Supplementary Material

Cu-catalyzed solvent-free, pot-economic synthesis of 1,3-dynes from 1,1dibromoalkenes in the presence of DBU·H₂O

Shiva Krishna Moodapelly,^a Yerramsetti Nanaji,^b Gangavaram V. M. Sharma,^a Kanaparthy Suneeel,^c and Venkata Ramana Doddi^{a,d}*

^aOrganic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana-500007, India ^bTexas Tech University, Ophthalmology Department, Lubbock General, 3601 4th Street, Lubbock, TX 79430, USA ^cDepartment of Chemistry, University of Delhi, Delhi-110007, India

^dDepartment of Chemistry, Central University of Karnataka, Kadaganchi, Kalaburagi District, Karnataka-585367, India

E-mail: venkatardoddi@cuk.ac.in

Table of Contents

1.	General experimental methods	S2
2.	General procedure for the preparation of DBU·H ₂ O	S3
3.	¹ H and ¹³ C NMR spectra of compounds 2a-2s	S4

1. General experimental Methods

All reactions were carried out in oven dried reaction flasks under nitrogen atmosphere and dry solvents and reagents were transferred by oven-dried syringes to ambient temperature. TLC was performed on Merck silica gel aluminium sheets and solvents were removed under reduced pressure. Columns were packed as slurry of silica gel in hexane and ethyl acetate solvent mixture. The elution was assisted by applying pressure with an air pump. ¹³C NMR spectra were recorded on 101 MHz spectrometers. ¹HNMR spectra were recorded on 400 and 500 MHz spectrometers in appropriate solvents using TMS as internal standard. The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, dd = double doublet, t = triplet, m = multiplet. All reactions were performed at room temperature. Reagents were obtained from Aldrich, Alfa Aesar, and TCI used without further purification. All compounds are characterized by ¹HNMR and ¹³CNMR. Additionally, unknown compounds are characterized by HRMS analysis. All known compounds data are in consistent with the given literature report.

2. General procedure for the preparation of DBU·H₂O

The DBU [with 0.2% water content (KF)] was purchased from commercial source (spectrochem) and used as such without further purification. Freshly prepared hydrated DBU (DBU.H₂O) was used in all reactions. About 1 equivalent of H₂O was mixed with DBU to get hydrated DBU (DBU.H₂O). Water (HPLC grade) purchased from commercial sources were directly used without any further purification.

5. ¹H, ¹³C NMR spectra

Fig. 1. ¹H-NMR-spectrum of compound **2a**¹ (400 MHz, CDCl₃, 298K)

Fig. 2. ¹³C-NMR-spectrum of compound **2a**¹(101 MHz, CDCl₃, 298K)

Fig. 3. ¹H-NMR-spectrum of compound **2b**¹ (400 MHz, CDCl₃, 298K)

General Papers

Fig. 5. ¹H-NMR-spectrum of compound **2c**¹(500 MHz, CDCl₃, 298K)

Fig. 6. ¹³C-NMR-spectrum of compound **2c**¹ (101 MHz, CDCl₃, 298K)

Fig. 7. ¹H-NMR-spectrum of compound **2d** (400 MHz, CDCl₃, 298K)

ARKIVOC 2020, viii, S1-S42

Fig. 9. ¹H-NMR-spectrum of compound **2e** (500 MHz, CDCl₃, 298K)

Fig. 11. ¹H-NMR-spectrum of compound **2f**¹(400 MHz, CDCl₃, 298K)

Fig. 12. ¹³C-NMR-spectrum of compound **2f**¹(101 MHz, CDCl₃, 298K)

Fig. 13. ¹H-NMR-spectrum of compound **2g**¹ (500 MHz, CDCl₃, 298K)

Fig. 14. ¹³C-NMR-spectrum of compound **2g**¹ (101 MHz, CDCl₃, 298K)

Fig. 15. ¹H-NMR-spectrum of compound **2h** (500 MHz, CDCl₃, 298K)

Fig. 16. ¹³C-NMR-spectrum of compound **2h** (101 MHz, CDCl₃, 298K)

Fig. 17. ¹H-NMR-spectrum of compound **2i** (500 MHz, CDCl₃, 298K)

Fig. 18. ¹³C-NMR-spectrum of compound **2i** (101 MHz, CDCl₃, 298K)

Fig. 19. ¹H-NMR-spectrum of compound **2j** (400 MHz, CDCl₃, 298K)

Fig. 20. ¹³C-NMR-spectrum of compound **2j** (101 MHz, CDCl₃, 298K)

Fig. 21. ¹H-NMR-spectrum of compound **2k** (400 MHz, CDCl₃, 298K)

Fig. 22. ¹³C-NMR-spectrum of compound **2k** (101 MHz, CDCl₃, 298K)

Fig. 23. ¹H-NMR-spectrum of compound **2l** (400 MHz, CDCl₃, 298K)

Fig. 24. ¹³C-NMR-spectrum of compound **2l** (101 MHz, CDCl₃, 298K)

Fig. 25. ¹H-NMR-spectrum of compound **2m** (500 MHz, CDCl₃, 298K)

Fig. 26. ¹³C-NMR-spectrum of compound **2m** (101 MHz, CDCl₃, 298K)

General Papers

Fig. 27. ¹H-NMR-spectrum of compound **2n** (500 MHz, CDCl₃, 298K)

Fig. 28. ¹³C-NMR-spectrum of compound **2n** (101 MHz, CDCl₃, 298K)

Fig. 29. ¹H-NMR-spectrum of compound **2o**¹ (400 MHz, CDCl₃, 298K)

Fig. 30. ¹³C-NMR-spectrum of compound **20**¹ (101 MHz, CDCl₃, 298K)

Fig. 31. ¹H-NMR-spectrum of compound **2p** (400 MHz, CDCl₃, 298K)

Fig. 32. ¹³C-NMR-spectrum of compound **2p** (101 MHz, CDCl₃, 298K)

Fig. 33. ¹H-NMR-spectrum of compound **2q** (500 MHz, CDCl₃, 298K)

Fig. 34. ¹³C-NMR-spectrum of compound **2q** (101 MHz, CDCl₃, 298K)

Fig. 35. ¹H-NMR-spectrum of compound **2r** (500 MHz, CDCl₃, 298K)

Fig. 36. ¹³C-NMR-spectrum of compound **2r** (101 MHz, CDCl₃, 298K)

Fig. 37. ¹H-NMR-spectrum of compound **2s** (500 MHz, CDCl₃, 298K)

Fig. 38. ¹³C-NMR-spectrum of compound **2s** (101 MHz, CDCl₃, 298K)

References

Rao, M. L. N.; Priyabrata, D.; Ramakrishna, B. S.; Murty, V. N. *Tetrahedron Lett.* 2014, 55, 3529–3533. doi: 10.1016/j.tetlet.2014.04.092