A Platinum Open Access Journal for Organic Chemistry

Paper

Free to Authors and Readers
DOAJ Seal
Arkivoc 2022, part v, 0-0 to be inserted by editorial office

Synthesis of some cyclooctane-based pyrazines and quinoxalines. Part 2

Mostafa Honari Alamdari*
Department of Chemistry, Khoy Branch, Islamic Azad University, Khoy, Iran E-Mail: mostafa honari12@yahoo.com

Received 02-13-2022
Accepted Manuscript 03-18-2022
Published on line 04-01-2022

Abstract

The reaction of 5-cyclooctene-1,2-dione with 1,2-diaminomaleonitrile, produces 5,6,9,10-tetrahydro-cycloocta[b]pyrazine-2,3-dicarbonitrile which was easily oxidized cleanly, under heterogeneous conditions by a combination of $\mathrm{KMnO}_{4}, \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}, t$ - BuOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water, to give 7 -hydroxy- $8-0 \times 0-5,6,7,8,9,10-$ hexahydrocycloocta[b]pyrazine-2,3-dicarbonitrile. This 2-hydroxy-ketone undergoes cyclocondensation with 1,2-diamines in hot acid acetic to furnish cyclooctane products with quinoxaline or pyrazine rings in a linear array, in good yields, for example 5,6,11,12-tetrahydrocycloocta[1,2-b:5,6-b']dipyrazine-2,3,8,9tetracarbonitrile and 9-methyl-5,6,13,14-tetrahydropyrazino[2',3':5,6]cycloocta[1,2-b]quinoxaline-2,3dicarbonitrile.

Keywords: 5-Cyclooctene-1,2-dione, pyrazine-2,3-dicarbonitrile, quinoxaline, 2-hydroxy-ketone.

Introduction

Molecules containing quinoxaline and pyrazine rings have attracted considerable attention because of their various biological activities, such as antiviral, ${ }^{1}$ anticancer, ${ }^{2}$ antibacterial, ${ }^{3}$ anti-inflammatory, ${ }^{4}$ and antidepressant activity. ${ }^{5}$ However, the synthesis of heterocyclic compounds based on a cyclooctane scaffold is generally difficult to achieve. ${ }^{6-10}$ In most cases the eight-membered ring has been constructed during the synthetic sequence. For instance, the cyclooctane ring in various quinoxaline/pyrazine compounds was produced via a dimerisation initiated by sulfur dioxide extrusion, for example $\mathbf{1 \rightarrow \mathbf { 2 }}$ (Scheme 1). ${ }^{11}$

1
2

Scheme 1. Production of a quinoxaline-fused cyclooctadiene by pyrolysis of a sulfone.

Previously, we reported the synthesis of some quinoxaline derivatives starting from cycloocta-1,5-diene 3. Oxidation in two steps: (1) selective dihydroxylation of one of the carbon-carbon double bonds with hydrogen peroxide (33\%) and formic acid, and then (2) Swern oxidation using dimethyl sulfoxide, produced 5 -cyclooctene-1,2-dione 5. Reaction of this 1,2 -dione with ortho-phenylenediamine gave $6,7,10,11$ tetrahydrocycloocta[b]quinoxaline 6 , which also contains a cyclooctene double bond and which could be oxidized to 2-hydroxy-ketone $\mathbf{7}$ or alternatively to 1,2-dione 8 (Scheme 2). ${ }^{12}$

Scheme 2. Conversion of cycloocta-1,5-diene $\mathbf{3}$ into 6,9,10,11-tetrahydro-9-hydroxycycloocta[b]quinoxalin$8(7 H)$-one, 7 and 6,7,10,11-tetrahydrocycloocta[b]quinoxaline-8,9-dione, 8.

Condensation of 1,2-diamines to form pyrazine rings was possible with either the 2-hydroxy-ketone $\mathbf{7}$ or with the 1,2-dione 8, and in this way pentacycles 9 and 10 and tetracycle 11 were produced. ${ }^{12}$

Scheme 3. Reaction of $\mathbf{7}$ or $\mathbf{8}$ with vicinal diamines in refluxing acetic acid.

Results and Discussion

In continuation of our research in this area, we synthesized 7-hydroxy-8-oxocycloocta[b]pyrazine-2,3dicarbonitrile 13 (Scheme 4). Thus, 5,6,9,10-tetrahydrocyclooctapyrazine-2,3-dicarbonitrile 12 was readily produced by the reaction of 5 -cyclooctene-1,2-dione with 1,2-diaminomaleonitrile ($\mathrm{NC}\left(\mathrm{H}_{2} \mathrm{~N}\right) \mathrm{C}=\mathrm{C}\left(\mathrm{NH}_{2}\right) \mathrm{CN}$, DAMN) in hot acetic acid, in high yield. The oxidation of the double bond in compound $\mathbf{1 2}$ was accomplished under heterogeneous conditions by the mixture of reagents $\left(\mathrm{KMnO}_{4}, \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}, t\right.$ - BuOH in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ which gave 7-hydroxy-8-oxo-5,6,7,8,9,10-hexahydrocycloocta[b]pyrazine-2,3-dicarbonitrile 13. The similarity of the ${ }^{1} \mathrm{H}$ NMR chemical shifts and splitting patterns for compounds $\mathbf{1 3}$ and $\mathbf{7}$ indicated their analogous structures. ${ }^{12}$

Scheme 4. Synthesis of 7-hydroxy-8-oxo-5,6,7,8,9,10-hexahydrocycloocta[b]pyrazine-2,3-dicarbonitrile 13 from 5-cyclooctene-1,2-dione.

Next, the 2-hydroxy-ketone 13 was reacted with a range of 1,2-diamines in hot acid acetic acid (Scheme 5): ortho-phenylenediamine gave the previously prepared product 11 in 70% yield and 4 -methylbenzene-1,2-
diamine led to the comparable tetracycle 17. Reaction with DAMN produced the symmetrical tetranitrile 14, and reaction with 2,3- and 3,4-diaminopyridines led to dinitriles 15 and 16, both in 65% yield. (Scheme 5).

Scheme 5. Reaction of 2-hydroxy-ketone 13 with vicinal diamines in refluxing acetic acid.
As a further example of the use of 2 -hydroxy-ketones for condensation reactions with 1,2-diamines, compound $\mathbf{7}$ was reacted with 5,6-diaminouracil sulfate 18 affording 19 in 40% yield (Scheme 6), however the attempted reaction between compound 13 and 5,6 -diaminouracil sulfate under the same conditions was unsuccessful.

Scheme 6

Conclusions

Cycloocta-1,5-diene was employed for the synthesis of the symmetrical and unsymmetrical three-, four-, and five-fused heterocycles containing quinoxaline/pyrazine and cyclooctane rings. It proved not to be necessary to use a 1,2-diketone for reaction with a 1,2-diamine to produce a pyrazine ring; the corresponding 2-hydroxy-ketone reacted well enough.

We suggest that the 2-hydroxy-ketone unit has emerged as a powerful synthon for condensation reactions, producing other novel heterocyclic compounds based on the eight-membered ring. We intend to convert the 1,2-dinitriles prepared in this work into dicarboxylates (or other functionalities), so that such products can act as pincer ligands for a wide variety of metal cations. Our further results will be described in due course.

Experimental Section

General. All starting materials were purchased from Merck and used without further purification. Melting points were determined on a digital melting point apparatus (electrothermal) and are uncorrected. Infrared spectra were recorded on a Thermonicolet (Nexus 670) FT-infrared spectrometer, using sodium chloride cells and measured as KBr discs. ${ }^{1} \mathrm{H}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(75.5 \mathrm{MHz}) \mathrm{NMR}$ measurements were recorded on a Bruker 300 spectrometer in CDCl_{3} using TMS as the internal reference. High resolution mass spectra were recorded on an Agilent Technology (HP), MS Model: 5973 Network Mass, selective Detector Ion source: Electron Impact (EI) 70 eV , Ion source temperature: $230{ }^{\circ} \mathrm{C}$, Analyzer: quadrupole, Analyzer temperature: $150{ }^{\circ} \mathrm{C}$ and relative abundances of fragments are quoted in parentheses after the m / z values.

5,6,13,14-Tetrahydropyrazino[2',3':5,6]cycloocta[1,2-b]quinoxaline-2,3-dicarbonitrile (11). A mixture of 2-hydroxy-ketone $13(0.10 \mathrm{~g}, 0.41 \mathrm{mmol})$ and ortho-phenylenediamine ($0.04 \mathrm{~g}, 0.41 \mathrm{mmol}$) was heated at reflux in $\mathrm{AcOH}(10 \mathrm{~mL})$ for 6 h . The product precipitated from the reaction mixture. The reaction mixture was cooled, the precipitate was filtered off and washed with water, giving $11(0.09 \mathrm{~g}, 70 \%) . \mathrm{mp}>300{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\right.$ $\left.\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \delta 3.79\left(\mathrm{t}, J 6.9 \mathrm{~Hz}, 4 \mathrm{H}, 2\right.$ equivalent $\left.\mathrm{CH}_{2}\right), 3.96\left(\mathrm{t}, \mathrm{J} 6.9 \mathrm{~Hz}, 4 \mathrm{H}, 2\right.$ equivalent $\left.\mathrm{CH}_{2}\right), 8.08\left(\mathrm{dd}, \mathrm{J}_{1} 6.6, J_{2} 3.3\right.$ $\mathrm{Hz}, 2 \mathrm{H}$, aromatic), 8.24 (dd, $J_{1} 6.6, J_{2} 3.3 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \delta 32.3$ (C aliphatic), 33.8 (C aliphatic), 112.4 (C nitrile), 125.6, 131.3, 134.2, 137.2, 153.1, 158.1. FT-IR (KBr) $\mathrm{v}_{\max } / \mathrm{cm}^{-1}: 2937,2238,776$. MS (EI, 70 ev): $m / z(\%) 312\left(\mathrm{M}^{+}, 100\right), 297(89), 169$ (46). Found: $\mathrm{M}^{+} 312.1123, \mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{6}$ requires $\mathrm{M}^{+} 312.1123$.
5,6,9,10-Tetrahydrocycloocta[b]pyrazine-2,3-dicarbonitrile (12). 5-Cyclooctene-1,2-dione (1.00 g, 7.25 mmol), 1,2-diaminomaleonitrile ($0.78 \mathrm{~g}, 7.24 \mathrm{mmol}$), and acetic acid (18 ml) were heated on the steam bath for 1 h . Water ($c a .60 \mathrm{~mL}$) was added to the hot solution until it was slightly cloudy, and the mixture was allowed to cool, producing a deposit of almost colorless needles of compound 12 ($1.33 \mathrm{~g}, 88 \%$). mp 121-122 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) ppm $\delta: 2.51-2.74\left(\mathrm{~m}, 4 \mathrm{H}, 2\right.$ equivalent $\left.\mathrm{CH}_{2}\right), 3.35\left(\mathrm{t}, \mathrm{J} 7.2 \mathrm{~Hz}, 4 \mathrm{H}, 2\right.$ equivalent $\left.\mathrm{CH}_{2}\right), 5.51(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \mathrm{ppm}$ 8: 26.7, 35.1, 113.3 (C nitrile), 128.7 (C olefinic), 130.3 (C pyrazine), 161.4 (C pyrazine). FT-IR (KBr) $V_{\max } / \mathrm{cm}^{-1}: 2224$ (CN), 1600, 3028. MS (EI, 70 ev): m/z (\%) 210 ($\mathrm{M}^{+}, 100$), 195 (83), Found: $\mathrm{M}^{+} 210.0905 \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4}$ requires M^{+}210.0905.
7-Hydroxy-8-oxo-5,6,7,8,9,10-hexahydrocycloocta[b]pyrazine-2,3-dicarbonitrile (13). To a mixture of KMnO_{4} $(4.0 \mathrm{~g}), \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~g})$, and water (0.3 mL) in dichloromethane (15 mL) was added cyclooctapyrazine-2,3dicarbonitrile 12 ($0.276 \mathrm{~g}, 1.31 \mathrm{mmol}$) in dichloromethane (5 mL), and tert-butyl alcohol (1 mL). After 6 h , the reaction mixture was filtered, and the solvent was removed to yield 2-hydroxy-ketone $13(0.143 \mathrm{~g}, 45 \%)$ as the
only product. $\mathrm{mp} 212-214{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \mathrm{ppm} \delta 1.96-2.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.12-2.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.35-2.51$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}$), 2.94-3.13 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}$), 3.16-3.25 (m, 1H, CH), 3.42-3.57 (m, 2H, 2 CH), 3.82-3.97 (m, 1H, CH), 4.36 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{O}$), $5.13(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}$) ppm $\delta: 30.1,30.4,33.1,42.0,75.8,113.8$ (2 C nitrile), 131.0, 131.4, 160.4, 161.6, 212.1 (C carbonyl), FT-IR (KBr) $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$: 3421 (OH), 2240 (CN), 1707 (C=O). MS (EI, 70 ev): m / z (\%) $242\left(\mathrm{M}^{+}, 100\right), 214$ (66), 185 (97), 169 (54). Found: $\mathrm{M}^{+} 242.0804 \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires M^{+} 242.0803.

5,6,11,12-Tetrahydrocycloocta[1,2-b:5,6-b']dipyrazine-2,3,8,9-tetracarbonitrile (14). A mixture of 2-hydroxyketone $13(0.100 \mathrm{~g}, 0.41 \mathrm{mmol})$ and 1,2 -diaminomaleonitrile ($0.045 \mathrm{~g}, 0.41 \mathrm{mmol}$) was heated at reflux in $\mathrm{AcOH}(1.5 \mathrm{ml})$ for 6 h . The reaction product precipitated. The reaction mixture was filtered and the precipitate was washed with water, giving 14 ($0.090 \mathrm{~g}, 70 \%$). mp > $300{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} N \mathrm{NM}\left(\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{COOH}\right) 3.70(\mathrm{~s}, 8 \mathrm{H}, 4$ equivalent CH_{2}). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{COOH}$) ppm δ : 33.3 (4 equivalent C aliphatic), 114.5 (C nitrile), 131.3 (C pyrazine), 159.4 (C pyrazine). FT-IR (KBr) vmax /cm ${ }^{-1}$: 2978, 2242 (CN) MS (EI, 70 ev): m/z (\%) 312 ($\mathrm{M}^{+}, 80$), 297 (100), 272 (50), 169 (77). Found: $\mathrm{M}^{+} 312.0827 \mathrm{C}_{16} \mathrm{H}_{8} \mathrm{~N}_{8}$ requires $\mathrm{M}^{+} 312.0827$.

5,6,13,14-Tetrahydropyrido[2",3':5',6']pyrazino[2',3':5,6]cycloocta[1,2-b]pyrazine-2,3-dicarbonitrile (15). A mixture of 2-hydroxy-ketone 13 ($0.100 \mathrm{~g}, 0.41 \mathrm{mmol}$) and pyridine-2,3-diamine ($0.045 \mathrm{~g}, 0.41 \mathrm{mmol}$) was refluxed in $\mathrm{AcOH}(1.5 \mathrm{ml})$ for 6 h . The reaction product precipitated. The reaction mixture was filtered and the precipitate was washed with water, giving $15(0.084 \mathrm{~g}, 65 \%) . \mathrm{mp}>300{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{COOH}\right) \mathrm{ppm} \delta$: $3.78\left(\mathrm{t}, J 6 \mathrm{~Hz}, 4 \mathrm{H}, 2\right.$ equivalent CH_{2}), 3.84-3.92 ($\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}$), 8.3 ($\mathrm{dd}, J_{1} 8.4, J_{2} 5.4 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 9.22 (dd, $J_{1} 8.7, J_{2} 1.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 9.32 (dd, $J_{1} 8.7, J_{2} 1.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic). ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{COOH}\right) \mathrm{ppm} \delta$: 33.6, 33.8, 34.1, 34.5, 111.8 (C nitrile), 111.9 (C nitrile), 126.1, 131.0, 131.1, 136.3, 141.9, 146.8, 148.7, 154.1, 158.7, 163.8, 164.4. FT-IR (KBr) $v_{\text {max }} / \mathrm{cm}^{-1}$: 2927, 2239 (CN), 1460, 1386, 792. MS (EI, 70 ev): m/z (\%) 313 (M^{+}, 100), 298 (87), 170 (39). Found: $\mathrm{M}^{+} 313.1076$ requires $\mathrm{M}^{+} 313.1077$.

5,6,13,14-Tetrahydropyrido[$\left.3^{\prime \prime}, 4^{\prime \prime}: 5^{\prime}, 6^{\prime}\right]$ pyrazino[$\left.2^{\prime}, 3^{\prime}: 5,6\right]$ cycloocta[1,2-b]pyrazine-2,3-dicarbonitrile (16). A mixture of 2-hydroxy-ketone 13 ($0.100 \mathrm{~g}, 0.41 \mathrm{mmol}$) and pyridine-3,4-diamine ($0.045 \mathrm{~g}, 0.41 \mathrm{mmol}$) was refluxed in $\mathrm{AcOH}(5 \mathrm{ml})$ for 6 h . Water (ca. 10 ml) was added and the mixture was extracted with dichloromethane ($3 \times 20 \mathrm{ml}$) and the solvent was removed from the combined extracts. The crude product was crystallized ethanol/water to give $16(0.084 \mathrm{~g}, 65 \%) . \mathrm{mp}>300^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{COOH}\right) \mathrm{ppm}$ ס: 3.71-3.82 $\left(\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 3.90-4.12\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 8.52(\mathrm{~d}, J 8.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $8.79(\mathrm{~d}, J 8.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $9.75(\mathrm{~s}$, 1 H , aromatic). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{COOH}$) ppm $\delta: 33.7,33.7,34.4,35.0,111.0$ (C nitrile), 112.0 (C nitrile), 126.9, 131.1, 131.2, 136.3, 136.9, 147.5, 148.0, 158.4, 158.6, 166.2, 166.8. FT-IR (KBr) vmax / $\mathrm{cm}^{-1}: 2237$ (CN), 1382, 1365, 1119. MS (EI, 70 ev): $m / z(\%) 313\left(\mathrm{M}^{+}, 100\right), 298(80)$, Found: $\mathrm{M}^{+} 313.1076 \mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{7}$ requires M^{+} 313.1076.

9-Methyl-5,6,13,14-tetrahydropyrazino[2',3':5,6]cycloocta[1,2-b]quinoxaline-2,3-dicarbonitrile (17). A mixture of 2-hydroxy-ketone $13(0.10 \mathrm{~g}, 0.41 \mathrm{mmol})$ and 4-methylbenzene-1,2-diamine ($0.05 \mathrm{~g}, 0.41 \mathrm{mmol}$) was refluxed in $\mathrm{AcOH}(5 \mathrm{ml})$ for 6 h . The reaction product was precipitated. The reaction mixture was filtered and the precipitate was washed with water, giving $17(0.09 \mathrm{~g}, 70 \%) . \mathrm{mp}>300{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{COOH}\right)$ ppm $\delta: 2.70(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 3.77-3.81\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 3.92-3.94\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 7.92-7.97(\mathrm{~m}, 2 \mathrm{H}$, aromatic), 8.149 (d, J $8.7 \mathrm{~Hz}, 1 \mathrm{H}$, aromatc). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{COOH}\right) \mathrm{ppm} \delta: 22.2,31.7,32.4,33.6,33.8,112.07$ (C nitrile), 112.5 (C nitrile), 122.7, 125.5, 131.3, 136.7, 137.3, 147.9, 151.5, 152.1, 157.8, 158.1, 161.0, 161.6. FT-IR (KBr) vmax $/ \mathrm{cm}^{-1}$: 2960, 2933, 2242 (CN), 1384, 1360. MS (EI, 70 ev): m/z (\%) $326\left(\mathrm{M}^{+}, 100\right), 311$ (76), Found: M^{+} $326.1280 \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{6}$ requires $\mathrm{M}^{+} 326.1279$.
6,7,14,15-Tetrahydroquinoxalino[2',3':5,6]cycloocta[1,2-g]pteridine-2,4(1H,3H)-dione (19). A mixture of 2-hydroxy-ketone $7(0.100 \mathrm{~g}, 0.41 \mathrm{mmol})$ and 5,6 -diaminouracil sulfate ($0.156 \mathrm{~g}, 0.41 \mathrm{mmol}$) dissolved in DMSO with some AcOH was heated for 4 h . The reaction product precipitated. The reaction mixture was filtered and
the precipitate was washed with water, giving $\left.19(0.057 \mathrm{~g}, 40 \%) . \mathrm{mp}>300{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{COOH}\right) \mathrm{ppm}$ ס: 3.70-3.83 ($\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}$), 3.92-4.10 ($\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}$), 8.09-8.27 ($\mathrm{m}, 2 \mathrm{H}$, aromatic), 8.33-8.45 ($\mathrm{m}, 2 \mathrm{H}$, aromatic),
 $135.1,136.2,136.4,146.5,146.8,150.9,151.5,153.0,153.5,156.3,158.6,162.2$. FT-IR (KBr) $v_{\max } / \mathrm{cm}^{-1}: 3198$ (NH), 3065, 2847, 1719 (NHC=O), 1700 (NHC=O), 1565, 1355, 780. MS (EI, 70 ev): m/z (\%) 346 ($\mathrm{M}^{+}, 84$), 331 (100), 169 (69). Found: $\mathrm{M}^{+} 346.1178 \mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{2}$ requires M^{+}346.1178.

References

1. Badran, M. M.; Abouzid, K. A.; Hussein, M. Arch. Pharm. Res. 2003, 26, 107-113. https://dx.doi.org/10.1007/BF02976653
2. Lindsley, C. W.; Zhao, Z.; Leister, W. H.; Robinson, R. G.; Barnett, S. F.; Defeo-Jones, D.; Jones, R. E.; Hartman, G. D.; Huff, J. R.; Huber, H. E. Bioorg. Med. Chem. Lett. 2005, 15, 761-764. https://dx.doi.org/10.1016/i.bmcl.2004.11.011
3. Seitz, L. E.; Suling, W. J.; Reynolds, R. C. J. Med. Chem. 2002, 45, 5604-5606. https://dx.doi.org/10.1021/im020310n
4. Abu-Hashem, A.; Gouda, M.; Badria, F. Eur. J. Med. Chem. 2010, 45, 1976-1981. https://dx.doi.org/10.1016/j.ejmech.2010.01.042
5. Sarges, R.; Howard, H. R.; Browne, R. G.; Lebel, L. A.; Seymour, P. A.; Koe, B. K. J. Med. Chem. 1990, 33, 2240-2254.
https://dx.doi.org/10.1021/jm00170a031
6. Lavoisier-Gallo, T.; Charonnet, E.; Pons, J. M.; Rajzman, M.; Faure, R.; Rodriguez, J. Chem. Eur. J. 2001, 7, 1056-1068.
https://dx.doi.org/10.1002/1521-3765(20010302)7:5<1056::AID-CHEM1056>3.0.CO;2-D
7. Chung, W. S.; Liu, J. H. Chem. Commun. 1997, 205-206. https://dx.doi.org/10.1039/A606764F
8. Haddadin, M.; Zahr, G.; Rawdah, T.; Chelhot, N.; Issidorides, C. Tetrahedron 1974, 30, 659-666. https://dx.doi.org/10.1016/S0040-4020(01)97061-9
9. Haddadin, M.; Alkaysi, H.; Saheb, S. Tetrahedron 1970, 26, 1115-1122. https://dx.doi.org/10.1016/S0040-4020(01)98789-7
10. Carta, A.; Corona, P.; and Loriga, M. Curr. Med. Chem. 2005, 12, 2259-2272. https://dx.doi.org/10.2174/0929867054864831
11. Moriconi, E. J.; Misner, R. E.; Brady, T. E. J. Org. Chem. 1969, 34, 1651-1660.
https://dx.doi.org/10.1021/jo01258a026
12. Alamdari, M. H.; Helliwell, M.; Baradarani, M. M.; Joule, J. A. Arkivoc 2008, 14, 166-179. https://dx.doi.org/10.3998/ark.5550190.0009.e17

This paper is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

