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Abstract 

In recent decades, due to the rapid increase of environmental pollution and global warming, renewable 

energy sources for organic transformation have become popular research topics. In this aspect, photoredox 

catalyst under visible light irradiation and the metal-free condition has gained massive attention in organic 

synthesis. This review article plans to summarize the latest development and synthetic applications of 

hypervalent iodine reagents (HIR) combined with visible-light organo-photocatalyst. We present the HIRs in 

terms of the roles as group transfer reagents as well as oxidants.   
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1. Introduction  
The photochemical transformations have significantly impacted synthetic chemistry recently by the utilization 

of visible-light photocatalysts.1-3 The frequently used visible-light photocatalysts are either organic dyes,4 

primarily pollutants in nature, or expensive transition-metal complexes.5-9 Therefore the use of these 

photocatalysts in industrial, medicinal, and pharmaceutical applications are usually restricted. Initially, 

ruthenium and iridium-based complexes were used as photoredox-catalyst in organic synthesis due to their 

excellent absorbance in the visible region, long-lived stable excited state to act as oxidant or reductant, and 

single electron transfer properties.10 Photoredox chemistry of organic chromophores is underdeveloped due 

to the lack of practical information on the redox potential, reaction kinetics, photophysical properties, etc. In 

recent times, several groups have studied some of these aspects, which have added potential value in 

developing organic chromophores as a sensitizer in visible light-mediated redox chemistry.11-15 

 

The research area on hypervalent iodine chemistry16-21 has been popular for a long time in synthetic organic 

chemistry.22  The iodine-based reagents are environmentally friendly and also have oxidizing ability.23-25 

Among them, iodine(III) and iodine(V) reagents are commonly utilized in many useful oxidative 

transformations towards developing a plethora of functional molecules.26-29 Easy accessibility, high stability, 

selective oxidizing ability, non-toxic nature of iodine-based reagents make them workable comfortably in the 

organic synthesis.20-21 Recently, the utilization of hypervalent iodine reagents as organo-photocatalyst is 

gaining popularity.30-33 Still, this research field requires substantial development, however, limited reports are 

available towards the use of hypervalent iodine reagents (HIRs)22, 34-38 as photocatalyst.39 The suitable 

combination of HIRs and organo-photocatalyst (OPC) using appropriate light energy and solvent can produce 

desired functional group transformations.  The prime function of HIR in combination with OPC is to transfer 

any functional group to the substrate or to act as the oxidizing agent. Several reviews are covering the role of 

HIRs as group transfer reagents, oxidizing agents, and synthetic applications with metal-based 

photocatalysts.40-41 Studer and Wang recently published a review article where they have shown the use of 

Iodine(III) reagents in the radical chemistry as group transfer reagents42-43 via thermolysis.44 However, this 

particular review highlights the merging of HIRs as group transfer and oxidizing reagent with organo-

photocatalyst (OPC). There is no such review available in the literature to the best of our knowledge. 

 

Figure 1 represents the collection of commonly used HIRs and OPCs discussed in this article. The basic criteria 

for an organo-photocatalyst should be its absorbance in the visible region to replace the transition metal 

photocatalyst. For this purpose highly conjugated organic dyes45 like Eosin Y,46 Methylene Blue,47 Rhodamine 

B,48 Rose Bengal,49 Fluorescein50 and colored compounds like acridinium salts,51 9,10-dicyanoanthracene,52 

2,4,5,6-tetra(9H-carbazole-9-yl)isophthalonitrile (4CzIPN)53 and its derivatives are being used as organo-

photocatalysts. The redox properties and excited-state photochemistry of those catalysts have also been 

investigated and used them for organic transformations.40 
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Figure 1. a) Examples of commonly used: a) organo photocatalyst (OPC) and b) hypervalent iodine reagents 

(HIRs). 

 

 

 

 

2. Review 



Arkivoc 2021, vii, 0-0   Bose, A. et al. 

 

 Page 4  ©AUTHOR(S) 

The incorporation of a trifluoromethyl group in organic moiety is one of the crucial transformations in organic 

chemistry.54 In 2014, Scaiano and coworkers developed a method of trifluoromethylation of electron-rich 

heteroaromatics (Figure 2).55 For the first time, they used methylene blue (MB) as organo-photocatalyst for a 

generation of electrophilic trifluoromethyl radical from Togni’s reagent54 under white light irradiation. Using 2 

mol % of MB as the photocatalyst, 1.5 equiv of Togni’s reagent as CF3 radical source, and 2.0 equiv of TMEDA 

as electron source they could isolate moderate yield of trifluoromethylated heteroaromatic moieties 2 from 

the respective electron-rich heteroaromatic molecules 1. The reaction time was six h under the irradiation of 

white LED. 

 

 
Figure 2. Trifluoromethylation of heteroarenes using MB and Togni’s reagent.55 

 

Scaiano and coworkers have also shown a hydrotrifluoromethylation of terminal alkynes and alkenes using a 

similar strategy (Figure 3).55  This method proved to be effective in giving a moderate yield of fluorinated 

alkenes 4 with a good (E/Z) ratio in the case of hydrotrifluoromethylation of alkynes 3 under similar conditions 

using 2.0 equiv of base DBU (Figure 3a). Authors have not discussed the (E/Z)-selectivity, however, possibly 
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due to the steric factors by the -CF3 radical and the substituent present at the alkynes, the (E)-isomers were 

predominant. Similarly, a good yield of fluorinated alkane 6 was obtained from alkene 5 (Figure 3b).  

 

 
 

Figure 3. Trifluoromethylation using MB and Togni’s reagent.55 Reaction with a) alkynes b) alkenes.  

 

 

Many allylic monofluoro and difluoro compounds are known to have biological activities.56 Therefore, 

fluorination and difluorination of allylic compounds at α-position have high importance in synthetic 

chemistry.57-58 In 2017, Xu and coworkers reported decarboxylative coupling of cinnamic acid 7 and 

bromodifluoroacetate or bromomonofluoroacetate to synthesize fluorinated alkenes 8 under visible light 

irradiation in the presence of Eosin Y as the photoredox-organocatalyst (Figure 4).59 In this process both the 

reactants were coupled successfully using only 5 mol % of Eosin Y and 2.0 equiv of hypervalent iodine reagent 

hydroxybenziodoxole (BI-OH) and 2.0 equiv of diisopropylethylamine. Here the role of BI-OH was to activate 

carboxylic acid for radical decarboxylation via intermediate 9. Using this method, a good amount of 

fluorinated products were isolated where different types of electron-donating and electron-withdrawing 

groups were well tolerated. Examples of difluorination and monofluorination are shown in Figures 4a and 4b, 

respectively.  
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Figure 4. Decarboxylative fluorination using Eosin Y and BI-OH.59 

 

Fluorinated and trifluoromethylated free alcohols and free amines are of great significance in drug discovery 

and biological application.60 Recently in 2019, Xu and coworkers reported hydrotrifluoromethylation of 

protected alcohols and amines 10 for the formation of –CF3 incorporated corresponding alcohols and amines 

11 after in situ deprotection of protecting group (Figure 5).61 In this method 2 mol % of 2,4,5,6-tetra(9H-

carbazole-9-yl)isophthalonitrile (4CzIPN) as organo-photocatalyst and 1.5 equiv of Togni’s reagent as CF3 

radical source were used. Within 12 h of irradiation under blue LED in dioxane and methanol, differently 

substituted trifluoromethylated products 11 were isolated in good yields via 1,5-H transfer. The yields of the 

reactions were found to be low, especially for amines after the 1,5-H transfer reactions. The authors have not 

discussed these possibilities. The radicals get extra stabilities when present next to heteroatoms like 
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nitrogen.62 Therefore 1,5-H transfer efficiency decreases for the more stable radicals of the amines than 

alcohols. Similarly, pyridine-containing amine led to the low yield of the corresponding products, ca. 43%. 

 

 
Figure 5. Photoredox-organocatalysis in the synthesis of δ-trifluoromethylated alcohols and Amines.61 a) 

Hydrotrifluoromethylation using Togni’s reagent and 4CzIPN. b) Synthesis of α-heteroarylated δ-

trifluoromethylated secondary amines from the corresponding homoallylic amine derivatives. 
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Alkynes are synthetically important moieties that can further be transformed into many functionalized 

molecules.63-64 Therefore, the development of improved methods for the synthesis of alkynes is essential in 

organic chemistry.65 For the first time, in 2016, Cheng and coworkers reported a method for decarboxylative 

alkynylation of carboxylic acids 12 using organo-photocatalyst (Figure 6).52 They have used 5 mol % of DCA as 

organo-photocatalyst, 1.5 equiv of hypervalent iodine reagent ethenyl benziodoxolones (EBX)66-67 as alkyne 

source, and 2.0 equiv of K2CO3 under 24 h blue light or natural sunlight irradiation to get the decarboxylative 

alkynylation products 13 via vinylic radical intermediate 14. Here, EBX reagent acted as a group transfer 

reagent. 

 

 
Figure 6.  Decarboxylative alkynylation using DCA and EBX.52 
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In 2019, Cheng and coworkers reported a decarboxylative alkynylation of diazonium salts using hypervalent 

iodine reagent and organo-photocatalyst (Figure 7).68 Using only 1 mol % of Eosin Y as organo-photocatalyst 

with 1.2 equiv of acetoxybenziodoxole (BI-OAc) as an additive to promote decarboxylation in DCE solvent 

under a nitrogen atmosphere and green LED irradiation for 12 h they could isolate alkynes 17 in good yield 

from arene diazonium salt 15 and aryl propiolic acid 16. The reaction proceeded via formation of aryl radical 

intermediate with a loss of nitrogen from diazonium salt by photoexcited Eosin Y and consequent formation of 

vinyl radical intermediate 19 from 18 by BI-OAc to promote loss of CO2. 

 

 
 

Figure 7. Decarboxylative alkynylation of arene diazonium salt using Eosin Y and BI-OAc.68 
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Recently, 2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) and similar halogen-substituted organic 

compounds have emerged as valued organo-photocatalyst for various organic bond formation reactions under 

visible light irradiation. In 2018, Waser and coworkers developed a highly sophisticated method for the radical 

cascade fragmentation of cyclic ketoximes for alkynylation reactions (Figure 8).69 For this transformation 3 mol 

% of 4ClCzIPN as the catalyst, 2.0 equiv of hypervalent iodine reagent ethynyl benziodoxolones (EBX) as alkyne 

source, 1.1 equiv of K2CO3 as a base were used in dichloroethane solvent under blue light irradiation to 

synthesize the alkynylnitrile compounds 21 from highly substituted cyclic oxime ethers 20. 

 

 
Figure 8. Alkynylation of ketoxime using 4ClCzIPN and EBX.69 

 

 

 

In 2018, Frenette and coworkers developed a method for decarboxylative alkylation of heteroarenes under 

metal-free conditions (Figure 9).70  For the first time they have used 1 mol % of 9-mesityl-10-methylacridinium 

perchlorate (Mes-Acr+ClO4
-)51 as a catalyst along with 2.0 equiv of PhI(OOCCF3)2 or PIFA under blue LED light 

irradiation to get alkylated heteroarenes 24 from differently substituted carboxylic acid 23 and heteroarenes 

22. Plausibly the reaction proceeded via the formation of alkyl radical intermediate from phenyl iodine 

dicarboxylate derivative 25. 
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Figure 9. Decarboxylative alkylation of heteroarenes using PIFA and Mes-Acr+.70 

 

The functionalization of C(sp3)-H bonds of azirine molecules71 are challenging due to high ring strain and facile 

ring-opening reactions.72 Majee and coworkers developed a method for acyloxylation of 2H-azirine molecules 

using PhI(OAc)2 or PIDA as acyl source under visible light irradiation using organo-photocatalyst (Figure 10).73 

In this study, they concluded that 2 mol % of Rose Bengal (RB) as photocatalyst was good enough for the 

C(sp3)-H acyloxylation of 3-aryl-2H-azirines 26 using 2 equiv of PIDA under blue LED irradiation. Aryl rings 

containing electron-donating groups at -ortho, -meta, or -para positions provided a good yield of the 

corresponding –OAc incorporated products. A radical-mediated pathway was proposed for the reaction via 

SET from the excited photocatalyst. 
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Figure 10. Functionalization of azirines using PIDA and Rose Bengal.73 

 

 

Phenyl iodine diacetate (PIDA) or diacetoxyiodobenzene is one of the important hypervalent iodine reagents 

used as oxidizing reagent as well as a radical generator for various organic transformations.20 In 2009, Yadav 

and coworkers reported the activation of PIDA under visible light irradiation using Eosin Y as organo-

photocatalyst. With this activation reaction, they were successful in converting aryl boronic acids 28 to the 

corresponding phenols 29. For this conversion, only 0.5 equiv of PIDA was required in presence of 1 mol % of 

Eosin Y in acetonitrile solvent under N2 atmosphere and visible light irradiation (Figure 11).74 In this report, a 

plausible mechanism is proposed, which is shown in Figure 11. 
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Figure 11. Synthesis of phenol using Eosin Y and PIDA.74 

 

Recently, the application of hypervalent iodine reagent with organo-photocatalyst in rearrangement reactions 

for the construction of highly functionalized molecules via dual catalysis has become popular.75 The first visible 

light-induced Smiles rearrangement76 was reported by Chen and coworkers in 2019 for the synthesis of 

hydroxybenzophenone derivatives from aryl ketoacids  via radical rearrangement (Figure 12).77  For this 

transformation the combination of 2 mol % of 9-mesityl-10-methylacridinium perchlorate (Acr-Mes+ClO4
−) as 

organo-photocatalyst and 20 mol % of acetoxybenziodoxole (BI-OAc) were used under 4 h of irradiation with 

blue light to isolate good to excellent yield of hydroxybenzophenone derivatives 31 from ortho ketoacid 

substituted biaryl ethers 30. Here the role of BI-OAc possibly activated carboxylic acid for decarboxylation 

reaction via intermediate 32 to generate acyl radical intermediate which upon ipso-substitution resulted in 33 

and followed by rearrangement yielded the desired product. 
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Figure 12. Photo-catalytic Smiles rearrangement using Mes-Acr+ClO4

- and BI-OAc.77 

 

Selective synthesis of sulfoxide molecules is well known in organic chemistry.78 In 2018, Cai and coworkers 

developed a method via 1,2-aryl group migration reaction for the synthesis of highly substituted α-aryl-γ-

methylsulfinyl ketones (Figure 13).79  In this work they have used the synergic effect of organo-photocatalyst 

with hypervalent iodine reagent to activate C(sp3)-H bond of dimethylsulfoxide (DMSO) under visible light 

irradiation. Using 2 mol % photocatalyst 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN),53 2.0 

equiv of hypervalent iodine reagent PIDA as oxidant and 2.0 equiv of trimethoxybenzene as an additive in 

DMSO solvent up to 12 h irradiation under blue LED they could isolate the sulfoxide incorporated rearranged 

products 35 from α,α-diaryl allylic alcohol derivatives 34. Mechanistically it was shown that the sulfinyl radical 
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acted as the key intermediate for the formation of radical 36, which upon 1,2-aryl migration and subsequent 

oxidation led to the final products. 

 
Figure 13. Synthesis of α-aryl-γ-methylsulfinyl ketones using 4CzIPN and PIFA.79 

 

In 2017, Duan’s group reported a decarboxylative C-C bond formation followed by ring expansion of 

vinylcyclobutanol system for the synthesis of substituted cyclopentane rings having quaternary carbon (Figure 

14).80  In this work they have investigated the efficacy of dual catalysis of organo-photocatalyst and 

hypervalent iodine reagent under visible light irradiation. Using 5 mol % of Rhodamine B (RB) as photocatalyst 

and 2.0 equiv of BI-OH as hypervalent iodine reagent under visible light at room temperature condition, they 

have synthesized cyclopentyl derivatives 39 from cyclobutanols 38 and α-keto acids 37 as acyl source followed 

by ring expansion with good yield. 



Arkivoc 2021, vii, 0-0   Bose, A. et al. 

 

 Page 16  ©AUTHOR(S) 

 
Figure 14. Ring expansion of cyclobutane system using Rhodamine B and BI-OH.80 
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3. Conclusions 
In conclusion, herein we have collected the literature which can prescribe many efficient pathways towards 

making desirable functional molecules using photoredox organocatalysis in combinations with hypervalent 

iodine reagents. We present the HIRs in terms of the roles as group transfer reagents as well as oxidants. To 

the best of our knowledge, this review based on metal-free photocatalysts will be a unique addition to 

hypervalent iodine chemistry. We hope that this research field will make an important contribution in 

chemistry by bridging different areas like organic synthesis and visible light photolysis. We anticipate that this 

review article will benefit the synthetic community in large so that many chemical transformations can be 

achieved successfully under ambient conditions. 
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