Supplementary Material

Synthesis of C4-substituted coumarins via Pechmann condensation catalyzed by sulfamic acid. Insights into the reaction mechanism by HRMS analysis

Maiara C. Moraes,a,b Eder J. Lenardão,c and Thiago Barcellos*a

a Laboratório de Biotecnologia de Produtos Naturais e Sintéticos, Universidade de Caxias do Sul, 95070-560, Caxias do Sul, RS, Brazil
b Instituto Federal de Ciência e Tecnologia do Rio Grande do Sul, Campus Caxias do Sul, 95043-700, Caxias do Sul, RS, Brazil
c LASOL-CCQFA, Universidade Federal de Pelotas – UFPel, P.O. Box 354, 96010 900, Pelotas, RS, Brazil

Email: thiago.barcellos@ucs.br

Table of Contents

HRMS spectral data of the mechanism elucidation ...S2
Copies of the 1H and 13C NMR spectra of the coumarins 3a-o..S4
1. HRMS spectral data of the mechanism elucidation

Figure S1. HRMS (ESI+) analysis of an aliquot of the reaction between \(m\)-cresol and ethyl 4-chloroacetooacetate to afford the coumarin 3h.

Scheme S1. Plausible fragmentation of intermediate II into the product ion.
Figure S2. Tandem mass spectrometry (ESI-MS/MS) of the protonated molecule with m/z 271.0740 using N₂ as collision gas at 20 eV.
2. Copies of 1H and 13C NMR Spectra of products 3a-o

Figure S3. 1H NMR spectrum (300 MHz, acetone-d_6) of the product 3a.

Figure S4. 13C NMR spectrum (75 MHz, DMSO-d_6) of the product 3a.
Figure S5. 1H NMR spectrum (300 MHz, acetone-\textit{d}_6) of the product 3b.

Figure S6. 13C NMR spectrum (75 MHz, DMSO-\textit{d}_6) of the product 3b.
Figure S7. 1H NMR spectrum (300 MHz, DMSO-d_6) of product 3c.

Figure S8. 13C NMR spectrum (75 MHz, DMSO-d_6) of the product 3c.
Figure S9. 1H NMR spectrum (300 MHz, DMSO-d_6) of the product 3d.

Figure S10. 13C NMR spectrum (75 MHz, DMSO-d_6) of the product 3d.
Figure S11. 1H NMR Spectrum (300 MHz, DMSO-d_6) of the product 3e.

Figure S12. 13C NMR spectrum (75 MHz, DMSO-d_6) of the product 3e.
Figure S13. 1H NMR spectrum (300 MHz, DMSO-d_6) of the product 3f.

Figure S14. 13C NMR spectrum (75 MHz, DMSO-d_6) of the product 3f.
Figure S15. 1H NMR spectrum (300 MHz, DMSO-d$_6$) of the product 3g.

Figure S16. 13C NMR spectrum (75 MHz, DMSO-d$_6$) of the product 3g.
Figure S17. 1H NMR spectrum (300 MHz, DMSO-d_6) of the product 3h.

Figure S18. 13C NMR spectrum (75 MHz, DMSO-d_6) of the product 3h.
Figure S19. 1H NMR spectrum (300 MHz, CDCl$_3$) of the product 3i.

Figure S20. 13C NMR spectrum (75 MHz, CDCl$_3$) of the product 3i.
Figure S21. 1H NMR spectrum (300 MHz, CDCl$_3$) of the product 3j.

Figure S22. 13C NMR spectrum (75 MHz, CDCl$_3$) of the product 3j.
Figure S23. 1H NMR spectrum (300 MHz, DMSO-d_6) of the product 3k.

Figure S24. 13C NMR spectrum (75 MHz, DMSO-d_6) of the product 3k.
Figure S25. 1H NMR spectrum (300 MHz, DMSO-d$_6$) of the product 3l.

Figure S26. 13C NMR spectrum (75 MHz, DMSO-d$_6$) of the product 3l.
Figure S27. 1H NMR spectrum (300 MHz, DMSO-d$_6$) of the product 3m.

Figure S28. 13C NMR spectrum (75 MHz, DMSO-d$_6$) of the product 3m.
Figure S29. 1H NMR spectrum (300 MHz, DMSO-\textit{d}_6) of the product 3n.

Figure S30. 13C NMR spectrum (75 MHz, DMSO-\textit{d}_6) of the product 3n.
Figure S31. 1H NMR spectrum (300 MHz, DMSO-d$_6$) of the product 3o.

Figure S32. 13C NMR spectrum (75 MHz, DMSO-d$_6$) of the product 3o.