Supplementary Material

Synthesis and Trypanocidal Activity of Substituted 2,4-Diarylquinoline Derivatives

Kola A. Oluwafemi^{a+,}, Siyolise Phunguphungu^a, Sinalo Gqunu^a, Michelle Isaacs,^c Heinrich C. Hoppe ^{b,c}, Rosalyn Klein^{a,b*} and Perry T. Kaye^{a,b*}

^a Department of Chemistry, Rhodes University, Makhanda/Grahamstown, 6140, South Africa.
^b Centre for Chemico-and Biomedical Research, Rhodes University, Makhanda/Grahamstown, 6140, South Africa

^c Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, 6140, South Africa

Email: r.klein@ru.ac.za; p.kaye@ru.ac.za

Table of Contents

1.	¹ H- and ¹³ C-NMR spectra	S2
2.	Bioassay protocols and data	S12

I. ¹H and ¹³C NMR Spectra of compounds 8, 4a-g and 5h,i.

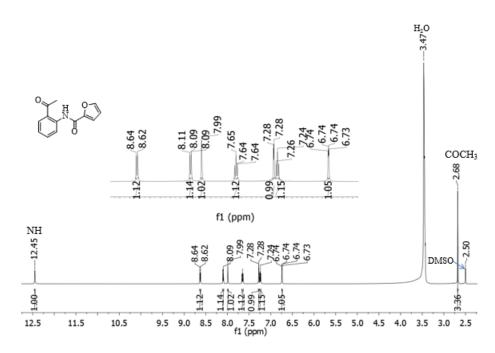


Figure S1. 600 MHz ¹H NMR spectrum of 8 in DMSO-d₆

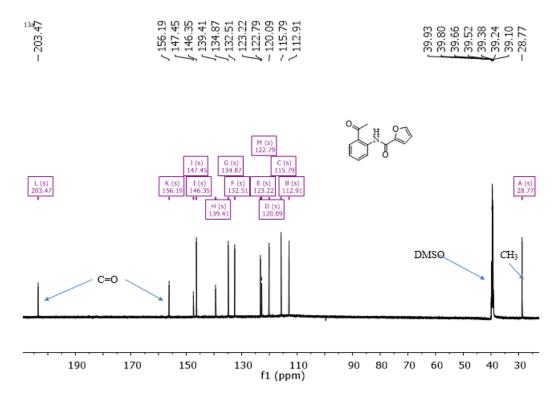


Figure S2. 150 MHz 13 C NMR spectrum of 8 in DMSO- d_6

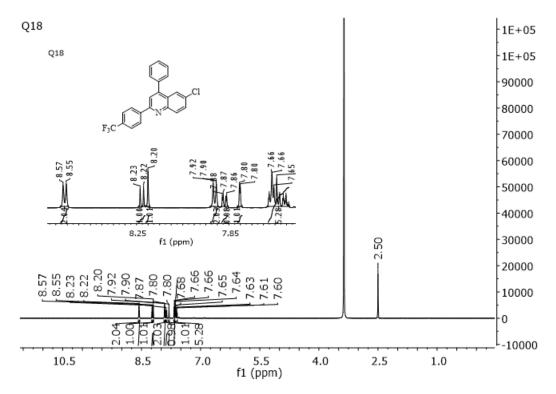


Figure S3. 600 MHz ¹H NMR spectrum of 4a in DMSO-d₆.

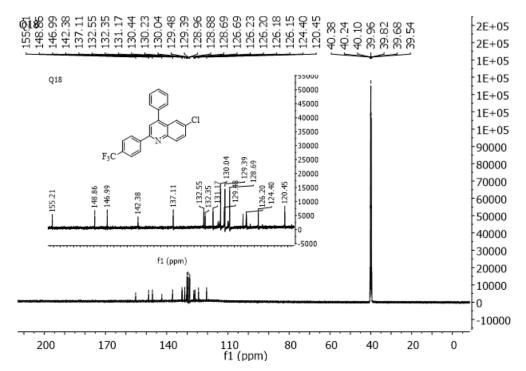


Figure S4. 150 MHz ¹³C NMR spectrum of 4a in DMSO-d₆.

Page S3 ©AUTHOR(S)

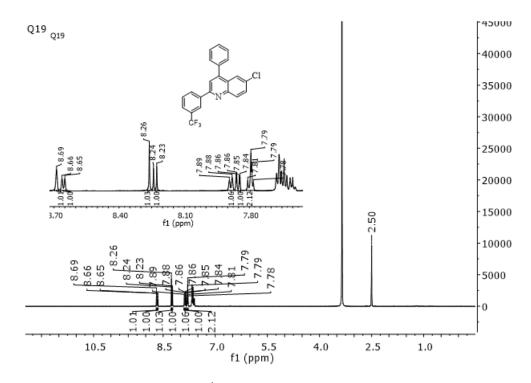


Figure S3. 600 MHz ¹H NMR spectrum of 4b in DMSO-d₆

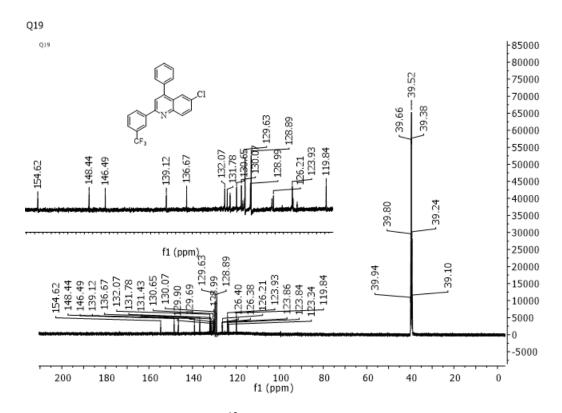


Figure S4. 150 MHz ¹³C NMR spectrum of 4b in DMSO-d₆.

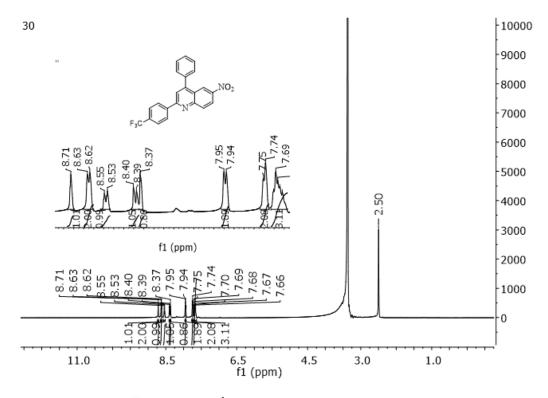


Figure S6. 600 MHz ¹H NMR spectrum of 4c in DMSO-d₆.

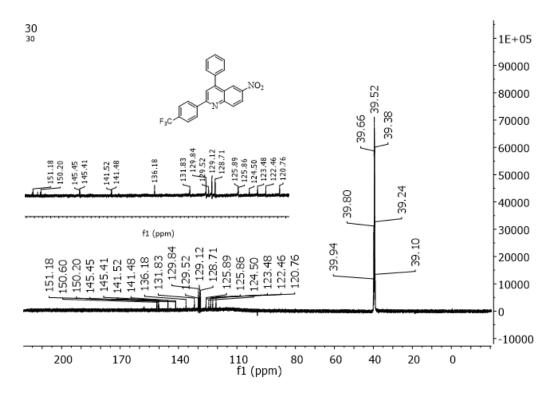


Figure S7.150 MHz ¹³C NMR spectrum of 4c in DMSO-d₆.

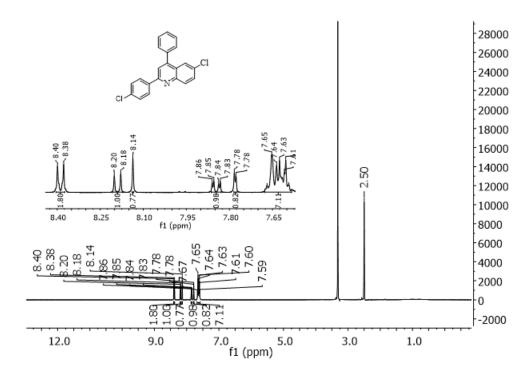


Figure S8. 300 MHz ¹H NMR spectrum of 4d in DMSO-d₆.

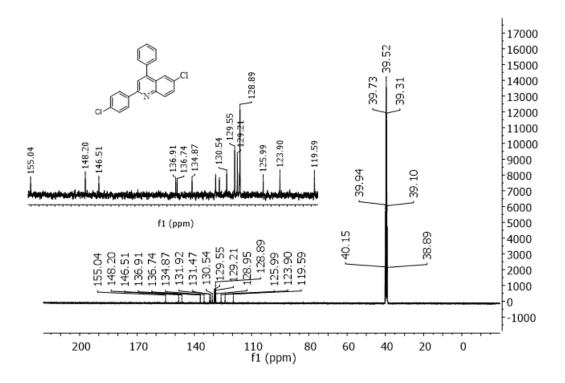
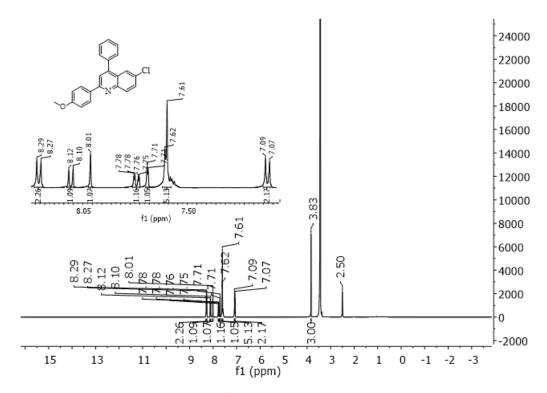



Figure S9. 100 MHz ¹³C NMR spectrum of 4d in DMSO-d₆.

Figure S10. 400 MHz ¹H NMR spectrum of **4e** in DMSO-*d*6.

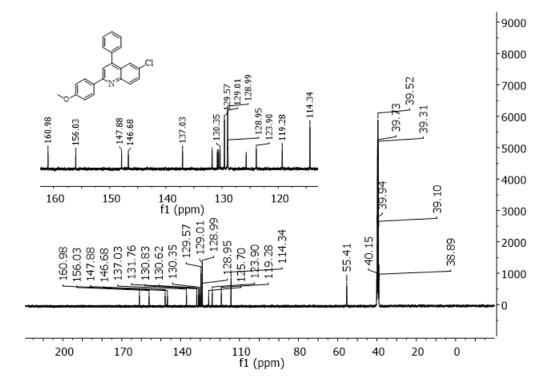


Figure S11. 150 MHz 13 C NMR spectrum of 4e in DMSO- d_6 .

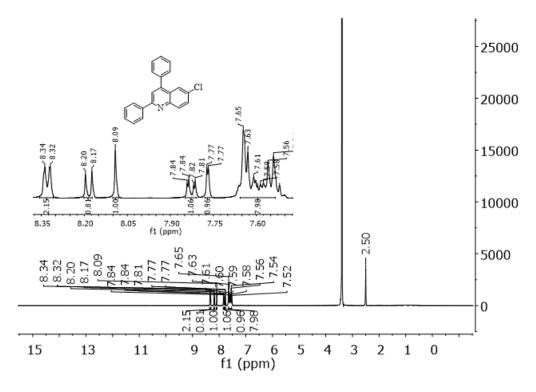


Figure S12. 400 MHz ¹H NMR spectrum of 4f in DMSO-d₆

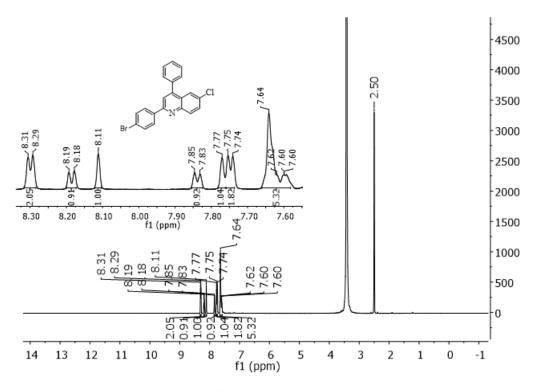
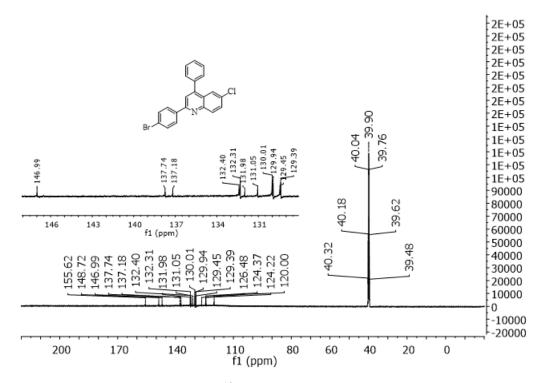



Figure S13. 400 MHz ¹H NMR spectrum of 4g in DMSO-d₆.

Figure S14. 100 MHz 13 C NMR spectrum of **4g** in DMSO- d_6 .

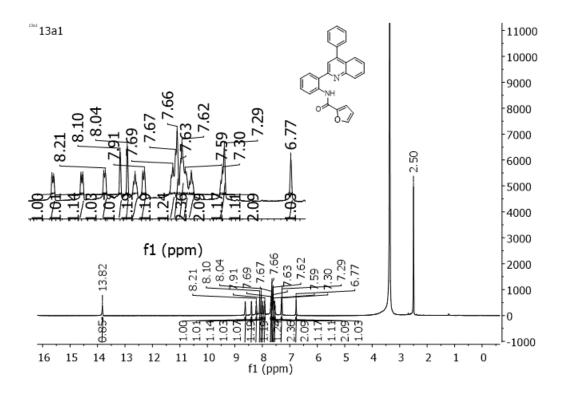


Figure S16. 600 MHz ¹H NMR spectrum of 5h in DMSO-d₆.

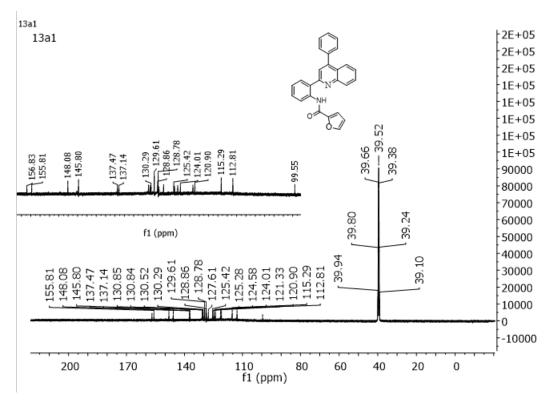


Figure S17. 150 MHz ¹³C NMR spectrum of 5h in DMSO-d₆.

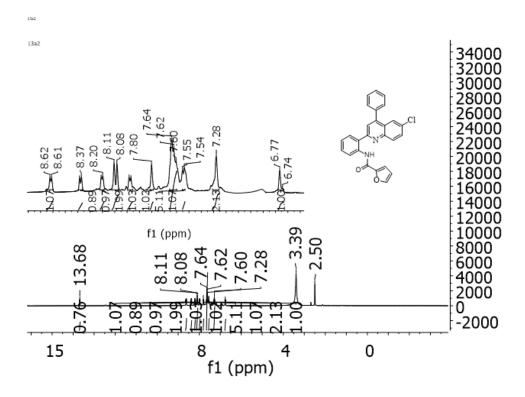


Figure S18. 600 MHz ¹H NMR spectrum of 5i in DMSO-d₆.

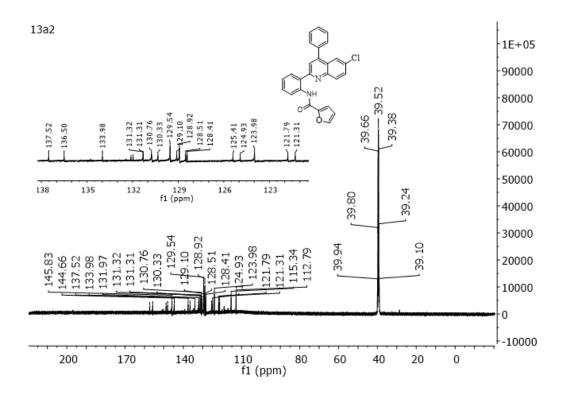


Figure S19. 150 MHz ¹³C NMR spectrum of 5i in DMSO-d₆.

Page S11 ©AUTHOR(S)

II. Bioassay protocols and data

Cytotoxicity determination

To assess the overt cytotoxicity of the compounds, they were incubated at a fixed concentration of 20 μ M in 96-well plates containing HeLa (human cervix adenocarcinoma) cells for 48 hours. After the incubation, residual cell viability was determined using a resazurin assay, as previously described (Veale and Hoppe, 2018). Results were expressed as % cell viability – the resorufin fluorescence in compound-treated wells relative to untreated controls, after subtracting background readings obtained from wells without cells. Compounds were tested in duplicate wells. Emetine was used as a control drug standard.

Anti-trypanosomal Assay

To assess trypanocidal activity, compounds were incubated with *in vitro* cultures of *T.b. brucei* (strain 427) in 96-well plates at a fixed concentration of 20 µM or as 3-fold serial dilutions, and parasite viability assessed by a resazurin assay as described previously (Veale and Hoppe). Pentamidine was used a control drug standard

Veale C.G.L., Hoppe H.C. Med. Chem. Commun. 2018, 9, 2037.

The following key correlates compound numbers in the paper with the sample codes in the following Bioassay reports

4a - AKO-Q-18

4b - AKO-Q-19

4c - sinalo 3

4d - AKO-O-1

4e - AKO-Q-2

4f - AKO-O-10

4g - AKO-Q-5

5h - AKO-O-13a1

5i - AKO-Q-13a2

Rhodes University

Centre for Chemico- and Biomedicinal Researc MRC SA University Flagship Programme

rch MRC SOUTH AFRICA

Cytotoxicity assay – single concentration screen

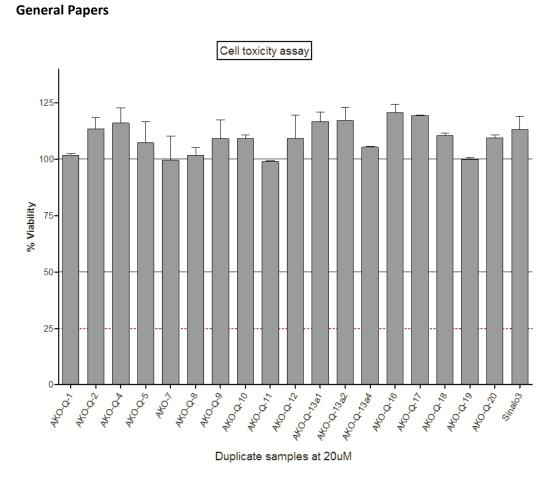
Background

To assess the overt cytotoxicity of the compounds, they are incubated at a fixed concentration of 20uM for Pure compounds and 50ug/ml for extracts (unless otherwise stated) in 96-well plates containing HeLa (human cervix adenocarcinoma) cells/ cells for 48 hours. The numbers of cells surviving drug exposure are also determined by using the resazurin based reagent and reading resorufin fluorescence in a multiwell plate reader.

Results are expressed as % viability – the resorufin fluorescence in compound-treated wells relative to untreated controls. Compounds are usually tested in duplicate wells, and a standard deviation (SD) is also included. Emetine (which induces cell apoptosis) is used as a positive control drug standard.

(Note: for publication purposes, a detailed description of the method is available on request)

Assay details


Date: 16 June 2017

Concentration used: 20uM

Results

The bar graph and table below show the % HeLa cell viability ±SD obtained for the individual compounds.

Page S13 [©]AUTHOR(S)

Compound at 20uM	Viability %	SD
unless otherwise		
specified		
AKO-Q-1	101.7	0.8
AKO-Q-2	113.4	5.2
AKO-Q-4	116.1	6.6
AKO-Q-5	107.2	9.4
AKO-7	99.5	10.8
AKO-Q-8	101.8	3.4
AKO-Q-9	109.2	8.3
AKO-Q-10	109.3	1.4
AKO-Q-11	99.0	0.4
AKO-Q-12	109.2	10.5
AKO-Q-13a1	116.7	4.3
AKO-Q-13a2	117.1	6.0
AKO-Q-13a4	105.4	0.5
AKO-Q-16	120.6	3.9
AKO-Q-17	119.4	0.03
AKO-Q-18	110.4	1.1
AKO-Q-19	99.9	0.7
AKO-Q-20	109.4	1.4
Sinalo3	113.2	5.9

		Emetine
Conc (µM)	Log(Conc)	Percentage Viability
1	0	28.2
0.333333	-0.47712	38.5
0.111111	-0.95424	50.1
0.037037	-1.43136	77.4
0.012346	-1.90849	93.1
0.004115	-2.38561	115.8
0.001372	-2.86273	118.1
0.000457	-3.33985	104.3
	IC50	0.047

Conclusion

None of the samples caused significant cytotoxic effects at a concentration of 20 μ M (none reduced the viability of HeLa cells to below 50%).

Rhodes University

Centre for Chemico- and Biomedicinal Research MRC SA University Flagship Programme

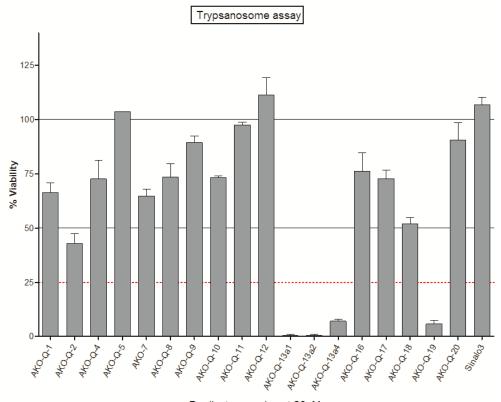
Trypanosoma brucei assay – single concentration screen

Background

Trypanosoma brucei (T.b.) parasites are the causative agents of African sleeping sickness (human African trypanosomiasis) in humans and Nagana (animal African trypanosomiasis) in cattle. The subspecies responsible for Nagana (T.b. brucei) is not infective to humans and is commonly used for drug screening. To assess anti-trypanocidal activity, compounds are added to *in vitro* cultures of T.b. brucei in 96-well plates at a fixed concentration of 20μM for pure compounds or 25μg/mL for natural extracts (unless otherwise stated). After an incubation period of 48 hours, the numbers of parasites surviving drug exposure are determined by adding a resazurin based reagent. The reagent contains resazurin which is reduced to resorufin by living cells. Resorufin is a fluorophore (Exc₅₆₀/Em₅₉₀) and can thus be quantified in a multiwell fluorescence plate reader.

Results are expressed as **% parasite viability** – the resorufin fluorescence in compound-treated wells relative to untreated controls. Compounds are usually tested in duplicate wells, and a standard deviation (SD) is also included. Generally, compounds/extracts that reduce parasite viability to < 10-20% may be considered for further testing (e.g. dose-response and cytotoxicity assays). Pentamidine (an existing drug treatment for trypanosomiasis) is used as a positive control drug standard.

Assay details


Date: 15 June 2017

Concentration used: 20 uM

Results

The bar graph and table below show the residual % parasite viability ±SD obtained for the individual compounds.

Page S16 ©AUTHOR(S)

Duplicate samples at 20uM

Compound at 20uM	Viability %	SD
AKO-Q-1	66.4	4.4
AKO-Q-2	42.9	4.5
AKO-Q-4	72.6	8.5
AKO-Q-5	103.5	0.06
AKO-7	64.8	3.2
AKO-Q-8	73.4	6.3
AKO-Q-9	89.4	3.0
AKO-Q-10	73.2	0.8
AKO-Q-11	97.6	1.2
AKO-Q-12	111.4	7.9
AKO-Q-13a1	0.49	0.7
AKO-Q-13a2	0.53	0.5
AKO-Q-13a4	7.07	1.0
AKO-Q-16	76.1	8.5
AKO-Q-17	72.8	4.1
AKO-Q-18	51.9	2.8
AKO-Q-19	5.8	1.7
AKO-Q-20	90.5	7.9
Sinalo 3	106.8	3.6

Pentamidine standard:-

Concentration (uM)	Log	Percentage activity	Std dev
1	0	-0.3	0.08
0.333333	-0.47712	2.0	0.16
0.111111	-0.95424	2.1	0.16
0.037037	-1.43136	2.7	0.39
0.012346	-1.90849	4.0	1.2
0.004115	-2.38561	14.8	0.93
0.001372	-2.86273	88.9	2.2
0.000457	-3.33985	84.4	2.6
	IC50	0.0037	

Conclusion

The samples highlighted in red significantly affected the viability of the Trypanosomes at 20 μ M. These samples will be subjected to IC₅₀ evaluations if they are not cytotoxic (the results need to be looked at in conjunction with the Cell toxicity assay results).

Rhodes University

Centre for Chemico- and Biomedicinal Research MRC SA University Flagship Programme

Trypanosoma brucei assay – dose response

Background

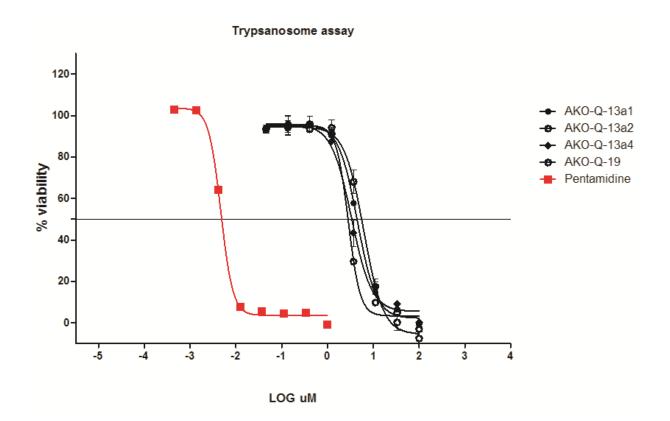
Trypanosoma brucei (T.b.) parasites are the causative agents of African sleeping sickness (human African trypanosomiasis) in humans and Nagana (animal African trypanosomiasis) in cattle. The subspecies responsible for Nagana (T.b. brucei) is not infective to humans and is commonly used for drug screening. To determine the anti-trypanocidal potency of test compounds, serial dilutions of the compounds are added to *in vitro* cultures of T.b. brucei in 96-well plates and incubated for 48 hours. The numbers of parasites surviving exposure to the individual compound concentrations are determined by adding a resazurin based reagent. The reagent contains resazurin which is reduced to resorufin by living cells. Resorufin is a fluorophore (Exc_{560}/Em_{590}) and can thus be quantified in a multiwell fluorescence plate reader.

For each compound concentration, **% parasite viability** – the resorufin fluorescence in compound-treated wells relative to untreated controls – is calculated. Compounds are usually tested in duplicate wells, and a standard deviation (SD) is derived. For each compound, percentage viability is then plotted against Log(compound concentration) and the IC_{50} (50% inhibitory concentration) obtained from the resulting dose-response curve by non-linear regression. For comparative purposes, pentamidine (an existing drug treatment for trypanosomiasis) is used as a drug standard and yields IC_{50} values in the range 0.001- $0.005 \mu M$.

Assay details

Date: 22 June 2017

Concentration used: 3-fold serial dilutions with a starting concentration of 100 μM


Page S19 ©AUTHOR(S)

Results

The table below shows the IC_{50} values obtained for individual compounds, followed by the dose-response plots and % viability $\pm SD$ data used to prepare the graphs.

Compound	IC50
	(uM)
AKO-Q-13a1 (5i)	4.5
AKO-Q-13a2 (5j)	2.8
AKO-Q-13a4 (5k)	3.4
AKO-Q-19 (4b)	6.2
Pentamidine	0.005

^{*} Approximate

		AKO-Q-13a1	l	AKO-Q-13a2		AKO-Q-13a4	
uM	log	%Viab	SD	%Viab	SD	%Viab	SD
100	2	-0.6594	0.024711	-3.12057	0.477104	0.212371	0.244101
33.33333	1.522879	6.479433	0.493322	4.828215	0.757764	9.155692	0.44266
11.11111	1.045757	14.71262	0.814962	9.761726	0.488219	17.31352	2.330072
3.703704	0.568636	57.74025	0.523188	29.56382	1.264962	43.34812	6.399081
1.234568	0.091515	91.97546	1.528426	90.82199	3.35642	87.65957	1.139119
0.411523	-0.38561	95.96166	3.627241	95.76089	0.808916	95.95919	3.523715
0.137174	-0.86273	95.98511	3.989653	95.32986	4.47013	94.10931	3.579952
0.045725	-1.33985	93.40788	0.56873	93.5491	0.863685	93.4525	1.997981

		AKO-Q-19	
uM	log	%Viab	SD
100	2	-7.4997	2.972549
33.33333	1.522879	0.222726	3.86748
11.11111	1.045757	17.4995	3.650694
3.703704	0.568636	68.00697	5.707235
1.234568	0.091515	94.13371	3.88022
0.411523	-0.38561	93.31949	0.911201
0.137174	-0.86273	94.13203	0.116965
0.045725	-1.33985	93.18314	1.021578

Pentamidin		
Conc (µM)	Log(Conc)	%Viab
1	0	-0.89291
0.333333	-0.47712	5.04438
0.111111	-0.95424	4.610519
0.037037	-1.43136	5.654776
0.012346	-1.90849	7.847016
0.004115	-2.38561	64.11454
0.001372	-2.86273	102.5856
0.000457	-3.33985	102.797

Conclusion

The IC_{50} values of the samples are listed in the first table.