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Abstract 

The preparation of bicyclic pyrrolidines, stable and easy to isolate, is performed through both classical solution 

chemistry and on solid support. A new linker strategy is presented based on the concept of REM resin 

approach. Starting from a suitably derivatized Wang’s resin, the linker can be REgenerated after cleavage of 

the product and functionalized to start a new synthetic cycle via a Michael reaction. In the present work a 

vinyl sulfone supported on a Wang’s resin is able to undergo a Michael reaction with an amino acid derivative; 

the obtained adduct serves as a precursor for azomethine ylide generation, which is conveniently trapped with 

N-methyl-maleimide. The results are presented and discussed in the light of the experimental conditions 

applied as well as the method chosen for the cleavage of the product and resin regeneration. 
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Introduction 

 

Cycloaddition reactions are among the most powerful synthetic methods towards complex structures. The 

development and application of the 1,3-dipolar cycloaddition, an important member of this reaction class, has 

grown immensely the ability to build various five-membered heterocycles efficiently. Azomethine ylides are 

commonly used as dipoles for the synthesis of pyrrolidine scaffolds, an important motif in natural, 

pharmaceutical, and biological compounds.1 The reaction between azomethine ylides and cyclic dipolarophiles 

allows access to polycyclic products with considerable complexity with high yield in a regio- and 

stereocontrolled manner. The most attractive feature of the 1,3-dipolar cycloaddition of azomethine ylides is 

the possibility to generate pyrrolidines with multiple stereocenters in a single step.2 The interest in 

asymmetric synthesis is continuously increasing owing to the constant demand for enantiomerically enriched 

molecules. The main challenge in this area is to create the maximum number of stereogenic centers in one 

reaction step by employing the minimum number of reagents, often with the help of catalysts.3 Azomethine 

ylides have four  electrons spread over the three-atom C-N-C unit; as such, they must be represented by a 

zwitterionic (or diradical) form. The most common representation has a positive charge located on the 

nitrogen atom and a negative charge distributed over the two carbon atoms. The extent of negative charge on 

each carbon atom is determined by the nature and number of substituents at these carbons. Alternatively, 

two resonance forms with the positive and negative charges on the carbon atoms can be drawn to represent 

the 1,3-dipole (Figure 1).4 The nature of these 1,3-dipoles and their generation protocols nicely fit with the 

applications in Solid Phase Organic Synthesis (SPOS) as well as combinatorial approaches to medicinally active 

compounds.5 

 

 
 

Figure 1. Resonance forms of azomethine ylides. 

 

Several examples have been reported in the literature concerning different approaches to pyrrolidines 

and bicyclic derivatives with the help of solid phase methodologies. Preparation of highly substituted 

pyrrolidines (proline analogs) was achieved using a three component 1,3-dipolar cycloaddition of a resin 

bound azomethine ylide (Scheme 1a). The synthesis utilizes a series of hydroxybenzaldehydes attached to 

Wang's resin 1 via a Mitsunobu coupling followed by reaction with a variety of -amino esters 2 and N-phenyl-

maleimide. The reaction afforded resin-bound compounds 3 as a single component.6 Alternatively, Wang’s 

resin-bound dipolarophiles can be reacted with an in situ generated azomethine ylide formed from methyl 2-

(benzylideneamino)acetate, LiBr and DBU.7 

Substituted pyrrolidines were prepared by 1,3-dipolar cycloaddition of an in situ generated azomethine 

ylide with a trityl-resin-supported maleimide 4 (Scheme 1b) in the presence of methyl 2-amino-2-

phenylacetate 5 and benzaldehyde, at reflux with toluene and acetic acid. Cleavage of the product from the 

resin 6 with TFA afforded the desired pyrrolidines in 39% overall yield and >95% purity.8 

The direct precursor of azomethine ylides, an -silylimine, was linked to a Merrifield resin 7 (Scheme 

1c); by thermal 1,2-silatropy onto the imino nitrogen or by treatment with a trifluorosilane as a quaternization 

and desilylation reagent, the resulting 1,3-dipole was then reacted with N-phenyl-maleimide to give the resin-

linked five membered heterocycles which on cleavage from the resin afforded a range of pyrrolidine 
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derivatives.9 A similar 1,2-silatropic shift was applied at resin-bound -silylimine in a traceless synthesis of 

pyrrolidines.10 Other variants on the general illustrated protocol based on Wang’s11 or common 

hydroxymethyl-polystyrene resins12 are proposed in the literature offering a wide scenario of entries to simple 

pyrrolidines or bicyclic derivatives. 

 

 
 

Scheme 1. Synthetic approaches to bicyclic pyrrolidines through SPOS. 

 

A valid alternative to the proposed approaches to bicyclic pyrrolidines is represented by the solid phase 

cycloadditions of azomethine ylides generated on resins via 1,2-prototropy13 and trapped with suitable 

dipolarophiles. Specifically, a new linker strategy to bicyclic pyrrolidines is presented in the present work 

(Scheme 1d) based on the concept of REM resin approach.14 Starting from a suitably derivatized Wang’s resin, 
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the linker can be REgenerated after cleavage of the product and functionalized to start a new synthetic cycle 

via a Michael reaction. In the present work we will support a vinyl sulfone on a Wang’s resin able to undergo a 

Michael reaction with amino acid derivatives; the obtained adducts will serve for the azomethine ylide 

generation, conveniently trapped with N-methyl-maleimide. The results are presented and discussed in the 

light of the experimental conditions applied as well as the method chosen for the cleavage of the product and 

resin regeneration. To verify the synthetic pathway on solid phase, a solution chemistry study on model 

substrates was conducted in parallel, with complete characterization of the structures both in solution and on 

solid phase by means of spectroscopic investigations. 

 

 

Results and Discussion 
 

Part A – Solution chemistry. The preparation of the ethyl 4-vinylsulfonylbenzoate (18) is reported in 

literature15 and the general approach is shown in Scheme 2. By adapting the literature procedures, the 

synthetic pathway started from the commercially available 4-aminobenzoic acid (11) needed for the 

preparation of the 4-mercaptobenzoic acid (13); the well-documented procedure requires diazotization with in 

situ generated HNO2 and treatment with carbonodithionic acid O-ethyl ester potassium salt to afford the 

disulfide 12 and reduction with zinc in acetic acid solution. Alternatively, Na2S/S can be used in the first 

synthetic step to convert 11 into 12. The overall yields are around 40% after two steps.16,17 Derivatization with 

2-bromoethanol in the presence of two equivalents of NaHCO3 allowed us to obtain the sulfide 14 in 95% 

yield. 

The same reaction with 2-chloroethanol is slower and requires five days at rt to produce compound 14 

in just 38% yield. The dry compound 14 was then reacted with SOCl2 to obtain chloride 15, which was not 

isolated but immediately converted into the ester 16 in quantitative yield. Oxidation with H2O2/AcOH 

furnished the ethyl 4-(2-chloroethylsulfonyl)-benzoate (17) in 76% yield. Finally, base-promoted elimination 

with triethylamine afforded the desired vinyl-derivative 18 in 87% yield. All the compounds isolated were 

checked spectroscopically to verify the correct advancement of the synthetic steps; in particular, compound 

16 1H NMR spectrum showed the presence of the two methylenes of the sulfide chain as triplets at  3.30 and 

3.65 ppm; the chemical shifts slightly increase in the sulfonyl derivative 17 ( 3.55 and 3.76 ppm) while the 

presence of the –CH=CH2 double bond in 18 is demonstrated by the signals in the expected region at  6.10 

and 6.70 ppm. All the spectroscopic data are in nice keeping with those reported in literature.15-17 

The vinyl-sulfonyl ester 18 was then used in a Michael reaction with (D,L)-alanine methyl ester 19 

conducted in DMF as the solvent at room temperature to obtain the adduct 20 in 78% yield. The structure was 

confirmed through the analytical and spectroscopic data, in particular, in the 1H NMR spectrum (CDCl3) the 

presence of a singlet was found at  3.70 ppm, corresponding to the methoxy group of the alanine methyl 

ester moiety as well as the doublet at  1.26 ppm relative to the CH3-CH- of the amino acid fragment. 
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Scheme 2. Synthesis of 4-mercaptobenzoic acid (13), conversion into the 4-vinylsulfonylbenzoic acid (18) and 

reaction with (D,L)-alanine methyl ester (19). 

 

The azomethine ylide 1,3-dipolar cycloaddition reaction was conducted by heating a 1:1:1 mixture of 

20, benzaldehyde and N-methyl maleimide in refluxing toluene or xylene for four days affording the desired 

endo cycloadducts 21a,b as mixture ~2:1 of diastereoisomers in good yields (Scheme 3). 
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Scheme 3. Synthesis of the methyl 2-(2-((4-(ethoxycarbonyl)phenyl)sulfonyl)ethyl)-1,5-dimethyl-4,6-dioxo-3-

phenyloctahydropyrrolo[3,4-c]pyrrole-1-carboxylates 21a,b through in situ generated azomethine ylide 1,3-

dipolar cycloaddition to N-methyl maleimide. Arrows in blue indicate the NOE correlations for stereochemistry 

determination. 

 

The diastereoisomeric products were separated by column chromatography and fully characterized; 

the reaction in toluene afforded compound 21a in 43% yield along with 21b in 18% yields; negligible 

differences in terms of chemical yields were observed when the reaction was conducted in xylene as the 

solvent (21a : 21b, 41% : 20% yield). 

The structures of the two diastereoisomeric products 21a,b were attributed on the basis of their 

analytical and spectroscopic data. Noteworthy, in the 1H NMR spectrum of compound 21a, the signal of the 

benzylic proton in the position (3) is found at  4.33 ppm coupled with the adjacent proton in (3a) at the 

junction of the two pentatomic rings found at  3.44 ppm. That these two protons are located on the same 

side, as shown in Scheme 3, is a result of NOE experiments conducted for determining the stereochemistry of 

the molecule. Concerning compound 21b, the signal of the benzylic proton in (3) is found at  4.09 ppm 

coupled with the adjacent proton in (3a) at the junction of the two pentatomic rings found at  3.48 ppm. NOE 

experiments confirmed the relative position of these two protons with a new spatial correlation between the 

benzylic proton and the methyl group at the signal of the benzylic proton is found at  4.09 ppm coupled with 

the adjacent proton at the junction of the two pentatomic rings found at  1.44 ppm adjacent to –COOMe, 

defining in this way the stereochemistry of both the stereoisomers. These findings clearly indicate that the 

reaction proceeds according to the reported imine-azomethine ylide cycloaddition mechanism via an endo 

Transition State (TS).18,19 To corroborate the stereochemical assignments an X-ray analysis allowed to 

definitively attribute the structure to compound 21b and the ORTEP view is shown in Figure 2. 
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Figure 2. ORTEP representation of compound 21b. 

 

In order to apply the above described synthetic pathway to the SP version, a cleavage test was 

performed on the major stereoisomer 21a through its oxidation with mCPBA in chloroform solution at 0 °C for 

two days. The oxidation triggers the cleavage affording the nitrone 22, vinyl-sulfone 18 being the leaving 

group (Scheme 4). 

 

 
 

Scheme 4. Cleavage through oxidation and regeneration of the vinyl-sulfonyl benzoic ester. 

 

The nitrone 22 was obtained in 83% yield and the vinyl-sulfonyl ester 18 in 75% yield; the structure of 

nitrone 22 was consistent with the corresponding analytical and spectroscopic data and the method nicely fits 

the requirements for a REM resin synthetic protocol. 

 

Part B – Solid Phase chemistry. The synthesis of the 4-vinylsulfonylbenzoic acid (24) retraces four steps of the 

previously reported synthesis15-17 of the corresponding ethyl ester up to the non-isolated chloride 15 that is 

directly oxidized with H2O2 to give the sulfonyl-benzoic acid 23 in 55% yield (Scheme 5). Sulfur oxidation 

slightly shifts the 1H NMR signals of the dimethylene moiety at  3.85 and 3.95 ppm with respect to the values 

corresponding to the alcohol 14. 
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Scheme 5. Synthesis of the 4-vinylsulfonylbenzoic acid (24). 

 

The chloride 23 is then converted into the vinyl derivative 24 by simple treatment with triethylamine in 

chloroform solution, leading to the desired product in 82% yield. The presence of the vinyl group was verified 

by the 1H NMR spectrum; signals at  7.19 and 6.36 ppm clearly indicate the presence of a –CH=CH2 double 

bond. The 4-vinylsulfonylbenzoic acid (24) was then used to prepare the linker for the SPOS approach to 

azomethine ylide cycloadditions. 

Wang’s resin (p-benzyloxybenzyl alcohol resin, loading 0.7 mmol/g) W-OH, swollen in dry DCM, was 

coupled with 2.2 equivalents of 4-vinylsulfonylbenzoic acid (24) according to the standard DCC/DMAP coupling 

procedure (Scheme 6).20-22 The esterification on the resin was achieved after 24 h at rt under gentle stirring of 

the suspension and the linker characterization was conducted by gel-phase 13C NMR,20 FT-IR (Diffuse 

Reflectance, DR) and microanalyses. Juxtaposition of the 13C NMR spectra of the pure W-OH and the resin 25 

showed that the signals corresponding to the benzylic protons in W-OH are found at  65.7 ppm and are 

slightly shifted upfield at  65.6 ppm in 25. In the FT-IR spectra, the W-OH OH band at 3430 cm-1 disappeared 

and the new C=O band was found at 1723 cm-1 corresponding to the ester moiety. Finally, incorporation of 

sulfur in the resin was revealed by elemental analysis; for a 0.7 mmol/g loading resin, S requires 2.24%; found 

2.30%. The resin 25 was then submitted to the Michael reaction with the (D,L)-alanine methyl ester (19) in 

DMF at rt for two days. The analysis of the derivative 9 by FT-IR revealed the presence of the NH band at 3324 

cm-1; the presence of nitrogen was confirmed through microanalysis: N, 0.90% (required 0.98%). In the gel-

phase 13C NMR spectrum new signals were found corresponding to the alanine moiety included in the 

structure (see experimental). 

The cycloaddition reaction on solid phase was performed by swelling the Michael adduct 9 in dry 

toluene and adding two equivalents of benzaldehyde and N-methyl maleimide and boiling the suspension with 

gentle stirring for four days. Higher boiling point solvents (e.g. xylene) could not be used because of resin 

decomposition. 
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Scheme 6. SPOS of methyl (1R,3aS,6aR)-1,5-dimethyl-2-(λ1-oxidanyl)-4,6-dioxo-3-phenyl-1,3a,4,5,6,6a-

hexahydro-2λ4-pyrrolo[3,4-c]pyrrole-1-carboxylate (22). 

 

The elemental analysis of compound 10 (mixture of diastereoisomers) confirmed the increase of the 

nitrogen content from 0.90% to 1.1% (required 1.96%) and the FT-IR spectrum showed the carbonyl bands at 

1700, 1730 and 1760 cm-1. Diagnostic in the 13C NMR spectrum is the presence of the N-CH3 signal at  50.7 

ppm. The subsequent cleavage of the bicyclic pyrrolidine from the resin was secured by oxidation with mCPBA 

in chloroform; only nitrone 22 was isolated in pure form in 83% yield, found identical to the sample previously 

prepared through the solution chemistry pathway. The other could only be detected in very low amount 

(<4%), in the crude reaction mixture. Simultaneously, the vinyl-sulfone functionality on the resin 25 was 

restored as verified by 13C NMR spectrum that showed the same signal pattern of the original linker. 

To confirm the entire synthetic route on the resin, an alternative cleavage protocol was performed by 

transesterification. Scheme 7 shows the methodology applied, that consisting of treatment of resin 10 with 

one equivalent of NaCN in the presence of a large excess of Et3N. The mixture was heated at 64 °C for a couple 
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of days under gentle stirring. Simple filtration and washing left the Wang’s resin and the major 

diastereoisomer methyl ester 26 obtained in 87% yield. As before, the minor diastereosomer was detected in 

the crude reaction mixture. Analytical and spectroscopic data of 26 confirmed the assigned structure, found 

identical to the compound 21a except for the ester group. 

 

 
 

Scheme 7. Cleavage of methyl (1R,3R,3aS,6aR)-2-(2-((4-(methoxycarbonyl)phenyl)sulfonyl)ethyl)-1,5-dimethyl-

4,6-dioxo-3-phenyloctahydropyrrolo[3,4-c]pyrrole-1-carboxylate (26) from resin 10 through 

transesterification. 

 

 

Conclusions 
 

The SPOS of bicyclic pyrrolidines has been achieved using a new example of REM resin linker (Scheme 8). The 

validation of the methodology was achieved by designing the entire synthetic sequence and performing every 

single step in classical solution chemistry, subsequently transferred on the solid phase. The synthesis afforded 

the desired compounds according to robust and reliable protocols; the products were obtained in very good 

yields and fully characterized, also from the stereochemical point of view. 

The use of Wang’s resin as solid support to perform the designed syntheses is due the facility of 

attachment through standard methods of benzoic acid derivatives to the resin core. Moreover, Wang’s resin 

derivatives were easily characterized through simple spectroscopic techniques, available in every research 

laboratory. No synthetic problems arose when the solution methods were transferred on the solid support. All 

the reactions were replicated and performed in duplicate, affording the desired products in very good yields. 

The robustness of the protocol was hence confirmed also on the solid phase and possible variations were 

verified promptly. For example, the 4-vinyl-sulfinylbenzoic acid was also prepared and linked to the Wang’s 

resin but any attempt to perform the Michael addition of the alanine methyl ester failed, indicating that the 

presence of a sulfonyl group is mandatory for the key step of the synthesis. 

To summarize, the chemistry of 1,3-dipoles is widely employed in organic syntheses, and 1,3-dipoles 

are indeed very powerful tools to access a variety of heterocycles. Their use in SPOC, if properly designed, 
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deserves attention, in spite of the fact that difficulties in translating the solution procedures to SP can be 

significant. Experimental conditions must be properly regulated on solid phase since some aggressive reagents 

cannot be used in the presence of a polymeric support or of common solid phase linkers. 

The results reported here refer to the preparation of an example of a bicyclic pyrrolidine in the form of 

nitrone derivative, stable and easy to isolate. An alternative cleavage method was also examined. In both 

cases, the Wang’s resin used as solid support can be recycled. In particular, the oxidation protocol allowed 

demonstration of the great validity of the REM resin linker use in these synthetic approaches to this type of 

heterocycle. The resin 25 is ready to be re-used up to three times without substantial decrease of the chemical 

yields of the desired products. The synthesis of high-quality, diverse heterocyclic libraries should be the 

ultimate result of these and other on going investigations. 

 

 
 

Scheme 8. REM resin linker synthesis of bicyclic pyrrolidines. 

 

This SPOS example was developed at Leeds University with a Marie Curie Fellowship (Grant n. 

ERBFMBiCT961350) under the guidance of Prof. Ronald Grigg. 

The publication of these results once more represents a mark of gratitude I wish to address to a great 

Professor of Organic Chemistry. 
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Experimental Section 
 

General. All melting points (mp) were determined on a Koffler hot-stage apparatus and are uncorrected. 

Elemental analyses were done on a elemental analyzer Carlo Erba Mod. 1106. IR spectra (nujol mulls) were 

recorded on a spectrophotometer Philips PU 9706 and on a Perkin-Elmer FT-IR Paragon 100 in Diffuse 

Reflectance and absorbtions () are in cm-1. 1H and 13C NMR as well as other NMR spectra were recorded on a 

Bruker AC 250 and AM 400 spectrometers (solvents specified). Chemical shifts are expressed in ppm from 

internal tetramethylsilane () and coupling constants (J) are in Hertz (Hz): b, broad; s, singlet; bs, broad singlet; 

d, doublet; t, triplet; q, quartet; m, multiplet. Mass spectra were obtained from VG Autospec (70 eV). Column 

chromatography and tlc: silica gel H60 and Whatman PE SIL G/UV washed with Et2O/Et3N 9:1 and dried at rt 

prior to use; eluants: hexane/diethyl ether 9:1 to pure diethyl ether. 

 

Starting and reference materials. Carbonodithionic acid O-ethyl ester potassium salt, sodium nitrite, sodium 

sulfide and alanine methyl ester 19 were purchased from Sigma-Aldrich. Dry DMF was purchased from Sigma-

Aldrich and dry DCM was prepared by refluxing over LiAlH4. Other reagents and solvents were purchased from 

chemical suppliers and used without any further purification. 

All the synthetic steps for the preparation of compounds 12 to 18 are fully reported in literature.15-17 

Wang’s resin (p-benzyloxybenzyl alcohol resin, loading 0.7 mmol/g) W-OH was purchased from Novabiochem 

(100-200 mesh). 

Synthesis of the ethyl 4-((2-((1-methoxy-1-oxopropan-2-yl)amino)ethyl)sulfonyl)benzoate (20). To a solution 

of the ester 18 (7.21 g, 30 mmol) in dry DMF (50 mL), (D,L)-alanine ethyl ester 19 (4.64 g, 45 mmol) dissolved 

in dry DMF (50 mL) are added under stirring at rt. After 2 d the solution is diluted in benzene and evaporated 

to dryness. The residue was taken up with Et2O and washed with H2O and the organic layer dried over 

anhydrous MgSO4. Evaporation of the organic solvent afforded a pale yellow oil corresponding to the product 

20. Yield: 8.04 g (78%); pale yellow oil. IR NH 3330, C=O 1720 cm-1. 1H NMR (CDCl3, 250 MHz):  8.22 and 7.97 

(AA'BB' syst., 2H+2H, arom.), 4.42 (q, J 7 Hz, 2H, -OCH2CH3), 3.70 (s, 3H, -OCH3), 3.30 (m, 3H, -CH-Me and –CH2-

SO2-), 2.90 (m, 2H, -CH2-N), 1.85 (s, 1H, NH), 1.44 (t, 3H, J 7 Hz, -OCH2CH3), 1.26 (d, 3H, J 6 Hz, -CH-CH3). 13C 

NMR (CDCl3, 75 MHz):  175.1 and 164.7 (C=O), 142.6, 135.0, 130.1 and 127.9 (arom.), 61.6 (OCH2CH3), 56.1 

(CH3O), 56.0 (CH2N), 51.7 (CH-N), 41.0 (CH2-SO2), 18.7 (CH3CH), 14.0 (CH3CH2O). MS (m/z): 343 (1), 298 (3.8), 

284 (100). Anal. Calcd. for C15H21NO6S (343.39): C, 52.47; H, 6.16; N, 4.08. Found: C, 52.48; H, 6.20; N, 4.08. 

Synthesis of methyl 2-(2-((4-(ethoxycarbonyl)phenyl)sulfonyl)ethyl)-1,5-dimethyl-4,6-dioxo-3-

phenyloctahydropyrrolo[3,4-c]pyrrole-1-carboxylates (21a,b). In a round-bottom flask, compound 20 (2.06 g, 

6 mmol) was dissolved in dry toluene (30 mL) and benzaldehyde (0.64 g, 6 mmol) and N-methyl-maleimide 

(0.67 g, 6 mmol) were added. The solution was boiled for 4 ds. The organic solvent of the reaction mixture was 

then removed at reduced pressure leaving a residue that was submitted to chromatographic separation on 

silica to get rid of unreacted starting materials. Racemic cycloadducts (±)-21a,b were isolated and fully 

characterized. 

Methyl (1S,3S,3aR,6aS)-2-(2-((4-(ethoxycarbonyl)phenyl)sulfonyl)ethyl)-1,5-dimethyl-4,6-dioxo-3-phenyl-

octahydropyrrolo[3,4-c]pyrrole-1-carboxylate (±)-21a. Yield: 1.40 g (43%); white crystals from ethanol, mp 

123-124 °C. IR C=O 1690 cm-1. 1H NMR (CDCl3, 250 MHz):  8.08 and 7.61 (AA'BB' syst., 2H+2H, arom.), 7.23 

and 6.90 (m, 2H+3H, arom.), 4.45 (q, J 7 Hz, 2H, -OCH2CH3), 4.33 (d, J 6 Hz, 1H, CH-Ph), 3.79 (s, 3H, -OCH3), 3.44 

(t, J 6 Hz, 1H, -CH-CHPh), 3.32 (d, J 6 Hz, 1H, CH), 3.29 and 2.55 (m, 2H+2H, CH2-CH2), 2.85 (s, 3H, CH3-N), 1.68 

(s, 3H, CH3), 1.45 (t, 3H, J 7 Hz, -OCH2CH3). 13C NMR (CDCl3, 75 MHz):  174.9, 174.6, 172.8 and 164.8 (C=O), 

142.0, 136.7, 135.0, 130.2, 128.9, 128.5, 128.0 and 127.6 (arom.), 70.1 (C-Me), 69.0 (CH3O), 61.8 (OCH2CH3), 
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55.3 (CH2N), 52.4, 48.7 and 24.7 (CH), 50.7 (CH3-N), 41.2 (CH2-SO2), 19.5 (CH3C), 14.2 (CH3CH2O). MS (m/z): 542 

(35), 482 (100). Anal. Calcd. for C27H30N2O8S (542.60): C, 59.77; H, 5.57; N, 5.16. Found: C, 59.78; H, 5.24; N, 

5.18. 

Methyl (1R,3S,3aR,6aS)-2-(2-((4-(ethoxycarbonyl)phenyl)sulfonyl)ethyl)-1,5-dimethyl-4,6-dioxo-3-phenyl-

octahydropyrrolo[3,4-c]pyrrole-1-carboxylate (±)-21b. Yield: 0.59 g (18%); white crystals from ethanol, mp 

161-162 °C. IR C=O 1700 cm-1. 1H NMR (CDCl3, 250 MHz):  8.09 and 7.61 (AA'BB' syst., 2H+2H, arom.), 7.38 

and 6.92 (m, 2H+3H, arom.), 4.45 (q, J 7 Hz, 2H, -OCH2CH3), 4.09 (d, J 6 Hz, 1H, CH-Ph), 3.78 (s, 3H, -OCH3), 3.48 

(t, J 6 Hz, 1H, -CH-CHPh), 3.20 (d, J 6 Hz, 1H, CH), 3.59 and 2.45 (m, 2H+2H, CH2-CH2), 2.80 (s, 3H, CH3-N), 1.45 

(s, 3H, CH3), 1.44 (t, 3H, J 7 Hz, -OCH2CH3). 13C NMR (CDCl3, 75 MHz):  175.9, 174.6, 172.8 and 164.8 (C=O), 

141.1, 138.1, 136.0, 130.1, 129.1, 128.6, 127.6 and 127.1 (arom.), 70.1 (C-Me), 69.3 (CH3O), 61.7 (OCH2CH3), 

55.1 (CH2N), 52.3, 48.3 and 24.7 (CH), 54.3 (CH3-N), 43.4 (CH2-SO2), 16.3 (CH3C), 14.2 (CH3CH2O). MS (m/z): 542 

(6), 483 (100). Anal. Calcd. for C27H30N2O8S (542.60): C, 59.77; H, 5.57; N, 5.16. Found: C, 59.75; H, 5.60; N, 

5.15. 

Cleavage through oxidation and regeneration of the vinyl-sulfonyl benzoic ester 18. Compound 21a (0.22 g, 

0.4 mmol) is dissolved in CHCl3 (20 mL) and mCPBA (0.17 g, 1 mmol) was added portionwise to the cooled 

down solution (0 °C) under stirring. Temperature was then left to rise to ambient conditions and the reaction 

was continued for 2 ds. After this period of time, the solution was evaporated and the residue submitted to 

chromatographic purification, affording the nitrone 22 in 83% yield and the vinyl-sulfone 18 in 75% yield, 

found identical to the authentic sample previously prepared. 

Methyl (1S,3aR,6aS)-1,5-dimethyl-2-(λ1-oxidanyl)-4,6-dioxo-3-phenyl-1,3a,4,5,6,6a-hexahydro-2λ4-pyrrolo-

[3,4-c]pyrrole-1-carboxylate (22). Yield: 0.11 g (83%); pale yellow crystals from chloroform, mp 186 °C (dec.). 

IR C=O 1701 cm-1. 1H NMR (CDCl3, 250 MHz):  8.64 and 7.51 (m, 2H+3H, arom.), 4.72 (d, J 6 Hz, 1H, CH-CPh), 

3.73 (s, 3H, -OCH3), 3.53 (d, J 6 Hz, 1H, -CH-CMe), 3.01 (s, 3H, CH3-N), 2.00 (s, 3H, CH3). 13C NMR (CDCl3, 75 

MHz):  176.9, 174.8 and 174.1 (C=O), 136.8, 133.2, 131.2, 130.3, 128.9, 128.6, 127.6 and 126.9 (arom. and 

quaternary C), 52.8 (CH3O), 47.1 and 24.4 (CH), 46.3 (CH3-N), 22.1 (CH3C). MS (m/z): 316 (59), 257 (12), 241 

(34), 156 (73), 139 (100). Anal. Calcd. for C16H16N2O5 (316.31): C, 60.76; H, 5.10; N, 8.80. Found: C, 60.75; H, 

5.20; N, 8.85. 

Preparation of the vinyl-sulfone supported on Wang’s resin 25. Wang’s resin (p-benzyloxybenzyl alcohol 

resin, loading 0.7 mmol/g) W-OH was swollen in dry DCM (70 mL for 12 g of resin) for 5 minutes. A suspension 

of 2.2 equiv. of 4-vinylsulfonylbenzoic acid (24) in 70 mL DCM and 1 equiv. of dicyclohexylcarbodiimide (DCC) 

(disopropylcarbodiimide, DIPCD, can be used alternatively) was added under gentle stirring. After 10 minutes, 

10 mol% 4-dimethylaminopyridine (DMAP) was added to the suspension and stirring was continued for 2 ds. 

After this period of time, the resin was filtered and washed carefully several times in sequence with DCM, 

MeOH and Et2O and finally dried under vacuum. Elemental analysis: for a 0.7 mmol/g loading resin, S requires 

2.24%; found 2.30%. IR C=O 1723 cm-1. 13C NMR (CDCl3, 75 MHz):  65.6 (Ar-CH2-O). 

Preparation of resin 9. Resin 25 was swollen in DMF (50 mL for 3 g of resin) for 5 minutes and 2.5 equiv. of 

(D,L)-alanine methyl ester 19 were added under gentle stirring. After 2 ds at rt, the resin was filtered and 

washed carefully several times in sequence with DCM, MeOH and Et2O and finally dried under vacuum. 

Elemental analysis: for a 0.7 mmol/g loading resin, requires S, 2.24; N, 0.98%; found S, 2.20; N, 0.90%. 

IR NH 3324; C=O 1734 cm-1. 13C NMR (CDCl3, 75 MHz):  175.2 (C=O), 56.2 (CH2-O), 56.1 (CH3), 51.8 (CH-N), 

41.1 (CH2-SO2), 18.8 (CH3-CH). 

Cycloaddition reaction to prepare resin 10. Compound 9 was swollen in dry toluene (50 mL for 2 g of resin) 

for 5 minutes and 2 equiv. benzaldehyde and N-methyl-maleimide were added under gentle stirring. The 

suspension was boiled for 4 ds. The resin was then filtered and washed carefully several times in sequence 
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with DCM, MeOH and Et2O and finally dried under vacuum. Elemental analysis: for a 0.7 mmol/g loading resin, 

requires S, 2.24; N, 1.96%; found S, 2.00; N, 1.10%. IR C=O 1760, 1730 and 1700 cm-1. 13C NMR (CDCl3, 75 

MHz):  175.1 (C=O), 68.9 (CH3-O), 55.2 (CH2-N), 50.7 (CH3-N), 52.4, 48.7 and 24.7 (CH), 19.5 (CH3-C). 

Cleavage of nitrone 22 from resin 10 through oxidation reaction. Resin 10 was swollen in chloroform (50 mL 

for 2 g of resin) and 2.2 equiv. of mCPBA were added under gentle stirring at 0 °C. After 2 das at rt, the resin 25 

was then filtered and washed carefully several times in sequence with DCM, MeOH and Et2O and finally dried 

under vacuum. The resin 25 obtained from the cleabage was found identical to the original one upon 13C NMR 

control spectrum. Elemental analysis: for a 0.7 mmol/g loading resin, requires S, 2.24%; found S, 2.00%; 

nitrogen absent. From the organic solution, nitrone 22 was isolated in 83% yield, found identical to the sample 

previously obtained. The second diastereosomer is not reported here since it could be detected in very low 

amount (<4%) just in the crude reaction mixture. 

Cleavage by transesterification of resin 10. To a suspension of resin 10 in MeOH/THF 1:3 (50 mL for 2 g of 

resin), NaCN (1 equiv.) was added along with 7 equiv. Et3N. The micture was heated to 64 °C for 2 ds under 

gentle stirring. The resin was then filtered and washed carefully several times in sequence with DCM, MeOH 

and Et2O and finally dried under vacuum. The dried resin was found identical to the original Wang’s resin (13C 

NMR control spectrum) and from the organic solution, upon evaporation of the solvents, a solid crystallized 

from ethanol, corresponding to compound 26, fully characterized. The minor diastereosomer was only 

detected in the crude reaction mixture. 

Methyl (1R,3R,3aS,6aR)-2-(2-((4-(methoxycarbonyl)phenyl)sulfonyl)ethyl)-1,5-dimethyl-4,6-dioxo-3-phenyl-

octahydropyrrolo[3,4-c]pyrrole-1-carboxylate (26). Yield: 0.64 g (87%); colorless crystals from ethanol, mp 

120-121 °C. IR C=O 1691 cm-1. 1H NMR (CDCl3, 250 MHz):  8.05 and 7.62 (AA'BB' syst., 2H+2H, arom.), 7.28 

and 6.85 (m, 2H+3H, arom.), 4.34 (d, J 6 Hz, 1H, CH-Ph), 4.00 (s, 3H, -OCH3), 3.75 (s, 3H, CH3O-), 3.44 (t, J 6 Hz, 

1H, -CH-CHPh), 3.32 (d, J 6 Hz, 1H, CH), 3.29 and 2.55 (m, 2H+2H, CH2-CH2), 2.85 (s, 3H, CH3-N), 1.65 (s, 3H, 

CH3). 13C NMR (CDCl3, 75 MHz):  174.9, 174.6, 172.8 and 165.3 (C=O), 140.0, 136.7, 134.6, 130.2, 129.0, 128.8, 

128.5 and 127.6 (arom.), 70.1 (C-Me), 69.2 (CH3O), 69.0 (OCH3), 55.2 (CH2N), 52.4, 48.7 and 24.7 (CH), 50.7 

(CH3-N), 41.2 (CH2-SO2), 19.5 (CH3C). MS (m/z): 528 (5), 513 (10), 497 (62), 469 (100). Anal. Calcd. for 

C26H28N2O8S (528.58): C, 59.08; H, 5.34; N, 5.30. Found: C, 59.10; H, 5.38; N, 5.28. 

Single crystal X-ray diffraction analysis of compound 21a. All crystallographic measurements were carried out 

at ambient temperature on a Stoe STADI4 diffractometer operating in the - scan mode using graphite 

monochromated Copper-K X-radiation ( 1.54184 Å). The data were corrected for Lorentz and polarization 

factors and for absorption (based on azimuthal psi-scans). The structure was solved by direct methods using 

SHELX S-8623 and refined by full-matrix least-squares (based on F2) using SHELX S-93.24 All non-hydrogen atoms 

were refined with anisotropic displacement parameters. All hydrogen atoms were constrained to calculated 

positions (C-H 0.95, 0.98, 1.00 and 0.99 for phenyl, methyl, methane and methylene) and were assigned fixed 

anisotropic thermal parameters of n(Ueq) of the parent non-hydrogen atom, where n was 1.5 for methyl 

hydrogen atoms and 1.2 for all others. The weighting scheme w = [2(F0)+(0.045P)2+1.1987P]-1 was used. An 

ORTEP25 representation of the molecular structure of 21a is given (see text). 

CCDC Deposition Number: 2108295. 

 

 

Acknowledgements 
 

Financial support by University of Leeds and Marie Curie Fellowship (Grant n. ERBFMBiCT961350) are 

gratefully acknowledged. Thank are also due to University of Pavia. 



Arkivoc 2021, x, 90-105   Quadrelli, P. 

 

 Page 104  ©AUTHOR(S) 

A warm thank-you to Prof. R. Grigg for the opportunity given to join his research group at Leeds University. 

Thanks are due to Dr. V. Sridharan for the constant help in the experimental work, Dr. B. Watson for NMR 

spectra, Mrs. T. Marinko-Covell for MS spectra and Mr C. Huscroft for microanalyses. Dr. M. Thornton-Pett is 

gratefully acknowledged for X-ray analysis. 

 

 

Supplementary Material 
 

X-ray diffraction analysis of compound 21a is given in the supplementary material file associated with this 

paper. 

 

 

References 

 

1. Narayan, R.; Potowski, M.; Jia, Z.-J.; Antonchick, A. P.; Waldmann, H. Acc. Chem. Res. 2014, 47, 1296. 

https://doi.org/10.1021/ar400286b 

2. Najera, C.; Sansano, J. M. Angew. Chem. Int. Ed. 2005, 44, 6272. 

https://doi.org/10.1002/anie.200501074 

3. Boruah, M.; Konwar, D.; Sharma, S. D. Tetrahedron Lett. 2007, 48, 4535. 

https://doi.org/10.1016/j.tetlet.2007.04.131 

4. Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765. 

https://doi.org/10.1021/cr040004c 

5. Gallop, M. A.; Barrett, R. W.; Dover, W. J.; Fodor, S. P.; Gordon, E. M. J. Med. Chem. 1994, 37, 1233. 

https://doi.org/10.1021/jm00035a001 

6. Hamper, B. C.; Dukesherer, D. R.; South, M. S. Tetrahedron Lett. 1996, 37, 3671. 

https://doi.org/10.1016/0040-4039(96)00659-4 

7. Hollinshead, S. P. Tetrahedron Lett. 1996, 37, 9157. 

https://doi.org/10.1016/S0040-4039(96)02147-8 

8. Barrett, A. G. M.; Boffey, R. J.; Frederiksen, M. U.; Newton, C. G.; Roberts, R. S. Tetrahedron Lett. 2001, 42, 

5579. 

https://doi.org/10.1016/S0040-4039(01)01061-9 

9. Okada, H.; Akaki, T.; Oderaotoshi, Y.; Minakata, S.; Komatsu, M. Tetrahedron 2003, 59, 197. 

https://doi.org/10.1016/S0040-4020(02)01473-4 

10. Komatsu, M.; Okada, H.; Akaki, T.; Oderaotoshi, Y.; Minakata, S. Org. Lett. 2002, 4, 3505. 

https://doi.org/10.1021/ol026634n 

11. Bar-Nir, B. B.-A.; Portnoy, M. Heterocycles 2006, 67, 511. 

https://doi.org/10.3987/COM-05-S(T)47 

12. Peng, G.; Sohn, A.; Gallop, M. A. J. Org. Chem. 1999, 64, 8342. 

https://doi.org/10.1021/jo990969+ 

13. Grigg, R.; Sridharan, V. Advances in Cycloaddition 1993, 3, 161. 

14. Brown, A. R.; Rees, D. C.; Rankovic, Z.; Morphy, J. R. J. Am. Chem. Soc. 1997, 119, 3288. 

https://doi.org/10.1021/ja963829f 

15. Horner, L.; Lindel, H. Phosphorous and Sulfur 1983, 15, 1. 

https://doi.org/10.1080/03086648308073274 

https://doi.org/10.1021/ar400286b
https://doi.org/10.1002/anie.200501074
https://doi.org/10.1016/j.tetlet.2007.04.131
https://doi.org/10.1021/cr040004c
https://doi.org/10.1021/jm00035a001
https://doi.org/10.1016/0040-4039(96)00659-4
https://doi.org/10.1016/S0040-4039(96)02147-8
https://doi.org/10.1016/S0040-4039(01)01061-9
https://doi.org/10.1016/S0040-4020(02)01473-4
https://doi.org/10.1021/ol026634n
https://doi.org/10.3987/COM-05-S(T)47
https://doi.org/10.1021/jo990969+
https://doi.org/10.1021/ja963829f
https://doi.org/10.1080/03086648308073274


Arkivoc 2021, x, 90-105   Quadrelli, P. 

 

 Page 105  ©AUTHOR(S) 

16. Werbel, L. M.; Newton, L.; Elslager, E. F. J. Heteroc. Chem. 1980, 17, 497. 

https://doi.org/10.1002/jhet.5570170315 

17. Campaigne, E.; Meyer, W. W. J. Org. Chem. 1962, 27, 2835. 

https://doi.org/10.1021/jo01055a028 

18. Grigg, R.; Sridharan, V. Advances in Cycloadditions Curran, D. J. Ed.; A. I: Press, 1993, Vol. 3, pp. 161-204. 

19. Grigg, R.; Montgomery, J.; Somasunderarm, A. Tetrahedron 1992, 48, 10431 and references therein. 

https://doi.org/10.1016/S0040-4020(01)88346-0 

20. Faita, G.; Mella, M.; Mortoni, A.; Paio, A.; Quadrelli, P.; Seneci, P. Eur. J. Org. Chem. 2002, 1175. 

https://doi.org/10.1002/1099-0690(200204)2002:7<1175::AID-EJOC1175>3.0.CO;2-Z 

21. Quadrelli, P.; Scrocchi, R.; Piccanello, A.; Caramella, P. J. Comb. Chem. 2005, 7, 887. 

https://doi.org/10.1021/cc050056v 

22. Joshi, P. B.; Memeo, M. G.; Quadrelli, P. Tetrahedron Lett. 2017, 58, 3271. 

https://doi.org/10.1016/j.tetlet.2017.07.026 

23. Sheldrick, G. M. Acta Crystallogr. Sect. A. 1990, 46, 467. 

https://doi.org/10.1107/S010876739000027 

24. Sheldrick, G. M. SHELXL-93, A program for crystal structure refinement, University of Göttingen, Germany, 

1993. 

25. Jonhson, C. K. ORTEPII, Report ORNL-5138, Oak Ridge National Laboratory, Tennesee (USA), 1976. 

 

 

This paper is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) 

license (http://creativecommons.org/licenses/by/4.0/) 

https://doi.org/10.1002/jhet.5570170315
https://doi.org/10.1021/jo01055a028
https://doi.org/10.1016/S0040-4020(01)88346-0
https://doi.org/10.1002/1099-0690(200204)2002:7%3c1175::AID-EJOC1175%3e3.0.CO;2-Z
https://doi.org/10.1021/cc050056v
https://doi.org/10.1016/j.tetlet.2017.07.026
https://doi.org/10.1107/S010876739000027
http://creativecommons.org/licenses/by/4.0/

