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Abstract 

A novel visible-light-catalyzed oxidative N-S bond formation for the synthesis of 3,5-disubstituted 1,2,4-

thiadiazoles has been developed. This protocol features a metal-free approach, green oxidant, room 

temperature process, broad substrate scope, good functional group tolerance, excellent yields and a one-pot 

reaction without the isolation of the intermediates. 
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Introduction 

 

Thiadiazoles are an important class of five-membered heterocyclic motifs containing two nitrogen atoms 

and a sulfur atom, that are associated with a broad spectrum of  biological and pharmacological activities.1-3 

Among them, the 1,3,4-thiadiazoles have emerged as an important structural moiety present in a large 

number of functionalized molecules with a broad range of biological activities, such as anticancer,4-5 

antimicrobial,6 anticonvulsant,7 fungicidal,8 antihepatitis B virus,9 and anti-HIV activity.10  Moreover, they are 

also found in valuable pharmaceuticals, including sitagliptin,11 maraviroc,12 trizaolam,13 deferasirox,14 and 

cefozopran15 (Figure 1).  
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Figure 1. Selected bioactive molecules that contain 1,3,4-thiadiazole skeletons. 

 

Therefore, the synthesis of 1,2,4-thiadiazole derivatives has received considerable attention. The 

traditional method for the synthesis of 3,5-disubstituted 1,2,4-thiadiazoles relies on the oxidative dimerization 

reaction of thioamides using various oxidants (Scheme 1, a).16-23 Recently, alternative methods were 

developed through intramolecular oxidative dehydrogenative cyclization by employing transition-metal or 

stoichiometric amount of oxidants such as hypervalent iodine (III), I2, or O2 (Scheme 1, b).24-31 Most recently, 

an elegant protocol has been published via the electro-oxidative intramolecular dehydrogenative N-S bond 

formation of imidoyl thioureas (Scheme 1, c).32 Despite major progress in the field, the use of transition-metal 

catalysts or oxidants is still standard, which affects atom economy and environmental issues. Therefore, it is 

desirable to develop a more pratical and environmentally friendly method for the synthesis of 3,5-

disubstituted 1,2,4-thiadiazoles. 
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Scheme 1. Different approaches to functionalized1,2,4-thiadiazoles. 
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In recent years, visible-light photoredox catalysis has emerged as a powerful synthetic tool for mild and 

environmentally benign organic transformations.33-39 These attractive synthetic reactions are mainly spurred 

by exogenous photocatalysts to facilitate the conversion of visible light into chemical energy under 

exceptionally mild conditions. A variety of elegant photocatalyzed reactions for the construction of C-C and C-

heteroatom bonds have been well established using visible-light using transition metal complexes or organic 

dyes as photoredox catalysts.40-48 Meanwhile, the application of photoredox catalysis for heteroatom-

heteroatom bond formation has attracted a lot of attention and has become a promising green approach to 

produce final products.49-52 Herein we report a direct and environmentally friendly method for the synthesis of  

3-substituted-5-amino-1,2,4-thiadiazoles using Rhodamine 6G  as an organophotoredox catalyst irradiated 

with blue LED light under an air atmosphere at room temperature (Scheme 1, d). 

 

Results and Discussion 
 

We initiated our studies by choosing N-(phenylcarbamothioyl)benzimidamide (1a) as a model substrate in 

the presence of 0.5 mol % of fac-Ir(bpy)3 in CH3OH at room temperature under air atmosphere. After 8 h of 

irradiation with a 18 W blue LED light, the desired dehydrogenative cyclization product 2a was obtained in 

63% yield (Table 1, entry 1). Encouraged by this promising result, we next surveyed a range of photocatalysts 

under the same conditions (Table 1, entries 2-7). We found that the Ru(bpy)3Cl2 photocatalyst can slightly 

improve the efficiency for generation of 2a (71%, Table 1, entry 2). To develop a metal-free protocol, we then 

examined various organic dyes including eosin Y, methylene blue, rose bengal, 3DPAFIN (1,3-dicyano-2,4,5,6-

tetrakis(diphenylamino)benzene), and Rhodamine 6G (Table 1, entries 3-7). These results showed that the 

organic photocatalyst rhodamine 6G provided the best result (87%, Table 1, entry 7). We then screened the 

reaction in various solvents such as CH3CN, DMF, CH2Cl2, CH3CH2OH, and 1,4-dioxane (Table 1, entries 8-12). 

Interestingly, we found that these solvents can promote this reaction in good yield and that CH3OH was found 

to be the best choice.  The reaction time was examined and the yield did not improve (88%, Table 1, entry 13). 

The amount of the photocatlayst was also investigated, and it was found that 0.5 mol % catalyst loading was 

sufficient to furnish the product in excellent yields (Table 1, entries 14 and 15). Performing the reaction under 

oxygen atmosphere did not improve the product yield (Table 1, entry 16). Control experiments showed that 

the presence of the photocatalyst, air, and the light source is necessary for this transformation to proceed 

(Table 1, entries 17-19). Finally, we attempted to carry out the nucleophilic addition and oxidative cyclization 

in a one-pot fashion. To our delight, the desired product 2a was also obtained in similar yield when the imidoyl 

thiourea 1a was formed in a preceding step from an aryl isocyanate in the same reaction vessel without 

isolation and under the optimal reaction conditions (Table 1, entry 20). 

 

Table 1. Screening of optimal reaction conditionsa,b,c 
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Entrya Photocatalyst Solvent Yield (%)b 

1 fac-Ir(bpy)3 CH3OH 63 

2 Ru(bpy)3Cl2 CH3OH 71 
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3 Eosin Y CH3OH 72 

4 Methylene blue CH3OH 68 

5 Rose bengal CH3OH 23 

6 3DPAFIN  CH3OH 79 

7 Rhodamine 6G CH3OH 87 

8 Rhodamine 6G CH3CN 81 

9 Rhodamine 6G DMF 57 

10 Rhodamine 6G CH2Cl2 65 

11 Rhodamine 6G CH3CH2OH 73 

12 Rhodamine 6G 1,4-dioxane 71 

13c Rhodamine 6G CH3OH 88 

14d Rhodamine 6G CH3OH 78 

15e Rhodamine 6G CH3OH 89 

16f Rhodamine 6G CH3OH 88 

17g Rhodamine 6G CH3OH 0 

18h Rhodamine 6G CH3OH trace 

19i Rhodamine 6G CH3OH trace 

20j Rhodamine 6G CH3OH 87 

aReaction conditions: imidoyl thiourea (1a, 0.2 mmol), and photocatalyst (0.5 mol %) in solvent (2 ml) were 

irradiated with 18W blue LEDs at room temperature in the open air for 12 h. bIsolated yields. cReaction time 

for 12h. dPhotocatalyst (0.25 mol %); ePhotocatalyst (1.0 mol %); fThe reaction was conducted under O2. gThe 

reaction was performed in the dark. hThe reaction was conducted under N2. iReaction was performed without 

a catalyst. jOne-pot protocol. 3DPAFIN = 1,3-dicyano-2,4,5,6-tetrakis(diphenylamino)benzene. 

 

With the optimal conditions (Table 1, entry 7) in hand, we next probed the scope and generality of this 

intramolecular oxidative S-N bond formation approach to a variety of 3-substituted-5-amino-1,2,4-thiadiazoles 

in a one-pot fashion and the results are summarized in Scheme 2. First, we investigated the scope of the R 

substituent on aryl isothiocyanates. Various electron-donating and -withdrawing substituents including p-Me, 

p-OMe, p-F, p-Cl, p-Br, p-I, m-Me, and m-Cl, were well-tolerated, affording the corresponding 1,2,4-

thiadiazoles in good to excellent yields (2a-2i). Meanwhile, the o-methyl substituted isothiocyanates 1j had 

little influence on the reaction and afforded the desired product 2j in 73% yield.  

Next, we investigated the scope of the R substituent on phenyl amidines. A range of substrates bearing 

electron-donating or electron-withdrawing group-substituted aromatic rings all underwent the oxidative 

dehydrogenative cyclization smoothly and gave the desired products in very good yields (2k-2m). Moreover, 

both various substituted amidines and isothiocyanates could provide the desired products in 77% and 74% 

yield (2o and 2p), respectively. Furthermore, alkyl isothiocyanates such as isopropyl isothiocyanate were 

compatible with the optimized conditions as well, affording the desired products 2q-2s in excellent yields. 

Interestingly, alkyl amidines such as cyclopropyl and methyl amidine reacted smoothly, affording the desired 

products 2t-x in very high yields. 
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Table 2. One-pot synthesis of 3-substituted-5-amino-1,2,4-thiadiazoles via in situ generated Imidoyl 
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aReaction conditions: imidoyl thiourea (1a, 0.2 mmol), and rhodamine 6G (0.5 mol %) in CH3OH (2 ml) were 

irradiated with 18W blue LEDs at room temperature in the open air for 8 h. bIsolated yields. 

 

Conclusions 
 

In conclusion, we have developed a metal-free, visible-light induced organophotoredox-catalyzed 

dehydrogenative cyclization protocol for the intramolecular N-S bond formation using rhodamine 6G as a 

photocatalyst under aerobic reaction conditions. A broad range of  3-substituted 5-amino-1,2,4-thiadiazole 

derivatives are conveniently synthesized in good to excellent yields with good functional group tolerance, 
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Further investigation for other heterocyclic syntheses based on this photocatalytic protocol is underway in in 

our laboratory. 

 

Experimental Section 
 

General procedure for 3,5-disubstituted 1,2,4-thiadiazoles 2. In an oven-dried single-necked bottle (10 mL) 

equipped with a stir bar, amidine hydrochloride (0.2 mmol), isothiocyanate 2 (0.2 mmol), NEt3 (0.4 mmol), and 

CH3OH (2 mL) were added and stirred at room temperature until the conversion was completed as indicated 

by TLC. Then, rhodamine 6G (0.5 mol %) was added, the reaction mixture was open to the air and stirred at 

room temperature under the irradiation of a 18 W LED lamp for 8 h. After completion of the reaction, the 

resulting mixture was extracted with EtOAc and the organic phase was then removed under vacuum. The 

residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as 

eluent to give the desired products 2.  

Compounds 2a-x are known compounds and their spectral data are in agreement with those reported in the 

literature (see also the Supplementary Material file) 
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