr>
<td>3b</td>
<td>81%</td>
</tr>
<tr>
<td>3c</td>
<td>83%</td>
</tr>
<tr>
<td>3d</td>
<td>76%</td>
</tr>
<tr>
<td>3e</td>
<td>79%</td>
</tr>
<tr>
<td>3f</td>
<td>77%</td>
</tr>
<tr>
<td>3g</td>
<td>74%</td>
</tr>
<tr>
<td>3h</td>
<td>78%</td>
</tr>
<tr>
<td>3i</td>
<td>75%</td>
</tr>
<tr>
<td>3j</td>
<td>72%</td>
</tr>
<tr>
<td>3k</td>
<td>70%</td>
</tr>
<tr>
<td>3l</td>
<td>77%</td>
</tr>
<tr>
<td>3m</td>
<td>74%</td>
</tr>
<tr>
<td>3n</td>
<td>71%</td>
</tr>
<tr>
<td>3o</td>
<td>79%, 4h</td>
</tr>
</tbody>
</table>

\(^\text{a}\)Reaction conditions: aniline (1a, 1 mmol), carboxylic acids (2c-2d, 4 mmol); PIFA (20 mol%); 80 °C. \(^\text{b}\)Isolated yield.

The structure of the product was further supported by X-ray crystallographic analysis. The crystal structure of \(N\)-(2,6-difluorophenyl)formamide 3f has been shown in figure 2. CCDC No. 2167435

![X-ray crystallographic structure of compound 3f](image)
Being motivated by the excellent yield formation of the corresponding products, we then performed the reaction with a large number of reactants. Under the standard reaction condition, the mixture of 5 mmol of aniline, and 20 mmol of formic acid in the presence of PIFA (100 mol%) was successfully converted to the expected N-formamide, 3a in 81% yield.

Scheme 2. Gram-scale synthesis of N-phenylformamide.

Based on the above results, we have established a probable mechanism for transamidation in the presence of PIFA which is known as an efficient promoter for several reactions. Initially, formamide coordinate with (bis(trifluoroacetoxy)iodo)benzene and the nucleophilic attack of amines is facilitated to form the intermediate A. Then, in the next step of the easy proton transfer process, the second intermediate B was generated and finally, the deamination led to the desired amide product 3.

Figure 2. Plausible mechanism of PIFA promoted transamidation.

Conclusions

In summary, a very simple and useful environment benign method has been developed using PIFA as a catalyst for the transamidation of DMF and formic acid. Different types of aromatic amines, mostly bearing fluoro substituents gave the corresponding amide derivatives in high yields. Notably, DMF solvent and formic acid have been successfully utilized as N-formylating agents. The readily available reagents, hypervalent iodine promoter, short reaction time, simple, aerobic and mild reaction conditions are the advantageous features of the present protocol.
Experimental Section

General. All starting materials and commercial reagent were purchased from Alfa Aesar, Sigma Aldrich, Avra, Spectrochem, TCI. Chemicals like anilines (95-99%), DMF (anhydrous, 99.5%), DMA (98%), formic acid (85%), acetic acid (glacial, 99.5%) have been used for the reactions. Thin Layer Chromatography plates were visualized by exposure to ultraviolet light (UV) with 254 nm of wavelength and then further analyzed by using iodine chamber. Thin-layer chromatography was performed using pre-coated plates. Column chromatography was performed in 120 to 200 mesh size silica gel. The reactions were carried out in round bottom flask and sealed tube. All NMR spectra were recorded by Bruker Avance 400 spectrometer (1H at 400 MHz and 13C at 100 MHz). Chemical shifts for 1H NMR spectra have been reported in parts per million (ppm) from tetramethylsilane with the solvent resonance as the internal standard (CDCl3: δ 7.26 ppm). Similarly, 13C NMR spectra have been reported in parts per million (ppm) from tetramethylsilane with the solvent as the internal standard (CDCl3: δ 77.16 ppm). The 1H NMR and 13C NMR of the known products were compared with literature reports.

General procedure for N-formylation of amines using DMF. Aniline (1.0 mmol), DMF (2 mL) and PIFA (430 mg, 1 equiv.) were added to a round-bottomed flask. The mixture was stirred at 100 °C for 6 h and the progress of the reaction was monitored by TLC visualized with UV short wavelengths. Upon completion, the mixture was kept at room temperature and then diluted with EtOAc (20 mL) and water (10 mL). The EtOAc layer was dried over anhydrous Na2SO4 and concentrated under vacuum to obtain crude product. After performing column purification with n-hexane/ethyl acetate N-formamide product was obtained.

General procedure for N-formylation of amines using formic acid. Alternatively, aniline (1.0 mmol), HCOOH (184.1 mg, 4.0 mmol) and PIFA (86 mg, 0.2 mmol) were added. The mixture was stirred at 80 °C for 2 h and the progress of the reaction was checked by TLC and UV short wavelength. After completion, the reaction mixture was diluted with EtOAc (20 mL) and water (10-15 mL). The EtOAc layer was dried over anhydrous Na2SO4 and the crude was obtained after evaporation of the solvent. Later, by the column chromatography, the pure N-formamide compound was separated.

N-Phenylformamide (3a).13 1H NMR (400 MHz, CDCl3) δ 8.87 (s, 1H), 8.69 (d, J 11.4 Hz, 1H), 8.35 (s, 1H), 7.96 (s, 1H), 7.55 (d, J 7.9 Hz, 2H), 7.19 (d, J 10.9 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 163.10 (s), 159.47 (s), 136.88 (d, J 19.5 Hz), 129.77 (s), 129.34 (s), 129.11 (s), 125.33 (s), 124.83 (s), 120.10 (s), 118.83 (s), 115.25 (s) N-(2-Fluorophenyl)formamide (3b).13 1H NMR (400 MHz, CDCl3) δ 6.84 (s, 1H), 8.49 (s, 1H), 8.32 (d, J 27.3 Hz, 1H), 8.19 (dd, J 14.3, 7.5 Hz, 1H), 7.25 (dd, J 10.9, 3.6 Hz, 1H), 7.04 (td, J 26.4, 13.0 Hz, 5H); 13C NMR (101 MHz, CDCl3) δ 163.90 (d, J 20.1 Hz), 160.78 (s), 160.43 – 160.23 (m), 154.74 (s), 153.86 (s), 152.30 (s), 151.37 (s), 126.63 (s), 125.21 (d, J 38.5 Hz), 124.79 (d, J 39.7 Hz), 124.50 – 124.42 (m), 122.62 (s), 120.64 (s), 116.47 (d, J 19.2 Hz), 115.06 (d, J 19.0 Hz) N-(4-Fluorophenyl)formamide (3c).43 1H NMR (400 MHz, CDCl3) δ 8.48 (d, J 11.4 Hz, 1H), 8.30 (s, 1H), 8.08 (s, 1H), 7.44 (dd, J 9.0, 4.7 Hz, 2H), 7.01 (d, J 6.3 Hz, 3H), 6.95 (d, J 8.8 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 160.90 (d, J= 213 Hz), 157.92 (s), 131.66, 120.77 (d, J= 8 Hz), 120.37 (d, J= 9 Hz), 115.61 (d, J= 23 Hz), 114.81 (d, J= 22 Hz) N-(2-Nitrophenyl)formamide (3d).43 1H NMR (400 MHz, CDCl3) δ 8.40 (s, 1H), 8.34 (t, J 2.1 Hz, 1H), 7.96 – 7.91 (m, 2H), 7.47 (dd, J 16.8, 8.6 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 157.95 (s), 129.84 (s), 129.08 (s), 124.53 (s), 118.82 (s), 118.44 (s), 113.56 (s) N-(4-Nitrophenyl)formamide (3e).43 1H NMR (400 MHz, CDCl3) δ 8.83 (d, J 10.9 Hz, 1H), 8.41 (s, 1H), 8.18 (d, J 9.1 Hz, 2H), 7.67 (d, J 9.1 Hz, 2H), 7.34 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 163.18 (s), 160.91 (s), 142.35 (s), 142.05 (s), 133.68 (s), 133.37 (s), 130.73 (s), 129.00 (s), 118.88 (s), 113.37 (s)
Arkivoc 2022, v, 270-281

Kamble, O. S. et al.

\[\text{N-\{2,6-Difluorophenyl\}formamide (3f).} \]
\[^1H \text{NMR (400 MHz, CDCl}_3\} \delta 8.64 (d, J 10.8 Hz, 1H), 8.41 (s, 1H), 7.70 (s, 1H), 7.32 (s, 1H), 7.22 (dd, J 14.4, 6.5 Hz, 1H), 7.18 – 7.09 (m, 1H), 6.99 (dt, J 16.4, 8.2 Hz, 3H); \]
\[^13C \text{NMR (101 MHz, CDCl}_3\} \delta 13C NMR (101 MHz, CDCl}_3\} \delta 163.54 (t, J 4.9 Hz), 159.09 (s), 156.38 (d, J 4 Hz), 153.90 (d, J 5 Hz), 128.08 (t, J 20 Hz), 125.64 (t, J 19 Hz), 114.53 (s), 112.24 (dd, J 17.8 Hz, 5.6 Hz), 111.91 (s), 111.68 (s) \]

\[\text{N-\{2,4-Difluorophenyl\}formamide (3g).} \]
\[^1H \text{NMR (400 MHz, CDCl}_3\} \delta 8.56 (d, J 11.3 Hz, 1H), 8.45 (s, 7H), 8.30 (dd, J 14.8, 8.8 Hz, 1H), 7.33 (s, 1H), 7.21 (d, J 5.5 Hz, 1H), 6.93 – 6.85 (m, 2H); \]
\[^13C \text{NMR (101 MHz, CDCl}_3\} \delta 13C NMR (101 MHz, CDCl}_3\} \delta 161.89 (s), 160.01 (s), 158.60 (s), 123.11 (dd, J 10.2, 1.0 Hz), 111.52 (d, J 3 Hz), 111.31 (d, J 3 Hz), 103.96 (d, J 2.2 Hz), 103.72 (dd, J 26.8, 23.2 Hz), 103.72 (d, J 3.7 Hz) \]

\[\text{N-\{3,4-Difluorophenyl\}formamide (3h).} \]
\[^1H \text{NMR (400 MHz, CDCl}_3\} \delta 8.56 (d, J 6.7 Hz, 1H), 8.47 (s, 1H), 7.60 (s, 1H), 7.24 – 7.15 (m, 1H), 6.99 (d, J 19.3 Hz, 1H); \]
\[^13C \text{NMR (101 MHz, CDCl}_3\} \delta 161.58 (s), 158.82 (s), 152.35 (s), 149.92 (s), 128.66 (d, J 7.3 Hz), 127.62 (d, J 7.7 Hz), 126.61 (d, J 11.6 Hz), 124.76 (s), 122.19 (s), 118.02 (s), 117.82 (s), 117.14 (d, J 3.5 Hz), 116.41 (s), 116.20 (s) \]

\[\text{N-\{3-Bromo-2-fluorophenyl\}formamide (3i).} \]
\[^1H \text{NMR (400 MHz, CDCl}_3\} \delta 8.51 (d, J 11.2 Hz, 1H), 8.41 (s, 1H), 8.30 (dd, J 9.2, 5.5 Hz, 1H), 7.46 (s, 1H), 7.25 (dd, J 7.8, 2.9 Hz, 1H), 7.01 (dd, J 7.0, 2.1 Hz, 1H); \]
\[^13C \text{NMR (101 MHz, CDCl}_3\} \delta 160.67 (s), 158.92 (s), 157.62 (s), 130.21 (s), 122.24 (d, J 8.1 Hz), 118.60 (s), 118.34 (s), 114.45 (s), 114.23 (s) \]

\[\text{N-\{3-Chloro-4-fluorophenyl\}formamide (3k).} \]
\[^1H \text{NMR (400 MHz, CDCl}_3\} \delta 8.68 (s, 1H), 8.58 (d, J 11.2 Hz, 1H), 8.37 (s, 1H), 7.74 (dd, J 6.5, 2.5 Hz, 1H), 7.56 (s, 1H), 7.43 – 7.33 (m, 1H), 7.21 – 7.06 (m, 2H), 7.00 (dt, J 8.7, 3.3 Hz, 1H); \]
\[^13C \text{NMR (101 MHz, CDCl}_3\} \delta 163.95 (s), 163.01 (s), 159.12 (s), 157.20 (s), 156.32 (s), 154.74 (s), 153.87 (s), 133.46 – 133.18 (m), 122.31 (s), 121.54 (s), 119.67 (d, J 6.8 Hz), 119.03 (d, J 7.1 Hz), 117.73 (s), 117.51 (s), 116.92 (s), 116.70 (s) \]

\[\text{N-\{3-Bromophenyl\}formamide (3l).} \]
\[^1H \text{NMR (400 MHz, CDCl}_3\} \delta 8.70 (d, J 10.5 Hz, 1H), 8.37 (s, 1H), 7.81 (s, 1H), 7.46 (d, J 8.0 Hz, 1H), 7.36 – 7.15 (m, 4H), 7.04 (d, J 7.4 Hz, 1H); \]
\[^13C \text{NMR (101 MHz, CDCl}_3\} \delta 161.92 (s), 159.15 (s), 134.84 (s), 133.51 (s), 132.48 (s), 128.88 (s), 128.59 (s), 126.52 (s), 125.81 (s), 122.53 (s), 119.45 (s), 114.72 (s), 113.42 (s) \]

\[\text{N-\{2-Bromo-4-methylphenyl\}formamide (3m).} \]
\[^1H \text{NMR (400 MHz, CDCl}_3\} \delta 8.39 (s, 1H), 7.61 (s, 1H), 7.49 (d, J 8.6 Hz, 1H), 6.97 (d, J 8.6 Hz, 2H), 2.18 (s, 3H); \]
\[^13C \text{NMR (101 MHz, CDCl}_3\} \delta 158.98 (m), 132.88 (s), 132.17, 131.99 (s), 121.42 (s), 121.29 (s), 120.55 (s), 22.81 (s) \]

\[\text{N-\{5-Bromo-2-iodophenyl\}formamide (3n).} \]
\[^1H \text{NMR (400 MHz, CDCl}_3\} \delta 8.55 (s, 1H), 8.49 (s, 1H), 7.63 (d, J 8.5 Hz, 1H), 7.45 (s, 1H), 7.03 (d, J 8.4 Hz, 1H); \]
\[^13C \text{NMR (101 MHz, CDCl}_3\} \delta 159.99 (s), 139.71 (s), 129.38 (s), 124.73 (s), 123.32 (s), 121.81 (s), 86.48 (s) \]

\[\text{N-\{m-Tolyl\}acetamide (3o).} \]
\[^1H \text{NMR (400 MHz, CDCl}_3\} \delta 8.50 (d, J 11.2 Hz, 1H), 8.44 (s, 1H), 7.82 (d, J 8.2 Hz, 1H), 7.39 (s, 1H), 7.01 (d, J 8.4 Hz, 1H), 2.29 (s, 3H), 2.25 (s, 3H); \]
\[^13C \text{NMR (101 MHz, CDCl}_3\} \delta 159.01 (s), 134.03 (s), 133.27 (s), 130.12 (s), 129.85 (s), 124.33 (s), 122.04 (s), 17.62 (s), 17.57 (s) \]
Acknowledgements

Rambabu Dandela thanks DST-SERB for Ramanujan fellowship (SB/S2/RJN-075/2016), Core research grant (CRG/2018/000782) and ICT-IOC start-up grant. The authors acknowledge ICT-IOC Bhubaneswar for providing necessary support.

Supplementary Material

1H and 13C NMR spectra of compounds 3a-3o and X-ray crystallographic data of compound 3f are available in the Supplementary material file associated with this paper.

References

10. Timothy J. D. Progress in Polymer Science 2007, 32, 858-875. https://doi.org/10.1016/j.progpolymsci.2007.05.010
https://doi.org/10.1039/C4RA16571C

https://doi.org/10.1016/j.tetlet.2015.06.052

https://doi.org/10.1016/j.tetlet.2018.01.060

https://doi.org/10.1021/ol301308c

https://doi.org/10.1021/acssuschemeng.9b06591

https://doi.org/10.1021/acs.joc.9b01697

https://doi.org/10.1039/C8OB00490K

https://doi.org/10.1021/ol201475j

https://doi.org/10.1055/s-0030-1258518

https://doi.org/10.1021/jo060847z

https://doi.org/10.1039/C9GC01822K

https://doi.org/10.1021/acs.chemrev.5b00547

https://doi.org/10.1002/adsc.202100796

https://doi.org/10.1021/acs.joc.1c01424

https://doi.org/10.1039/B821747E

https://www.arkat-usa.org/get-file/27952/Duluth/

https://doi.org/10.1021/acs.chemrev.5b00547

https://doi.org/10.1021/acs.ORGLET.9B00751

https://doi.org/10.1039/C7GC01158J

https://doi.org/10.1055/S-0037-1610696

5847.
https://doi.org/10.1002/SLCT.201800227
https://doi.org/10.1002/JHET.3914
https://doi.org/10.1039/D2OB00458E
https://doi.org/10.1002/jhet.4417
https://doi.org/10.1016/j.tetlet.2021.153011
https://doi.org/10.1021/acs.joc.7b01716
https://doi.org/10.1080/00397911.2021.1989597
https://doi.org/10.1039/D0RA07476D
https://doi.org/10.1055/s-0036-1588130
https://doi.org/10.1021/acs.orglett.9b02306
https://doi.org/10.1021/jo200299d
https://doi.org/10.1002/ejoc.201900666

This paper is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)