Supplementary Material

Synthesis of some oxazolo[4,5-d]pyrimidine derivatives and evaluation of their antiviral activity and cytotoxicity

Yevheniia Velihina, a Stepan Pilo, a Oleksandr Kobzar, a Olena Zaliavska, b Mark N. Prichard, c Scott H. James, c Kathy Keith, c Caroll Hartline, c Victor Zhirnov, a Andriy Vovk, a and Volodymyr Brovarets a

a V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, 1, Murmanska St, Kyiv 02094, Ukraine
b Department of Internal Medicine, Clinical Pharmacology and Occupational Diseases, Bukovinian State Medical University, 2, Sq. Teatralna, Chernivtsi 58002, Ukraine
c Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA

Email: brovarets@bpci.kiev.ua

Table of Contents

1 H, 13 C NMR, and Mass Spectra... S2
Table S1. ADMET properties of oxazolo[4,5-d]pyrimidine derivatives predicted by pkCSM online server S46
Figure S1. 1H NMR (400 MHz, 296.2 K, DMSO-d_6) spectrum of compound (1).
Figure S2. 13C NMR (101 MHz, 296.2 K, DMSO-d_6) spectrum of compound (1).
Figure S3. LCMS spectrum of compound (1).
Figure S4. 1H NMR (400 MHz, 296.2 K, DMSO-d_6) spectrum of compound (2).
Figure S5. 13C NMR (126 MHz, 296.2 K, DMSO-d_6) spectrum of compound (2).
Figure S6. LCMS spectrum of compound (2).
Figure S7. 1H NMR (400 MHz, 296.2 K, DMSO-d_6) spectrum of compound (3).
Figure S8. 13C NMR (126 MHz, 296.2 K, DMSO-$_d_6$) spectrum of compound (3).
Figure S9. 1H NMR (400 MHz, 296.2 K, DMSO-d_6) spectrum of compound (4).
Figure S10. 13C NMR (126 MHz, 296.2 K, DMSO-d_6) spectrum of compound (4).
Figure S11. LCMS spectrum of compound (4).
Figure S12. 1H NMR (400 MHz, 296.2 K, DMSO-d_6) spectrum of compound (5).
Figure S13. 1H NMR (400 MHz, 296.2 K, DMSO-d$_6$) spectrum of compound (5).
Figure S14. LCMS spectrum of compound (5).
Figure S15. 1H NMR (400 MHz, 296.2 K, DMSO-d_6) spectrum of compound (6).
Figure S16. 13C NMR (126 MHz, 296.2 K, DMSO-d_6) spectrum of compound (6).
Figure S17. LCMS spectrum of compound (6).
Figure S18. 1H NMR (400 MHz, 296.2 K, DMSO-d_6) spectrum of compound (7).
Figure S19. 13C NMR (126 MHz, 296.2 K, DMSO-d_6) spectrum of compound (7).
Figure S20. LCMS spectrum of compound (7).
Figure S21. 1H NMR (400 MHz, 296.2 K, DMSO-d_6) spectrum of compound (8).
Figure S22. 13C NMR (126 MHz, 296.2 K, DMSO-d_6) spectrum of compound (8).
Figure S23. LCMS spectrum of compound (8).
Figure S24. 1H NMR (400 MHz, 296.2 K, DMSO-d_6) spectrum of compound (9).
Figure S25. 13C NMR (126 MHz, 296.2 K, DMSO-d_6) spectrum of compound (9).
Figure S26. LCMS spectrum of compound (9).
Figure S27. 1H NMR (400 MHz, 296.2 K, CDCl$_3$) spectrum of compound (10).
Figure S28. 13C NMR (126 MHz, 296.2 K, CDCl$_3$) spectrum of compound (10).
Figure S29. LCMS spectrum of compound (10).
Figure S30. 1H NMR (400 MHz, 296.2 K, CDCl$_3$) spectrum of compound (11).
Figure S31. 13C NMR (126 MHz, 296.2 K, CDCl$_3$) spectrum of compound (11).
Figure S32. LCMS spectrum of compound (11).
Figure S33. 1H NMR (400 MHz, 296.2 K, CDCl$_3$) spectrum of compound (12).
Figure S34. 13C NMR (126 MHz, 296.2 K, CDCl$_3$) spectrum of compound (12).
Figure S35. LCMS spectrum of compound (12).
Figure S36. 1H NMR (400 MHz, 296.2 K, CDCl$_3$) spectrum of compound (13).
Figure S37. 13C NMR (151 MHz, 296.2 K, CDCl$_3$) spectrum of compound (13).
Figure S38. LCMS spectrum of compound (13).
Figure S39. 1H NMR (400 MHz, 296.2 K, DMSO-d_6) spectrum of compound (14).
Figure S40. 13C NMR (126 MHz, 296.2 K, DMSO-d_6) spectrum of compound (14).
Figure S41. LCMS spectrum of compound (14).
Figure S42. 1H NMR (400 MHz, 296.2 K, CDCl$_3$) spectrum of compound (15).
Figure S43. 13C NMR (126 MHz, 296.2 K, CDCl$_3$) spectrum of compound (15).
Figure S44. LCMS spectrum of compound (15).
Table S1. ADMET properties of oxazolo[4,5-d]pyrimidine derivatives predicted by pkCSM online server

| Compd | Water solubility | Caco2 Permeability | Skin Permeability | P-glycoprotein inhibitor | Intrinsic P-glycoprotein inhibitor | Caco2 permeability | Vmax (human) | Fraction unbound (human) | CNS permeability | CYP2B6 substrate | CYP3A4 substrate | CYP2C9 inhibitor | CYP2D6 inhibitor | CYP3A inhibitor | Total Clearance | Renal OAT2 substrates | AKR1B10 toxicity | Max. co-administered dose (human) | hERG inhibitor | hME44 inhibitor | Oral Rat Acute Toxicity (LD50) | Oral Rat Chronic Toxicity (LOAEL) | Hepatotoxicity | Skin Sensitization | Minnow toxicity | 7-Pyridonyl toxicity | Microsome toxicity |
|-------|-----------------|-------------------|------------------|-------------------------|---------------------------------|-----------------|-------------|------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 1 | -3.793 | 0.991 | -2.735 | Yes | Yes | Yes | 0.135 | 0.245 | -1.586 | No | No | No | No | No | 0.404 | No | Yes | 0.693 | No | No | 3.098 | 0.793 | Yes | No | 0.285 | -1.45 |
| 2 | -3.382 | 1.299 | -2.735 | Yes | Yes | Yes | 0.237 | 0.329 | -1.819 | No | Yes | Yes | Yes | No | 0.759 | No | No | 0.675 | No | Yes | 2.739 | 0.068 | Yes | No | 0.285 | -1.626 |
| 3 | -4.085 | 1 | -2.735 | Yes | Yes | Yes | 0.642 | 0.154 | -1.762 | No | Yes | No | No | Yes | 0.718 | No | Yes | 0.711 | No | Yes | 3.401 | 0.034 | Yes | No | 0.285 | -2.737 |
| 4 | -4.08 | 0.976 | -2.735 | Yes | Yes | Yes | 0.666 | 0.13 | -1.928 | No | Yes | No | No | Yes | 0.88 | No | No | 0.715 | No | Yes | 3.371 | 0.191 | Yes | No | 0.285 | -1.61 |
| 5 | -3.814 | 0.807 | -2.727 | Yes | Yes | Yes | 0.432 | 0.205 | -2.131 | No | Yes | Yes | Yes | No | 0.611 | No | No | 0.468 | No | Yes | 2.59 | 1.125 | Yes | No | 0.289 | 0.22 |
| 6 | -3.629 | 1.121 | -2.731 | No | Yes | Yes | 0.447 | 0.232 | -1.99 | No | Yes | Yes | Yes | No | 0.668 | No | No | 0.484 | No | Yes | 2.683 | 1.179 | Yes | No | 0.288 | 0.711 |
| 7 | -3.939 | 1.295 | -2.734 | Yes | Yes | Yes | 0.733 | 0.229 | -1.783 | No | Yes | Yes | Yes | Yes | 0.699 | No | Yes | 0.445 | No | Yes | 2.765 | 1.153 | Yes | No | 0.286 | -0.501 |
| 8 | -3.777 | 1.135 | -2.735 | Yes | Yes | Yes | 1.097 | 0.248 | -1.932 | No | Yes | No | No | Yes | 0.594 | No | No | 0.66 | No | Yes | 2.914 | 1.048 | Yes | No | 0.285 | -0.436 |
| 9 | -3.846 | 1.202 | -2.735 | Yes | Yes | Yes | 1.182 | 0.25 | -1.845 | No | Yes | No | No | Yes | 0.518 | No | No | 0.662 | No | Yes | 2.868 | 1.084 | Yes | No | 0.285 | -0.298 |
| 10 | -3.293 | 0.995 | -2.734 | No | Yes | Yes | 0.415 | 0.169 | -2.389 | No | Yes | Yes | Yes | No | 1.02 | No | No | 0.458 | No | Yes | 2.54 | 0.825 | Yes | No | 0.286 | -2.013 |
| 11 | -3.21 | 1.192 | -2.735 | No | Yes | Yes | 0.167 | 0.261 | -2.083 | No | Yes | No | Yes | Yes | 1.096 | No | No | 0.785 | No | Yes | 2.855 | 0.886 | Yes | No | 0.285 | -6.516 |
| 12 | -3.252 | 1.111 | -2.735 | No | Yes | Yes | 0.209 | 0.267 | -2.01 | No | Yes | No | Yes | No | 1.101 | No | No | 0.786 | No | Yes | 2.897 | 0.942 | Yes | No | 0.285 | -6.497 |
| 13 | -3.632 | 1.095 | -2.735 | No | Yes | Yes | -0.042 | 0.258 | -2.584 | No | Yes | No | No | No | 1.016 | No | No | 0.778 | No | Yes | 2.999 | 0.508 | Yes | No | 0.285 | -3.759 |
| 14 | -3.239 | 1.191 | -2.735 | No | Yes | Yes | 0.193 | 0.262 | -1.991 | No | Yes | Yes | Yes | No | 1.104 | No | No | 0.787 | No | Yes | 2.86 | 0.907 | Yes | No | 0.285 | -6.633 |
| 15 | -3.261 | 1.11 | -2.735 | No | Yes | Yes | 0.236 | 0.268 | -1.919 | No | Yes | No | Yes | No | 1.108 | No | No | 0.789 | No | Yes | 2.903 | 0.963 | Yes | No | 0.285 | -6.615 |