Transition-metal-free visible light-promoted photoredox oxidative dehydrogenative cyclization: expeditious approach to 1,2,4-thiadiazoles

Zhiqiang Xiong, Qihao Zhong, Shouri Sheng, and Junmin Chen*

College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
Email: jxuchenjm@163.com

Received 06-22-2021 Accepted Manuscript 08-15-2021 Published on line 08-25-2021

Abstract

A novel visible-light-catalyzed oxidative N-S bond formation for the synthesis of 3,5-disubstituted 1,2,4-thiadiazoles has been developed. This protocol features a metal-free approach, green oxidant, room temperature process, broad substrate scope, good functional group tolerance, excellent yields and a one-pot reaction without the isolation of the intermediates.

Keywords: Metal-free, photoredox, oxidative S-N bond formation, 1,2,4-thiadiazole
Introduction

Thiadiazoles are an important class of five-membered heterocyclic motifs containing two nitrogen atoms and a sulfur atom, that are associated with a broad spectrum of biological and pharmacological activities. Among them, the 1,3,4-thiadiazoles have emerged as an important structural moiety present in a large number of functionalized molecules with a broad range of biological activities, such as anticancer, antimicrobial, anticonvulsant, fungicidal, anthepatitis B virus, and anti-HIV activity. Moreover, they are also found in valuable pharmaceuticals, including sitagliptin, maraviroc, trizaolam, deferasirox, and cefozopran (Figure 1).

![Figure 1](image)

Figure 1. Selected bioactive molecules that contain 1,3,4-thiadazole skeletons.

Therefore, the synthesis of 1,2,4-thiadiazole derivatives has received considerable attention. The traditional method for the synthesis of 3,5-disubstituted 1,2,4-thiadiazoles relies on the oxidative dimerization reaction of thioamides using various oxidants (Scheme 1, a). Recently, alternative methods were developed through intramolecular oxidative dehydrogenative cyclization by employing transition-metal or stoichiometric amount of oxidants such as hypervalent iodine (III), I2, or O2 (Scheme 1, b). Most recently, an elegant protocol has been published via the electro-oxidative intramolecular dehydrogenative N-S bond formation of imidoyl thioureas (Scheme 1, c). Despite major progress in the field, the use of transition-metal catalysts or oxidants is still standard, which affects atom economy and environmental issues. Therefore, it is desirable to develop a more practical and environmentally friendly method for the synthesis of 3,5-disubstituted 1,2,4-thiadiazoles.

![Scheme 1](image)

Scheme 1. Different approaches to functionalized 1,2,4-thiadiazoles.
In recent years, visible-light photoredox catalysis has emerged as a powerful synthetic tool for mild and environmentally benign organic transformations.33-39 These attractive synthetic reactions are mainly spurred by exogenous photocatalysts to facilitate the conversion of visible light into chemical energy under exceptionally mild conditions. A variety of elegant photocatalyzed reactions for the construction of C-C and C-heteroatom bonds have been well established using visible-light using transition metal complexes or organic dyes as photoredox catalysts.40-48 Meanwhile, the application of photoredox catalysis for heteroatom-heteroatom bond formation has attracted a lot of attention and has become a promising green approach to produce final products.49-52 Herein we report a direct and environmentally friendly method for the synthesis of 3-substituted-5-amino-1,2,4-thiadiazoles using Rhodamine 6G as an organophotoredox catalyst irradiated with blue LED light under an air atmosphere at room temperature (Scheme 1, d).

Results and Discussion

We initiated our studies by choosing \(N \)-(phenylcarbamothioyl)benzimidamide (1a) as a model substrate in the presence of 0.5 mol % of fac-Ir(bpy)\(_3\) in CH\(_3\)OH at room temperature under air atmosphere. After 8 h of irradiation with a 18 W blue LED light, the desired dehydrogenative cyclization product 2a was obtained in 63% yield (Table 1, entry 1). Encouraged by this promising result, we next surveyed a range of photocatalysts under the same conditions (Table 1, entries 2-7). We found that the Ru(bpy)\(_3\)Cl\(_2\) photocatalyst can slightly improve the efficiency for generation of 2a (71%, Table 1, entry 2). To develop a metal-free protocol, we then examined various organic dyes including eosin Y, methylene blue, rose bengal, 3DPAFIN (1,3-dicyano-2,4,5,6-tetrakis(diphenylamino)benzene), and Rhodamine 6G (Table 1, entries 3-7). These results showed that the organic photocatalyst rhodamine 6G provided the best result (87%, Table 1, entry 7). We then screened the reaction in various solvents such as CH\(_3\)CN, DMF, CH\(_2\)Cl\(_2\), CH\(_3\)CH\(_2\)OH, and 1,4-dioxane (Table 1, entries 8-12). Interestingly, we found that these solvents can promote this reaction in good yield and that CH\(_3\)OH was found to be the best choice. The reaction time was examined and the yield did not improve (88%, Table 1, entry 13). The amount of the photocatalyst was also investigated, and it was found that 0.5 mol % catalyst loading was sufficient to furnish the product in excellent yields (Table 1, entries 14 and 15). Performing the reaction under oxygen atmosphere did not improve the product yield (Table 1, entry 16). Control experiments showed that the presence of the photocatalyst, air, and the light source is necessary for this transformation to proceed (Table 1, entries 17-19). Finally, we attempted to carry out the nucleophilic addition and oxidative cyclization in a one-pot fashion. To our delight, the desired product 2a was also obtained in similar yield when the imidoyl thiourea 1a was formed in a preceding step from an aryl isocyanate in the same reaction vessel without isolation and under the optimal reaction conditions (Table 1, entry 20).
Table 1. Screening of optimal reaction conditionsa,b,c

<table>
<thead>
<tr>
<th>Entrya</th>
<th>Photocatalyst</th>
<th>Solvent</th>
<th>Yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>fac-Ir(bpy)$_3$</td>
<td>CH$_3$OH</td>
<td>63</td>
</tr>
<tr>
<td>2</td>
<td>Ru(bpy)$_3$Cl$_2$</td>
<td>CH$_3$OH</td>
<td>71</td>
</tr>
<tr>
<td>3</td>
<td>Eosin Y</td>
<td>CH$_3$OH</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>Methylene blue</td>
<td>CH$_3$OH</td>
<td>68</td>
</tr>
<tr>
<td>5</td>
<td>Rose bengal</td>
<td>CH$_3$OH</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>3DPAFIN</td>
<td>CH$_3$OH</td>
<td>79</td>
</tr>
<tr>
<td>7</td>
<td>Rhodamine 6G</td>
<td>CH$_3$OH</td>
<td>87</td>
</tr>
<tr>
<td>8</td>
<td>Rhodamine 6G</td>
<td>CH$_3$CN</td>
<td>81</td>
</tr>
<tr>
<td>9</td>
<td>Rhodamine 6G</td>
<td>DMF</td>
<td>57</td>
</tr>
<tr>
<td>10</td>
<td>Rhodamine 6G</td>
<td>CH$_2$Cl$_2$</td>
<td>65</td>
</tr>
<tr>
<td>11</td>
<td>Rhodamine 6G</td>
<td>CH$_3$CH$_2$OH</td>
<td>73</td>
</tr>
<tr>
<td>12</td>
<td>Rhodamine 6G</td>
<td>1,4-dioxane</td>
<td>71</td>
</tr>
<tr>
<td>13c</td>
<td>Rhodamine 6G</td>
<td>CH$_3$OH</td>
<td>88</td>
</tr>
<tr>
<td>14d</td>
<td>Rhodamine 6G</td>
<td>CH$_3$OH</td>
<td>78</td>
</tr>
<tr>
<td>15e</td>
<td>Rhodamine 6G</td>
<td>CH$_3$OH</td>
<td>89</td>
</tr>
<tr>
<td>16f</td>
<td>Rhodamine 6G</td>
<td>CH$_3$OH</td>
<td>88</td>
</tr>
<tr>
<td>17g</td>
<td>Rhodamine 6G</td>
<td>CH$_3$OH</td>
<td>0</td>
</tr>
<tr>
<td>18h</td>
<td>Rhodamine 6G</td>
<td>CH$_3$OH</td>
<td>trace</td>
</tr>
<tr>
<td>19i</td>
<td>Rhodamine 6G</td>
<td>CH$_3$OH</td>
<td>trace</td>
</tr>
<tr>
<td>20j</td>
<td>Rhodamine 6G</td>
<td>CH$_3$OH</td>
<td>87</td>
</tr>
</tbody>
</table>

aReaction conditions: imidoyl thiourea (1a, 0.2 mmol), and photocatalyst (0.5 mol %) in solvent (2 ml) were irradiated with 18W blue LEDs at room temperature in the open air for 12 h. bIsolated yields. cReaction time for 12h. dPhotocatalyst (0.25 mol %); ePhotocatalyst (1.0 mol %); fThe reaction was conducted under O$_2$. gThe reaction was performed in the dark. hThe reaction was conducted under N$_2$. iReaction was performed without a catalyst. jOne-pot protocol. 3DPAFIN = 1,3-dicyano-2,4,5,6-tetrakis(diphenylamino)benzene.

With the optimal conditions (Table 1, entry 7) in hand, we next probed the scope and generality of this intramolecular oxidative S-N bond formation approach to a variety of 3-substituted-5-amino-1,2,4-thiadiazoles.
in a one-pot fashion and the results are summarized in Scheme 2. First, we investigated the scope of the R substituent on aryl isothiocyanates. Various electron-donating and withdrawing substituents including p-Me, p-OMe, p-F, p-Cl, p-Br, p-1, m-Me, and m-Cl, were well-tolerated, affording the corresponding 1,2,4-thiadiazoles in good to excellent yields (2a-2i). Meanwhile, the o-methyl substituted isothiocyanates 1j had little influence on the reaction and afforded the desired product 2j in 73% yield.

Table 2. One-pot synthesis of 3-substituted-5-amino-1,2,4-thiadiazoles via in situ generated Imidoyl Thiourea

\[
\text{NH}_2H_2 + R^2 \text{-NCS} \xrightarrow{\text{NEt}_3, \text{MeOH, rt}} \text{NH-S-N} \quad \text{R}^2 \\
\xrightarrow{\text{Rhodamine 6G (0.5 mol%)}, \text{MeOH, rt, 8h, open air 18W blue LED}} \text{NH-S-N} \quad \text{R}^2
\]

| | 2a, 87% | 2b, 85% | 2c, 81% | 2d, 85% | 2e, 83% | 2f, 82% | 2g, 78% | 2h, 79% | 2i, 77% | 2j, 73% | 2k, 76% | 2l, 72% | 2m, 79% | 2n, 71% | 2o, 77% | 2p, 74% | 2q, 84% | 2r, 88% | 2s, 75% | 2t, 87% | 2u, 71% | 2v, 76% | 2w, 69% | 2x, 72% |
|---|---------|

*Reaction conditions: imidoyl thiourea (1a, 0.2 mmol), and rhodamine 6G (0.5 mol %) in CH$_3$OH (2 ml) were irradiated with 18W blue LEDs at room temperature in the open air for 8 h. *\(^{\text{Isolated yields}}\)*
Next, we investigated the scope of the R substituent on phenyl amidines. A range of substrates bearing electron-donating or electron-withdrawing group-substituted aromatic rings all underwent the oxidative dehydrogenative cyclization smoothly and gave the desired products in very good yields (2k-2m). Moreover, both various substituted amidines and isothiocyanates could provide the desired products in 77% and 74% yield (2o and 2p), respectively. Furthermore, alkyl isothiocyanates such as isopropyl isothiocyanate were compatible with the optimized conditions as well, affording the desired products 2q-2s in excellent yields. Interestingly, alkyl amidines such as cyclopropyl and methyl amide reacted smoothly, affording the desired products 2t-x in very high yields.

Conclusions

In conclusion, we have developed a metal-free, visible-light induced organophotoredox-catalyzed dehydrogenative cyclization protocol for the intramolecular N-S bond formation using rhodamine 6G as a photocatalyst under aerobic reaction conditions. A broad range of 3-substituted 5-amino-1,2,4-thiadiazole derivatives are conveniently synthesized in good to excellent yields with good functional group tolerance. Further investigation for other heterocyclic syntheses based on this photocatalytic protocol is underway in our laboratory.

Experimental Section

General procedure for 3,5-disubstituted 1,2,4-thiadiazoles 2. In an oven-dried single-necked bottle (10 mL) equipped with a stir bar, amidine hydrochloride (0.2 mmol), isothiocyanate 2 (0.2 mmol), NEt3 (0.4 mmol), and CH3OH (2 mL) were added and stirred at room temperature until the conversion was completed as indicated by TLC. Then, rhodamine 6G (0.5 mol %) was added, the reaction mixture was open to the air and stirred at room temperature under the irradiation of a 18 W LED lamp for 8 h. After completion of the reaction, the resulting mixture was extracted with EtOAc and the organic phase was then removed under vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired products 2.

Compounds 2a-x are known compounds and their spectral data are in agreement with those reported in the literature (see also the Supplementary Material file)

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Grant No. 21762022).
Supplementary Material

Copies of 1H NMR spectra of compounds 2a-x are given in the supplementary material file associated with this paper.

References

https://doi.org/10.1080/00397911.2010.551287
https://doi.org/10.1016/j.tet.2014.09.023
https://doi.org/10.1002/adsc.201800353
https://doi.org/10.1021/acs.joc.7b00814
https://doi.org/10.1021/acs.joc.6b01199
https://doi.org/10.1021/acs.joc.7b00646
https://doi.org/10.1021/acs.joc.8b00753
https://doi.org/10.1039/C9NJ01419E
https://doi.org/10.1021/acs.joc.9b03155
https://doi.org/10.1126/science.1161976
https://doi.org/10.1021/acs.chemrev.6b00018
https://doi.org/10.1021/acs.chemrev.6b00057
https://doi.org/10.1039/C7CS00339K
https://doi.org/10.1021/acs.accounts.7b00565
https://doi.org/10.1021/acs.orglett.6b02553
https://doi.org/10.1021/acs.lett.8b03273

 https://doi.org/10.1002/adsc.201900885

 https://doi.org/10.1002/anie.201710618

 https://doi.org/10.1002/anie.201810798

 https://doi.org/10.1021/acs.organomet.5b00521

 https://doi.org/10.1021/acscatal.8b01579

 https://doi.org/10.1039/C9GC01618J

 https://doi.org/10.1021/acs.orglett.0c02746

This paper is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)