Supplementary Material

Rings of Rings: Calixpyrrole Cyclotrimers

Rakia Saidi,^{1,2} Franz H. Kohnke,^{2*} Marco Ponassi,³ Camillo Rosano,³ Aldo Profumo³

¹Laboratory of Organic Chemistry LR17ES08, University of Sciences of Sfax, 3000 Sfax Tunisia ²Dipartimento CHIBIOFARAM, Universita` di Messina, viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy ³IRCCS Policlinico San Martino, Largo R. Benzi 10, I-16132 Genova, Italy Email: <u>franz@unime.it</u>

Table of Contents

Figure S1a. ¹ H NMR (500 MHz, CDCl ₃) for compound 3 with resonances assignments	S3
Figure S1b. ¹ H NMR (500 MHz, CDCl ₃) for compound 3 (Expansion)	S3
Figure S1c ¹³ C NMR (125 MHz, CDCl ₃) for compound 3	S4
Figure S1d. ESI-MS for compound 3	S4
Figure S2a. ¹ H NMR (500 MHz, CD ₂ Cl ₂) for compound <i>anti-</i> 4	S5
Figure S2b. ¹³ C NMR (125 MHz, CD ₂ Cl ₂) for compound <i>anti-</i> 4	S6
Figure S2c. HSQC (CD ₂ Cl ₂) for compound anti-4	S7
Figure S2d. ESI-MS for compound <i>anti-</i> 4	S8
Figure S3a. ¹ H NMR (500 MHz, CD ₂ Cl ₂) for compound <i>syn-</i> 4 .	S8
Figure S3b. ¹³ C NMR (125 MHz, CD ₂ Cl ₂) for compound <i>syn-</i> 4	S9
Figure S3c. HSQC (CD ₂ Cl ₂) for compound <i>syn-</i> 4	S10
Figure S4a. ¹ H NMR (500 MHz, CDCl ₃ /CD ₃ OD 6:1) for compound <i>anti</i> - 5	S11
Figure S3d. ESI-MS for compound <i>syn-</i> 4	S11
Figure S4b. ¹³ C NMR (500 MHz, CDCl ₃ /CD ₃ OD 6:1) for compound <i>anti-</i> 5	S12
Figure S4c. HSQC (CDCl ₃ /CD ₃ OD 6:1) for compound <i>anti</i> -5	S13
Figure S4d. ESI-MS for compound <i>anti-</i> 5 .	S14
Figure S5a. ¹ H NMR (500 MHz, CDCl ₃ /CD ₃ OD 6:1) for compound <i>syn</i> - 5	S14
Figure S5b. ¹³ C NMR (125 MHz, CDCl ₃ /CD ₃ OD 6:1) for compound <i>syn</i> - 5	S15
Figure S5c. ESI-MS for compound <i>syn-</i> 5	S15
Figure S6a ¹ H NMR (500 MHz, CD ₂ Cl ₂) for compound 7	S16
Figure S6b. APT ¹³ C NMR (125 MHz, CD ₂ Cl ₂) for compound 7	S17
Figure S6c HSQC (CD ₂ Cl ₂) for compound 7	S18
Figure S6d. ESI-MS for compound 7	S19
Figure S7a. ¹ H NMR (500 MHz, CDCl ₃ ,) for compound 8	S20
Figure S7b. ¹³ C HNMR (125 MHz, CDCl ₃) for compound 8	S21
Figure S7c. APT ¹³ C NMR (125 MHz, CDCl ₃) for compound 8	S22
Figure S7d. HSQC (CDCl₃) for compound 8	S23
Figure S7e. ¹ H NMR (500MHz, DMSO-d ₆) for compound 8	S24
Figure S8a ¹ H NMR (500 MHz, DMSO-d ₆) for compound 10 with assignments	S25

Figure S8b ¹ H NMR (500 MHz, CD ₂ Cl ₂) for compound 10	S26
Figure S8c. COSY (500 MHz, CD ₂ Cl ₂) Partial spectrum for compound 10	S27
Figure S8d. ¹³ C NMR (500 MHz, CD ₂ Cl ₂) for compound 10	S28
Figure S8e. HSQC (CD ₂ Cl ₂) for compound 10	S29
Figure S9a. ¹ H NMR (500 MHz, CD ₂ Cl ₂) for compound <i>anti-anti-anti-</i> 11	S30
Figure S9b. ¹ H NMR COSY (500 MHz, CD ₂ Cl ₂) Partial spectrum for compound anti-anti-anti-11	S30
Figure S9c. ¹³ C NMR (125 MHz, CD ₂ Cl ₂) for compound <i>anti-anti-anti-</i> 11	S31
Figure S9d. HSQC (CD ₂ Cl ₂) for compound anti-anti-anti-11	S32
Figure S9e. ESI-MS for compound anti-anti-anti-11	S33
Figure S10a. ¹ H NMR (500 MHz, DMSO-d ₆) for <i>syn-syn-syn-</i> 11	S34
Figure S10b. ¹ H NMR (500 MHz, DMSO-d ₆) for <i>syn-syn-syn-</i> 11	S35
Figure S10c. ¹³ C NMR (125 MHz, DMSO-d ₆) for <i>syn-syn-</i> 11	S36
Figure S10d. ESI-MS for <i>syn-syn-</i> 11	S36
Figure S11a. ¹ H NMR (DMSO-d ₆) for 1,3-dichloro-4,6-dinitrobenzene 9	S37

Figure S1a. ¹H NMR (500 MHz, CDCl₃) for compound **3** with resonances assignments.

Figure S1b. ¹H NMR (500 MHz, CDCl₃) for compound **3** (Expansion).

Figure S1c $^{\rm 13}C$ NMR (125 MHz, CDCl_3) for compound 3.

Figure S2a. ¹H NMR (500 MHz, CD₂Cl₂) for compound *anti*-**4** with resonances assignments. * Adventitious water.

Figure S2b. ¹³C NMR (125 MHz, CD₂Cl₂) for compound *anti-*4.

Figure S2c. HSQC (CD₂Cl₂) for compound anti-4.

Figure S2d. ESI-MS for compound *anti-***4**. Calc. *m*/*z* for C₅₂H₅₂N₄O₂ 764.4090.

Figure S3a. ¹H NMR (500 MHz, CD₂Cl₂) for compound *syn*-**4** with resonances assignments. (*) Impurities from solvent; (§) water.

Figure S3b. ¹³C NMR (125 MHz, CD₂Cl₂) for compound syn-4.

Figure S3c. HSQC (CD₂Cl₂) for compound syn-4.

Figure S3d. ESI-MS for compound *syn*-**4**. Calc. *m*/*z* for C₅₂H₅₂N₄O₂ 764.4090; (calc. for M+[HCOO⁻]: 809.4066).

Figure S4a. ¹H NMR (500 MHz, CDCl₃/CD₃OD 6:1) for compound *anti*-**5** with assignments.

Figure S4b. ¹³C NMR (500 MHz, CDCl₃/CD₃OD 6:1) for compound *anti*-5.

Figure S4c. HSQC (CDCl₃/CD₃OD 6:1) for compound *anti*-5.

Figure S4d. ESI-MS for compound *anti*-**5**. Calc. *m*/*z* for C₃₈H₄₀N₄O₂ 584.3151.

Figure S5a. ¹H NMR (500 MHz, CDCl₃/CD₃OD 6:1) for compound *syn*-**5** with resonances assignments.

Figure S5b. ¹³C NMR (125 MHz, CDCl₃/CD₃OD 6:1) for compound *syn*-5.

Figure S5c. ESI-MS for compound *syn*-**5**. Calc. m/z for C₃₈H₄₀N₄O₂ 584.3151.

Figure S6a ¹H NMR (500 MHz, CD₂Cl₂) for compound **7**. § Adventitious water; * solvent impurity.

Figure S6b. APT ¹³C NMR (125 MHz, CD₂Cl₂) for compound **7**.

Figure S6c. HSQC (CD₂Cl₂) for compound 7.

Figure S6d. ESI-MS for compound **7**. Calc. *m*/*z* for C₄₀H₄₄N₄O: 596.3515.

Figure S7a. ¹H NMR (500 MHz, CDCl₃,) for compound 8. *MeOH solvent.

Figure S7b. ¹³C HNMR (125 MHz, CDCl₃) for compound 8. * Methanol.

Figure S7c. APT ¹³C NMR (125 MHz, CDCl₃) for compound **8.** * Methanol; the two quaternary carbon atoms at 35.4 ppm are not resolved ad resonate a single signal.

Figure S7d. HSQC (CDCl₃) for compound 8.

Figure S7e. ¹H NMR (500MHz, DMSO-d₆) for compound **8**. * Ethyl acetate, § water.

Figure S8a. ¹H NMR (500 MHz, DMSO-d₆) for compound **10** with assignments.

Figure S8b. ¹H NMR (500 MHz, CD₂Cl₂) for compound **10**.

Figure S8c. COSY (500 MHz, CD₂Cl₂) Partial spectrum for compound **10** showing the correlation between the pyrrole b-CH resonances and the NH resonances contained in the signals system at 7.00-7.35 ppm.

Figure S8d. ^{13}C NMR (500 MHz, CD_2Cl_2) for compound 10.

Figure S8e. HSQC (CD₂Cl₂) for compound 10.

Figure S9a. ¹H NMR (500 MHz, CD₂Cl₂) for compound *anti-anti-anti-***11**. * Solvent impurity.

Figure S9b. ¹H NMR COSY (500 MHz, CD₂Cl₂) Partial spectrum for compound *anti-anti-anti-11* showing the correlation between the pyrrole b-CH resonances and the resonance at 7.17 ppm for the NH units.

Figure S9c. ¹³C NMR (125 MHz, CD₂Cl₂) for compound anti-anti-11.

Figure S9d. HSQC (CD₂Cl₂) for compound *anti-anti-anti-11*. The arrows are to evidence the correlated signals (red dots) in the noisy background. The inset expansion shows that the strong resonance at 1.52 pp contains the four symmetry-related CH₃ units under the water signal.

Figure S9e. ESI-MS for compound *anti-anti-anti-11*. Calculated m/z for C₁₃₂H₁₂₀N₁₈O₁₈: 2244.9028 and for C₁₃₂H₁₂₀N₁₈O₁₈CI: 2279.9028.

Figure S10a. ¹H NMR (500 MHz, DMSO-d₆) for *syn-syn-***11**. The peak at 5.75 ppm overlapping one set of the b-pyrrole resonances is DCM contaminant in the DMSO solvent; § water; * other solvent impurity (see ref. R1).

Figure S10b. ¹H NMR (500 MHz, DMSO-d₆) for *syn-syn-syn-***11** in the presence of molar excess of TBACI. The peak at 5.75 ppm overlapping one set of the b-pyrrole resonances is DCM contaminant in the DMSO solvent (see ref. R1).

Figure S10c. ¹³C NMR (125 MHz, DMSO-d₆) for *syn-syn-***11**. The peak at 54.91 ppm is DCM.

Figure S10d. ESI-MS for *syn-syn-***11**. Calc. *m/z* for C₁₃₂H₁₂₀N₁₈O₁₈: 2244.9028 and for C₁₃₂H₁₂₀N₁₈O₁₈Cl: 2279.9028.

Figure S11a. ¹H NMR (DMSO-d₆) for 1,3-dichloro-4,6-dinitrobenzene 9.

References

 R1 Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. *Organometallics* 2010, *29*, 2176-2179. <u>https://doi.org/10.1021/om100106e</u>