Supplementary Material

Transition-metal-free visible light-promoted photoredox oxidative
dehydrogenative cyclization: expeditious approach to 1,2,4-thiadiazoles

Zhiqiang Xiong, Qihao Zhong, Shouri Sheng, and Junmin Chen*

College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
Email: jxnuchenjm@163.com

Table of Contents

1) General information ..S2
2) General procedure for 3,5-disubstituted 1,2,4-thiadiazoles ..S2
3) Characterization Data for products 2 ...S3
4) References ..S8
5) Scanned 1H NMR and 13C NMR spectra of 2 compounds ..S9
1. General information

Unless otherwise specified, all reagents and solvents were obtained from commercial suppliers and used without further purification. All products were isolated by short chromatography on a silica gel (200-300 mesh) column using petroleum ether (60-90°C) and ethyl acetate. 1H NMR spectra were recorded on Bruker Advance DRX-400 spectrometers at ambient temperature with CDCl$_3$ or DMSO-d_6 as solvent and tetramethylsilane (TMS) as the internal standard. All chemical shift values are quoted in ppm and coupling constants quoted in Hz. Compounds for HRMS were analyzed by positive mode electrospray ionization (ESI) using Agilent 6530 QTOF mass spectrometer. All the prepared compounds 2a-x are known compounds, their spectral data are in agreement with those reported in the literature1-7.

2. General procedure for 3,5-disubstituted 1,2,4-thiadiazoles 2

In an oven-dried single-necked bottle (10 mL) equipped with a stir bar, amidine hydrochloride (0.2 mmol), isothiocyanate 2 (0.2 mmol), NEt$_3$ (0.4 mmol), and CH$_3$OH (2 mL) were added and stirred at room temperature until the conversion was completed as indicated by TLC. The resulted imidoyl thiourea 1 was obtained without the isolation. Then, rhodamine 6G (0.5 mol %) was added, the reaction mixture was open to the air and stirred at room temperature under the irradiation of a 18 W LED lamp for 8 h. After completion of the reaction, the resulting mixture was extracted with EtOAc and the organic phase was then removed under vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired products 2.

3. Characterization Data for products 2

![Structure of 2a](image)

N,3-diphenyl-1,2,4-thiadiazol-5-amine1 (2a). 1H NMR (400 MHz, DMSO-d_6) δ 11.08 (s, 1H), 8.20 (d, $J = 7.8$ Hz, 2H), 7.67 (d, $J = 7.8$ Hz, 2H), 7.52 (s, 3H), 7.45 (t, $J = 8.0$ Hz, 2H), 7.11 (t, $J = 7.2$ Hz, 1H).

![Structure of 2b](image)

3-phenyl-N-(p-tolyl)-1,2,4-thiadiazol-5-amine1 (2b). 1H NMR (400 MHz, DMSO-d_6) δ 10.96 (s, 1H), 8.18 (d, $J = 7.6$ Hz, 2H), 7.51 (d, $J = 6.4$ Hz, 5H), 7.23 (d, $J = 8.0$ Hz, 2H), 2.29 (s, 3H).
N-(4-methoxyphenyl)-3-phenyl-1,2,4-thiadiazol-5-amine\(^1\) (2c). \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 10.87 (s, 1H), 8.21 (d, \(J = 7.8\) Hz, 2H), 7.59 (d, \(J = 8.8\) Hz, 2H), 7.52 (d, \(J = 7.2\) Hz, 3H), 7.03 (d, \(J = 8.8\) Hz, 2H), 3.78 (s, 3H).

N-(4-fluorophenyl)-3-phenyl-1,2,4-thiadiazol-5-amine\(^1\) (2d). \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 11.08 (s, 1H), 8.20 (d, \(J = 7.8\) Hz, 2H), 7.67 (d, \(J = 7.8\) Hz, 2H), 7.52 (s, 3H), 7.45 (t, \(J = 8.0\) Hz, 2H), 7.11 (t, \(J = 7.2\) Hz, 1H).

N-(4-chlorophenyl)-3-phenyl-1,2,4-thiadiazol-5-amine\(^1\) (2e). \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 11.15 (s, 1H), 8.26 – 8.18 (m, 2H), 7.74 (d, \(J = 8.8\) Hz, 2H), 7.53 (d, \(J = 6.0\) Hz, 3H), 7.51 – 7.47 (m, 2H).

N-(4-bromophenyl)-3-phenyl-1,2,4-thiadiazol-5-amine\(^2\) (2f). \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 11.14 (s, 1H), 8.26 – 8.15 (m, 2H), 7.71 – 7.65 (m, 2H), 7.61 (d, \(J = 8.8\) Hz, 2H), 7.57 – 7.50 (m, 3H).

N-(4-iodophenyl)-3-phenyl-1,2,4-thiadiazol-5-amine\(^1\) (2g). \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 11.12 (s, 1H), 8.19 (dd, \(J = 7.4, 2.4\) Hz, 2H), 7.85 – 7.69 (m, 2H), 7.66 – 7.42 (m, 5H).
3-phenyl-N-(o-tolyl)-1,2,4-thiadiazol-5-amine1 (2h). 1H NMR (400 MHz, DMSO-d_6) δ 11.02 (s, 1H), 8.20 (d, J = 6.0 Hz, 2H), 7.53 (d, J = 7.0 Hz, 4H), 7.40 (s, 1H), 7.33 (t, J = 7.8 Hz, 1H), 6.93 (d, J = 7.4 Hz, 1H), 2.36 (s, 3H).

3-(4-chlorophenyl)-N-phenyl-1,2,4-thiadiazol-5-amine2 (2i). 1H NMR (400 MHz, DMSO-d_6) δ 11.22 (s, 1H), 8.20 (d, J = 6.0 Hz, 2H), 7.88 (s, 1H), 7.59 (d, J = 8.2 Hz, 1H), 7.54 (d, J = 7.0 Hz, 3H), 7.46 (t, J = 8.2 Hz, 1H), 7.16 (d, J = 8.6 Hz, 1H).

3-phenyl-N-(m-tolyl)-1,2,4-thiadiazol-5-amine1 (2j). 1H NMR (400 MHz, DMSO-d_6) δ 10.26 (s, 1H), 8.08 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 7.8 Hz, 2H), 7.43 (t, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.09 (t, J = 7.2 Hz, 1H), 2.36 (s, 3H).

N-phenyl-3-(p-tolyl)-1,2,4-thiadiazol-5-amine4 (2k). 1H NMR (400 MHz, DMSO-d_6) δ 11.03 (s, 1H), 8.08 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 7.8 Hz, 2H), 7.43 (t, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.09 (t, J = 7.2 Hz, 1H), 2.36 (s, 3H).
3-(4-methoxyphenyl)-N-phenyl-1,2,4-thiadiazol-5-amine\(^5\) (2I). \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 11.03 (s, 1H), 8.14 (d, \(J = 8.6\) Hz, 2H), 7.66 (d, \(J = 8.0\) Hz, 2H), 7.44 (t, \(J = 7.8\) Hz, 2H), 7.11 (d, \(J = 7.4\) Hz, 1H), 7.07 (d, \(J = 8.6\) Hz, 2H), 3.84 (s, 3H).

![2I](image)

3-(4-chlorophenyl)-N-phenyl-1,2,4-thiadiazol-5-amine\(^5\) (2m). \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 11.07 (s, 1H), 8.18 (d, \(J = 8.4\) Hz, 2H), 7.65 (d, \(J = 7.8\) Hz, 2H), 7.59 (d, \(J = 8.4\) Hz, 2H), 7.44 (t, \(J = 8.0\) Hz, 2H), 7.11 (t, \(J = 7.2\) Hz, 1H).

![2m](image)

3-(4-bromophenyl)-N-phenyl-1,2,4-thiadiazol-5-amine\(^5\) (2n). \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 11.08 (s, 1H), 8.11 (d, \(J = 8.4\) Hz, 2H), 7.73 (d, \(J = 8.4\) Hz, 2H), 7.65 (d, \(J = 8.0\) Hz, 2H), 7.44 (t, \(J = 7.8\) Hz, 2H), 7.11 (t, \(J = 7.2\) Hz, 1H).

![2n](image)

N,3-di-p-tolyl-1,2,4-thiadiazol-5-amine\(^3\) (2o). \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 9.33 (s, 1H), 7.95 (d, \(J = 8.0\) Hz, 2H), 7.56 (d, \(J = 8.0\) Hz, 2H), 7.30 (d, \(J = 8.0\) Hz, 2H), 7.05 (d, \(J = 8.2\) Hz, 2H), 2.37 (s, 3H), 2.24 (s, 3H).

![2o](image)

3-(4-methoxyphenyl)-N-(p-tolyl)-1,2,4-thiadiazol-5-amine\(^4\) (2p). \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 9.29 (s, 1H), 8.09 – 7.97 (m, 2H), 7.55 (d, \(J = 8.0\) Hz, 2H), 7.10 – 6.97 (m, 4H), 3.83 (s, 3H), 2.23 (s, 3H).

![2p](image)
N-isopropyl-3-phenyl-1,2,4-thiadiazol-5-amine\(^6\) (2q). \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 8.47 (s, 1H), 8.09 (dd, \(J = 6.8, 2.4\) Hz, 2H), 7.54 – 7.40 (m, 3H), 3.82 (br, 1H), 1.25 (d, \(J = 6.4\) Hz, 6H).

N-isopropyl-3-(p-tolyl)-1,2,4-thiadiazol-5-amine\(^4\) (2r). \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 8.46 (s, 1H), 7.98 (d, \(J = 8.0\) Hz, 2H), 7.26 (d, \(J = 8.0\) Hz, 2H), 3.82 (br, 1H), 2.35 (s, 3H), 1.24 (d, \(J = 6.4\) Hz, 6H).

3-(4-bromophenyl)-N-isopropyl-1,2,4-thiadiazol-5-amine\(^6\) (2s). \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 8.53 (s, 1H), 8.03 (d, \(J = 8.4\) Hz, 2H), 7.67 (d, \(J = 8.4\) Hz, 2H), 3.84 (br, 1H), 1.26 (d, \(J = 6.4\) Hz, 6H).

3-cyclopropyl-N-phenyl-1,2,4-thiadiazol-5-amine\(^7\) (2t). \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 10.87 (s, 1H), 7.49 (d, \(J = 7.6\) Hz, 2H), 7.38 (t, \(J = 8.0\) Hz, 2H), 7.06 (t, \(J = 7.2\) Hz, 1H), 2.19 – 2.05 (m, 1H), 0.98 (d, \(J = 5.6\) Hz, 4H).

3-cyclopropyl-N-(m-tolyl)-1,2,4-thiadiazol-5-amine\(^7\) (2u). \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 10.82 (s, 1H), 7.29 (d, \(J = 8.0\) Hz, 1H), 7.25 (d, \(J = 7.6\) Hz, 2H), 6.86 (d, \(J = 7.0\) Hz, 1H), 2.29 (s, 3H), 2.15 – 2.02 (m, 1H), 0.96 (d, \(J = 5.6\) Hz, 4H).
N-(3-chlorophenyl)-3-cyclopropyl-1,2,4-thiadiazol-5-amine7 (2v). 1H NMR (400 MHz, DMSO-d_6) δ 11.02 (s, 1H), 7.74 (d, J = 2.4 Hz, 1H), 7.40 (dd, J = 4.7, 1.8 Hz, 2H), 7.09 (dt, J = 5.0, 2.4 Hz, 1H), 2.14 (p, J = 6.6 Hz, 1H), 1.00 (d, J = 7.0 Hz, 4H).

3-methyl-N-phenyl-1,2,4-thiadiazol-5-amine8 (2w). 1H NMR (400 MHz, DMSO-d_6) δ 10.87 (s, 1H), 7.55 (d, J = 7.6 Hz, 2H), 7.39 (t, J = 8.0 Hz, 2H), 7.06 (t, J = 7.4 Hz, 1H), 2.40 (s, 3H).

N-(4-chlorophenyl)-3-methyl-1,2,4-thiadiazol-5-amine9 (2x). 1H NMR (400 MHz, DMSO-d_6) δ 10.96 (s, 1H), 7.60 (d, J = 8.9 Hz, 2H), 7.42 (d, J = 8.9 Hz, 2H), 2.40 (s, 3H).

4. References.

5. Scanned 1H NMR Spectra of 2 Compounds

Figure S 1: 1H NMR of 2a.

Figure S 2: 1H NMR of 2b.
Figure S 3: 1H NMR of 2c.

Figure S 4: 1H NMR of 2d.
Figure S5: 1H NMR of 2e.

Figure S6: 1H NMR of 2f.
Figure S 7: 1H NMR of 2g.

Figure S 8: 1H NMR of 2h.
Figure S9: 1H NMR of 2i.

Figure S10: 1H NMR of 2j.
Figure S 11: 1H NMR of 2k.

Figure S 12: 1H NMR of 2l.
Figure S 13: 1H NMR of 2m.

Figure S 14: 1H NMR of 2n.
Figure S 15: 1H NMR of 2o.

Figure S 16: 1H NMR of 2p.
Figure S 17: 1H NMR of 2q.

Figure S 18: 1H NMR of 2r.
Figure S 19: 1H NMR of 2s.

Figure S 20: 1H NMR of 2t.
Figure S 21: 1H NMR of 2u.

Figure S 22: 1H NMR of 2v.
Figure S 23: 1H NMR of 2w.

Figure S 24: 1H NMR of 2x.