Supplementary Material

Synthesis of modified miuraenamides - the Ugi approach

Sarah Kappler and Uli Kazmaier*
Organic Chemistry, Saarland University, Campus C4.2, 66123 Saarbrücken, Germany Email: u.kazmaier@mx.uni-saarland.de

Table of Contents

General procedures S2
GP 1: Ugi reactions S2
GP 2: Saponification of esters with LiOH solutions S2
GP 3a: Steglich Esterifications with EDC•HCI/DMAP S2
GP 3b: Steglich Esterifications with DCC/DMAP S2
GP 4: Palladium-catalyzed allyl-cleavages S2
GP 5: Macrolactamizations via the pentafluorophenyl ester method S2
GP 6: TBS-Deprotections with TBAF S3
GP 7: Jones Oxidations S3
Ugi Reactions S4
Saponification of Ugi Products S6
Preparation of the tripeptide esters S6
Cyclization towards miuraenamide derivatives S12

General procedures

GP 1: Ugi reactions

To a solution of aldehyde (1.0 eq) and amine (1.0 eq) in the corresponding solvent ($1.0 \mathrm{~mL} / \mathrm{mmol}$) Boc-L-alanine (1.2 eq) was added after 15 min . Methyl isocyanoacetate (1.0 eq) was added at $0^{\circ} \mathrm{C}$. After stirring at room temperature or heating in a microwave the reaction mixture was hydrolyzed with saturated NaHCO_{3} solution. The organic layer was washed with $1 \mathrm{M} \mathrm{KHSO}_{4}$ and 0.5 M HCl solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated in vacuo and the residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate).

GP 2: Saponification of esters with LiOH solutions

To a solution of the ester (1.0 eq) in THF/MeOH ($3: 1 ; 5-8 \mathrm{~mL} / \mathrm{mmol}$) a solution of $\mathrm{LiOH}(1.05 \mathrm{eq})$ in dest. $\mathrm{H}_{2} \mathrm{O}$ (2 $\mathrm{mL} / \mathrm{mmol}$ ester) was added at $0^{\circ} \mathrm{C}$. After complete conversion (TLC-control), the solvent was evaporated in vacuo and the residue was acidified with 1 M HCl solution to pH 2 . The aqueous layer was extracted with ethyl acetate, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated in vacuo.

GP 3a: Steglich Esterifications with EDC•HCI/DMAP

To a solution of the tripeptide acid (1.0 eq) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL} / \mathrm{mmol})$ alcohol (S)-6 (1.1 eq), 4(dimethylamino)pyridine (DMAP) (0.1 eq) and N -(3-Dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide hydrochloride (EDC. HCl) (1.2 eq) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL} / \mathrm{mmol})$ were added. After stirring the mixture overnight at room temperature, the solvent was evaporated in vacuo and the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with 1 M KHSO 4 and sat. NaHCO_{3} solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated in vacuo and the residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate).

GP 3b: Steglich Esterifications with DCC/DMAP ${ }^{1}$

To a solution of the tripeptide acid (1.0 eq) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL} / \mathrm{mmol})$ alcohol 3 (1.0-1.2eq), 4(dimethylamino)pyridine (DMAP) (0.1 eq) and $\mathrm{N}, \mathrm{N}^{\prime}$-dicyclohexyl-carbodiimide (DCC) (1.2 eq) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\mathrm{mL} / \mathrm{mmol}$) were added. After stirring the mixture overnight at room temperature, the solvent was evaporated in vacuo and the residue was dissolved in $\mathrm{Et} 2 \mathrm{O}^{2}$. The precipitated urea derivative was filtered off, the solvent was evaporated and the residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate).

GP 4: Palladium-catalyzed allyl-cleavages

To a solution of allylester (1.0 eq) in dry THF ($20 \mathrm{~mL} / \mathrm{mmol}$) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$ and morpholin (2.0 eq) was added. The solution was stirred overnight at room temperature, before it was diluted with ethyl acetate. The solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent in vacuo, the residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate).
GP 5: Macrolactamizations via the pentafluorophenyl ester method ${ }^{2}$
To a solution of the cyclization precursor (1.0 eq) and pentafluorophenol (1.1 eq) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} / \mathrm{mmol})$ N -(3-dimethylaminopropyl- N^{\prime}-ethylcarbodiimide hydrochloride (EDC•HCI) (1.0 eq) was added at $0{ }^{\circ} \mathrm{C}$. After stirring overnight at room temperature, the mixture was diluted with ethyl acetate. The organic layer was washed with sat. NaHCO_{3} solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated in vacuo. The activated

[^0]ester was then diluted in DCM/TFA (4:1, $10 \mathrm{~mL} / \mathrm{mmol}$). After complete Boc-deprotection ($2-3 \mathrm{~h}$, tlc-control), the reaction mixture was diluted with dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10-20 \mathrm{~mL} / \mathrm{mmol})$ and slowly added unter vigorously stirring to a two-phase-mixture of $\mathrm{CHCl}_{3} / \mathrm{sat}$. $\mathrm{NaHCO}_{3}(7: 1,400 \mathrm{~mL} / \mathrm{mmol})$ at $40^{\circ} \mathrm{C}$. After complete addition, the mixture was heated to $60^{\circ} \mathrm{C}$ and stirred overnight. The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated in vacuo. Column chromatography (silica gel, petroleum ether/ ethyl acetate) gave rise to the desired macrocycle.

GP 6: TBS-Deprotections with TBAF

To a solution of a silyl-protected depsipeptide (1.0 eq) in dry THF ($3 \mathrm{~mL} / \mathrm{mmol}$) a solution of TBAF•3 H2O (1.1 eq) in dry THF ($2.2 \mathrm{~mL} / \mathrm{mmol}$) was added. After complete deprotection (TLC-control), the reaction mixture was diluted with ethyl acetate, washed with 1 M HCl - and saturated NaCl solution and was dried over Na 2 SO 4 . After evaporation of the solvent and purification by column chromatography, the desired alcohol was obtained.

GP 7: Jones Oxidations

Jones solution (3 M): $1.0 \mathrm{~g} \mathrm{CrO} 3,2.91 \mathrm{~mL} \mathrm{H} 2 \mathrm{O}, 0.84 \mathrm{~mL} \mathrm{H} 2 \mathrm{SO}_{4}$
To a solution of alcohol (1.0 eq) in acetone ($7 \mathrm{~mL} / \mathrm{mmol}$) a 3 M Jones solution (3.0 eq) was added. After complete oxidation (TLC-control, 10-20 min), the reaction was hydrolyzed with isopropanol and the solvent was evaporated in vacuo. The residue was diluted with dest. $\mathrm{H}_{2} \mathrm{O}$ and extracted with ethyl acetate. The combined organic layers were washed with saturated NaCl solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent in vacuo, the residue was purified by column chromatography.

Ugi Reactions

(S)-N-tert-Butoxycarbonyl-alanyl-(N-methyl-phenylglycyl)-glycine methyl ester (7b)

According to GP $1250 \mu \mathrm{~L}$ (2.50 mmol) benzaldehyde in 0.5 mL EtOH was reacted with $310 \mu \mathrm{~L}$ (2.50 mmol) methylamine (33% in EtOH), $680 \mathrm{mg}(3.00 \mathrm{mmol})$ Boc-L-alanine and $225 \mu \mathrm{~L}(2.50 \mathrm{mmol})$ methyl isocyanoacetate in the microwave ($80^{\circ} \mathrm{C}, 150 \mathrm{~W}, 30 \mathrm{~min}$). Column chromatography (silica gel, petroleum ether/ethyl acetate 1:1) gave rise to the desired tripeptide 7b ($330 \mathrm{mg}, 800 \mu \mathrm{~mol}, 32 \%$ diastereomer $1 ; 320 \mathrm{mg}, 780 \mu \mathrm{~mol}, 31 \%$ diastereomer 2) as yellow foam. Diastereomer 1: $\mathrm{R}_{\mathrm{f}}=0.21$ (petroleum ether/ethyl acetate 1:1). Mp: 42-46 ${ }^{\circ} \mathrm{C}$. $[\alpha]_{D}^{20}=-59.6^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.32(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H})$, 3.77 (s, 3 H), 4.01 (dd, J = 17.8, $5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.16 (dd, J = 17.8, $5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.63 (qd, J = 7.0, 7.0 Hz, 1 H), 5.44 (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{bs}, 1 \mathrm{H}), 7.34-7.40(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=18.1(\mathrm{q}), 28.3$ (q), 32.3 (q), 41.2 (t), 46.8 (d), 52.3 (q), 61.1 (d), 79.8 (s$), 128.4$ (d), 128.8 (d), 129.5 (d), 163.1 (s$), 165.0$ (s$), 169.2$ (s) ppm. The ${ }^{13} \mathrm{C}$ signal of the tertiary carbon of the phenyl group is not visible in the background noise of the spectrum. Diastereomer 2: $\mathrm{R}_{\mathrm{f}}=0.17$ (petroleum ether/ethyl acetate $1: 1$). $\mathrm{Mp}: 42-46^{\circ} \mathrm{C} .[\alpha]_{D}^{20}=+63.1^{\circ}(\mathrm{c}=1.0$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.38(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{dd}, \mathrm{J}=18.3,5.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=18.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{qd}, J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 6.27$ (bs, 1 H), 7.36-7.42 (m, 5 H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=18.7$ (q), 28.3 (q), 32.2 (q), 41.2 (t), 46.8 (d), 52.4 (q), 60.7 (d), 79.5 (s), 128.7 (d), 128.9 (d), 129.5 (d), 167.5 (s), 169.4 (s), 169.9 (s) ppm. The ${ }^{13} \mathrm{C}$ signal of the tertiary carbon of the phenyl group is not visible in the background noise of the spectrum. HRMS (CI) calcd for: $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 408.2129$, found: 408.2133 .

(S)-N-tert-Butoxycarbonyl-alanyl-[N-methyl-(4-allyloxy-3-bromo)-phenylglycyl]-glycine methyl ester (7c)

 According to GP 1241 mg (1.00 mmol) 3-bromo-4-allyloxybenzaldehyde in 1.0 mL trifluoroethanol was reacted with $124 \mu \mathrm{~L}(1.00 \mathrm{mmol})$ methylamine (33% in EtOH), $227 \mathrm{mg}(1.20 \mathrm{mmol})$ Boc-L-alanine and $90 \mu \mathrm{~L}(1.00 \mathrm{mmol})$ methyl isocyanoacetate in 0.2 mL trifluoroethanol in the microwave ($100{ }^{\circ} \mathrm{C}, 150 \mathrm{~W}, 75 \mathrm{~min}$). Column chromatography (silica gel, petroleum ether/ethyl acetate 1:1) gave rise to the desired tripeptide 7c (129 mg, $240 \mu \mathrm{~mol}, 24 \%$ diastereomer $1 ; 150 \mathrm{mg}, 280 \mu \mathrm{~mol}, 28 \%$ diastereomer 2) as brown oil. Diastereomer 1: $\mathrm{R}_{\mathrm{f}}=0.25$ (petroleum ether/ethyl acetate 1:1) $[\alpha]_{D}^{20}=--55.4^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.32(\mathrm{~d}, \mathrm{~J}=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.97$ (dd, J=18.2, 5.7 Hz, 1 H), 4.17 ($\mathrm{m}, 1 \mathrm{H}$), 4.58-4.65 (m, $3 \mathrm{H}), 5.33$ (dd, $J=10.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{bs}, 1 \mathrm{H}), 5.49(\mathrm{dd}, \mathrm{J}=17.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.06$ (ddt, J = 17.3, 10.5, 5.3 Hz, 1 H), $6.28(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=8.5,1 \mathrm{H}), 7.30(\mathrm{dd}, J=8.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=17.9$ (q), 28.3 (q), 32.1 (q), 41.3 (t$), 46.8$ (d), 52.4 (q), 59.6 (d), 69.7 (t$), 80.0$ (s), 113.3 (d), 118.0 (t$), 123.4$ (s$), 128.9$ (d), 131.3 (d), 132.3 (s), 134.5 (d), 154.3 (s), 165.6 (s), 169.1 (s), 169.3 (s), 169.9 (s) ppm. Diastereomer 2: $\mathrm{R}_{\mathrm{f}}=0.20$ (petroleum ether/ethyl acetate 1:1) $[\alpha]_{D}^{20}=+73.4^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta=1.39(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{dd}, \mathrm{J}=18.1,5.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.14 (dd, J = 18.3, 5.8 Hz, 1 H), 4.61-4.66 (m, 3 H), 5.34 (dd, J = 10.6, 1.3 Hz, 1 H$), 5.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1$ H), $5.50(\mathrm{dd}, J=17.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{ddt}, J=17.3,10.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{bs}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.30(\mathrm{dd}, J=8.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=18.6$ (q), 28.4 (q), 32.5 (q), 41.3 (t$), 46.8$ (d), 52.5 (q), 59.6 (d), 69.7 (t$), 80.2$ (s$), 113.4$ (d), 118.0 (t$), 123.4$ (s$), 128.9$ (d), 131.3 (d), 132.2 (s), 134.4 (d), 154.3 (s), 165.6 (s), 169.1 (s), 169.3 (s), 169.9 (s) ppm. HRMS (CI) calcd for: $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{BrN}_{3} \mathrm{O}_{7}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 543.1398$, found: 543.1422.
(S)-N-tert-Butoxycarbonyl-alanyl-(N-methyl-(4-allyloxy-3-chlor)-phenylglycyl)-glycine methyl ester (7d)

According to GP 1298 mg (1.52 mmol) 3-chloro-4-allyloxybenzaldehyde in 1.5 mL trifluoroethanol was reacted with $226 \mu \mathrm{~L}(1.82 \mathrm{mmol})$ methylamine (33% in EtOH), $345 \mathrm{mg}(1.82 \mathrm{mmol})$ Boc-L-alanine and $137 \mu \mathrm{~L}(1.52 \mathrm{mmol})$ methyl isocyanoacetate in 0.2 mL trifluoroethanol in the microwave ($100{ }^{\circ} \mathrm{C}, 150 \mathrm{~W}, 60 \mathrm{~min}$). Column chromatography (silica gel, petroleum ether/ethyl acetate 1:1) gave rise to the desired tripeptide 7d (213 mg , $430 \mu \mathrm{~mol}, 28 \%, d r=1: 1$) as brown foam. Diastereomer 1: $\mathrm{R}_{\mathrm{f}}=0.12$ (petroleum ether/ethyl acetate 1:1). ${ }^{1} \mathrm{H}-$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta=1.33(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{dd}, \mathrm{J}=18.0,5.2$ Hz, 1 H), 4.17 (dd, J = 17.8, $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.65(\mathrm{~m}, 3 \mathrm{H}), 5.33$ (dd, J = 10.6, 1.3 Hz, 1 H$), 5.37(\mathrm{~m}, 1 \mathrm{H}), 5.47$ (dd, J = 17.3, 1.5 Hz, 1 H), 6.07 (ddt, $J=17.3,10.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=17.9$ (q), 28.3 (q), 32.1 (q), 41.3 (t), 46.8 (d), 52.4 (q), 60.0 (d), 69.7 (t), 113.6 (d), 118.1 (t$), 123.2$ (s$), 129.0$ (d), 131.9 (d), 132.3 (d), 168.9 (s), 168.9 (s), 170.0 (s) ppm. The tertiary carbons of the phenyl and silyl groups and the carboxy atom of the silyl group are in the background noise of the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum. Diastereomer $2: \mathrm{R}_{\mathrm{f}}=0.08$ (petroleum ether/ethyl acetate 1:1) ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.38(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 2.92(\mathrm{~s}$, 3 H), 3.77 ($\mathrm{s}, 3 \mathrm{H}$), 3.99 (dd, $J=18.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}$), $4.15(\mathrm{dd}, J=18.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.65(\mathrm{~m}, 3 \mathrm{H}), 5.33(\mathrm{dd}, J=$ $10.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{dd}, J=17.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{ddt}, \mathrm{J}=17.0,10.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1$ $\mathrm{H}), 6.32(\mathrm{bs}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 100 MHz): $\delta=18.6$ (q), 28.3 (q), 32.0 (q), 41.3 (t), 46.8 (d), 52.5 (q), 59.6 (d), 69.7 ($t), 113.6$ (d), 118.1 ($t), 123.4$ (s), 128.9 (d), 131.4 (d), 132.3 (d), 154.3 (s), 165.6 (s), 169.1 (s), 169.9 (s) ppm. A tertiary carbon of the phenyl group, a tertiary carbon of the silyl group and the carboxy atom of the silyl group are in the background noise of the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum. $\mathrm{HRMS}(\mathrm{Cl})$ calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}_{5}\left[\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2}\right]^{+}$: 397.1399, found: 397.1405.

(S)-N-tert-Butoxycarbonyl-alanyl-(N-methyl-phenylalanyl)-glycine methyl ester (7f)

According to GP $1300 \mathrm{mg}(2.50 \mathrm{mmol})$ 2-phenylacetaldehyde in 2.5 mL dichloroethan was reacted with $310 \mu \mathrm{~L}$ (2.50 mmol) methylamine (33% in EtOH), $681 \mathrm{mg}(3.00 \mathrm{mmol})$ Boc-L-alanine and $225 \mu \mathrm{~L}(2.50 \mathrm{mmol})$ methyl isocyanoacetate in the microwave $\left(100{ }^{\circ} \mathrm{C}, 150 \mathrm{~W}, 120 \mathrm{~min}\right)$. Column chromatography (silica gel, petroleum ether/ethyl acetate 1:1) gave rise to the desired tripeptide $7 \mathrm{f}(351 \mathrm{mg}, 830 \mu \mathrm{~mol}, 33 \%, d r=1: 1)$ as yellowish oil. $\mathrm{R}_{\mathrm{f}}=0.14$ (petroleum ether/ethyl acetate 1:1). Diastereomer 1: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.44(\mathrm{~m}, 3 \mathrm{H}), 1.46$ ($\mathrm{s}, 9 \mathrm{H}$), $2.96(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=15.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{dd}, J=17.8,5.3 \mathrm{~Hz}, 1 \mathrm{H})$,
 ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=16.4$ (q), 28.3 (q), 33.3 (q), 34.0 (t$), 41.1$ (t$), 52.4$ (d), 52.9 (q), 79.1 (s), 128.4 (d), 128.7 (d), 129.0 (d), 129.4 (s), 159.1 (s), 169.8 (s), 169.9 (s), 170.0 (s) ppm. Diastereomer 2 (selected signals): ${ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.39(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~m}, 1 \mathrm{H}), 3.37$ (dd, J = 14.6, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{dd}, \mathrm{J}=7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.13-7.31(\mathrm{~m}, 5 \mathrm{H}), 8.32$ (dd, J=5.3, 5.3 Hz, 1 H$) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=17.3$ (q), 28.3 (q), 33.4 (t), 34.0 (q), 41.1 (t), 52.3 (d), 53.0 (q), 79.1 (), 128.4 (d), 128.7 (d), 129.0 (d), 129.4 (s), 159.1 ($s), 169.8$ ($), 169.9$ (s), 170.0 (s) ppm. HRMS (Cl) calcd for: $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 422.2286$, found: 422.2301 .

Saponification of Ugi Products

(S)-N-tert-Butoxycarbonyl-alanyl-(N-methyl-phenylglycyl)-glycine (8b)

According to GP 2269 mg ($660 \mu \mathrm{~mol}$) tripeptide $\mathbf{7 b}$ in 3.3 mL THF/MeOH (3:1) was reacted with 16.6 mg (693 $\mu \mathrm{mol}$) $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in $1.3 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$. After aqueous workup acid $\mathbf{8 b}$ ($218 \mathrm{mg}, 550 \mu \mathrm{~mol}, 84 \%, d r=52: 48$) could be obtained as white foam. $\mathrm{R}_{\mathrm{f}}=0.06$ (petroleum ether/ethyl acetate 1:1). Diastereomer $1:{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta=1.30(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 4.09(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{qd}, \mathrm{J}=6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.37(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=18.0(\mathrm{q}), 28.3$ (q), 32.5 (q), 41.2 (t), 46.9 (d), 61.2 (d), 80.1 (s), 128.5 (d), 128.8 (d), 129.3 (d), 134.3 (), 155.6 ($), 169.5$ (s), 172.1 (s), 174.5 (s) ppm. Diastereomer 2: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.34(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$, $2.93(\mathrm{~s}, 3 \mathrm{H}), 4.09(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{qd}, J=6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 7.30-$ 7.37 (m, 5 H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=18.2$ (q), 28.3 (q), 32.4 (q), 41.2 (t), 46.8 (d), 60.9 (d), 79.8 (s), 128.6 (d), 128.8 (d), 129.3 (d), 134.3 (s), 155.3 (s), 169.6 (s), 171.9 (s), 174.5 (s) ppm. HRMS (CI) calcd for: $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 394.1973$, found: 394.1960.

(S)-N-tert-Butoxycarbonyl-alanyl-[N-methyl-(4-allyloxy-3-brom)-phenylglycyl]-glycine (8c)

According to GP $2176 \mathrm{mg}(320 \mu \mathrm{~mol})$ tripeptide 7 c in $1.6 \mathrm{~mL} \mathrm{THF} / \mathrm{MeOH}(3: 1)$ was reacted with 7.8 mg (340 $\mu \mathrm{mol}) \mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in 0.7 mL H O . After aqueous workup acid 8 c ($159 \mathrm{mg}, 300 \mu \mathrm{~mol}, 93 \%, d r=1: 1$) could be obtained as orange foam. $\mathrm{R}_{\mathrm{f}}=0.09$ (petroleum ether/ethyl acetate 1:1). Diastereomer 1: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $\delta=1.32(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{dd}, J=18.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, \mathrm{J}=18.3$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=10.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{dd}, \mathrm{J}=$ $17.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.06$ (ddt, J = 17.3, 10.8, 5.0 Hz, 1 H), $6.27(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~m}, 1 \mathrm{H}), 7.25$ (m, 1 H), $7.54(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=18.0(\mathrm{q}), 28.4$ (q), 32.5 (q), 41.3 (t), 46.9 (d), 60.4 (d), 69.7 (t), 113.4 (d), 118.0 (t), 123.4 ($s), 127.4$ (d), 129.7 (d), 132.2 (s), 155.9 (s), 156.8 (s), 169.2 (s), $169.8(\mathrm{~s}), 174.5$ (s) ppm. The ${ }^{13} \mathrm{C}$ signal of the tertiary carbon of the carbamate is not visible in the background noise of the spectrum. Diastereomer 2: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.36(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 2.93$ $(\mathrm{s}, 3 \mathrm{H}), 4.07-4.17(\mathrm{~m}, 2 \mathrm{H}), 4.62(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=10.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~m}, 1 \mathrm{H})$, 5.49 (dd, J = 17.3, 1.5 Hz, 1 H), 6.06 (ddt, J = 17.3, 10.8, $5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $6.32(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~m}, 1 \mathrm{H}), 6.88$ (d, J = 8.6 $\mathrm{Hz}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=18.3(\mathrm{q}), 28.4$ (q), $32.5(\mathrm{q})$, 41.4 (t$), 46.9$ (d), 60.4 (d), 69.7 (t$), 113.4$ (d), 118.0 (t$), 123.4$ (s$), 127.4$ (d), 129.7 (d), 132.2 (s$), 132.2$ (d), 155.9 (s), 156.8 (s), 169.2 (s), 169.8 (s), 174.6 (s) ppm. The ${ }^{13} \mathrm{C}$ signal of the tertiary carbon of the carbamate is not visible in the background noise of the spectrum. HRMS (CI) calcd for: $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{BrN}_{3} \mathrm{O}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 427.0737$, found: 427.0759.

Preparation of the tripeptide esters

(S)-N-tert-Butoxycarbonyl-alanyl-(N-methyl-phenylglycyl)-glycine-(2S,6E)-10-(allyloxy-carbonyl)-7-methyl-

 dec-6-en-2-yl ester (9b)According to GP 3a $190 \mathrm{mg}(480 \mu \mathrm{~mol})$ acid $\mathbf{8 b}$ in 3.8 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was reacted with $127 \mathrm{mg}(530 \mu \mathrm{~mol})(\mathbf{S})-6$, $6.10 \mathrm{mg}(50.0 \mu \mathrm{~mol})$ DMAP and $111 \mathrm{mg}(580 \mu \mathrm{~mol})$ EDC $\cdot \mathrm{HCl}$ in 1.4 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Purification by column chromatography (silicagel, petroleum ether/ethyl acetate 6:4) gave rise to 9 b ($197 \mathrm{mg}, 320 \mu \mathrm{~mol}, 67 \%, d r=1: 1$)
as yellow resin. $\mathrm{R}_{\mathrm{f}}=0.25$ (petroleum ether/ethyl acetate 6:4). Diastereomer $1:{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=$ $1.23(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{td}, J=7.0$, $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{dt}, J$ $=5.8,1.24 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(q d, J=7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{qt}, J=6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{dd}, J=10.5$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.31(\mathrm{dd}, J=17.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{ddt}, J=17.0,10.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.20$
 19.9 (q), 25.4 ($), 27.5(\mathrm{t}), 28.4(\mathrm{q}), 32.3(\mathrm{q}), 33.1(\mathrm{t}), 34.6(\mathrm{t}), 35.4(\mathrm{t}), 41.6(\mathrm{t}), 46.8(\mathrm{~d}), 60.8(\mathrm{~d}), 64.9(\mathrm{t}), 72.7(\mathrm{~d})$, 118.1 (t), 124.8 (d), 128.7 (d), 128.9 (q), 129.6 (q$), 132.3$ (s$), 133.8$ (s$), 133.8$ (d), 156.5 (s$), 169.0$ (s$), 169.1$ (s$)$, $169.2(\mathrm{~s}), 169.3$ (s) ppm. The ${ }^{13} \mathrm{C}$ signal of the tertiary carbon of the carbamate is not visible in the background noise of the spectrum. Diastereomer 2: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.24(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~d}, \mathrm{~J}=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 1.26-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{td}, J=7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.44$ ($\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.95(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{dt}, J=5.8,1.24 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{qd}, \mathrm{J}=7.3,7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.96(\mathrm{qt}, J=6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{dd}, J=10.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=17.3,1.5 \mathrm{~Hz}, 1$ H), 5.47 (d, J = $9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.91 (ddt, J = 17.0, 10.5, $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~m}, 1 \mathrm{H}), 6.36$ (s, 1 H$), 7.34-7.43$ (m, 5 H$)$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=15.9(\mathrm{q}), 18.6(\mathrm{q}), 19.9(\mathrm{q}), 25.3(\mathrm{t}), 27.5(\mathrm{t}), 28.4(\mathrm{q}), 32.3(\mathrm{q}), 32.2(\mathrm{t}), 34.6$ (t$), 35.3$ (t) , 41.6 (t$), 46.7$ (d), 60.8 (d), 64.9 (t), 72.6 (d), 118.1 (t), 124.8 (d), 128.7 (d), 128.8 (d), 129.5 (q), 132.3 (s), 133.8 (s), 133.8 (d), 156.5 (s), 169.0 (s), 169.1 (s), 169.2 (s), 169.3 (s) ppm. The ${ }^{13} \mathrm{C}$ signal of the tertiary carbon of the carbamate is not visible in the background noise of the spectrum. HRMS (CI) calcd for: $\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{~N}_{3} \mathrm{O}_{8}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 616.3592, found: 616.3595.

(S)-N-tert-Butoxycarbonyl-alanyl-[N-methyl-(3-brom-4-allyloxy)-phenylglycyl]-glycine-(2S,6E)-10-(allyloxy-carbonyl)-7-methyl-dec-6-en-2-yl ester (9c)

According to GP 3a $319 \mathrm{mg}(600 \mu \mathrm{~mol})$ acid $\mathbf{8 c}$ in 4.8 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was reacted with $160 \mathrm{mg}(660 \mu \mathrm{~mol})(S)-6$, $7.3 \mathrm{mg}(60.0 \mu \mathrm{~mol})$ DMAP and $139 \mathrm{mg}(720 \mu \mathrm{~mol})$ EDC $\cdot \mathrm{HCl}$ in 1.8 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Purification by column chromatography (silicagel, petroleum ether/ethyl acetate 6:4) gave rise to 9c ($270 \mathrm{mg}, 360 \mu \mathrm{~mol}, 60 \%, d r=1: 1$) as yellow resin. $\mathrm{R}_{\mathrm{f}}=0.25$ (petroleum ether/ethyl acetate 6:4). Diastereomer $1:{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=$ $1.23(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.28-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.32(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{td}, J=7.0$, $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.60-4.65(\mathrm{~m}, 3 \mathrm{H}), 4.96(\mathrm{qt}, J=6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{dd}, J=10.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-5.35(\mathrm{~m}, 2$ H), $5.40(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{ddt}, J=16.8,10.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.05$ (ddt, J = 17.1, $10.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=15.9$ (q), 18.0 (q), 19.9 (q), 25.4 (t$), 27.5(\mathrm{t}), 28.3$ (q), 32.1 (q), 33.1 (t), $34.6(\mathrm{t}), 35.3(\mathrm{t}), 41.6(\mathrm{t}), 46.8(\mathrm{~d}), 60.4(\mathrm{~d}), 65.0(\mathrm{t}), 69.7(\mathrm{t}), 72.7(\mathrm{~d}), 79.9(\mathrm{~s}), 110.0(\mathrm{~s}), 113.4(\mathrm{~d}), 118.1(\mathrm{t}), 118.1$ (t$), 124.8$ (s), 128.1 (d), 129.8 (d), 132.3 (s), 133.8 (s), 134.4 (d), 155.2 (s), 158.9 (s), 168.7 (s), 168.9 (s). 169.0 (s), 173.0 (s) ppm. Diastereomer 2: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.23(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.28-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.38$ (d, J = 6.8 Hz, 3 H), $1.43(\mathrm{~s}, 9 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{td}, J=7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.60-4.65(\mathrm{~m}, 3 \mathrm{H}), 4.96(\mathrm{qt}, J=6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.13(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{dd}, J=10.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-5.35(\mathrm{~m}, 2 \mathrm{H}), 5.40(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, \mathrm{~J}=17.3 \mathrm{~Hz}, 1$ H), 5.91 (ddt, $J=16.8,10.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.05$ (ddt, $J=17.1,10.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~m}, 1 \mathrm{H}), 6.88$ (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.29(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=15.9(\mathrm{q})$, $18.0(\mathrm{q}), 19.9(\mathrm{q}), 25.3(\mathrm{t}), 27.5(\mathrm{t}), 28.3(\mathrm{q}), 32.0(\mathrm{q}), 33.1(\mathrm{t}), 34.6(\mathrm{t}), 35.3(\mathrm{t}), 41.5(\mathrm{t}), 46.8(\mathrm{~d}), 60.4(\mathrm{~d}), 65.0(\mathrm{t})$,
69.7 （t）， 72.5 （d）， 79.9 （ $s), 110.0$（ $s), 113.3$（d）， 118.1 （ $t), 118.1$（ t）， 124.8 （ $s), 128.1$（d）， 129.7 （d）， 132.3 （s）， 133.8 （s）， 134.4 （d）， 134.4 （d）， 155.2 （s）， 158.9 （s）， 168.7 （s）， 168.9 （s）， 169.0 （s）， 173.0 （s）ppm．

（S）－N－tert－Butoxycarbonyl－alanyl－［N－methyl－（3－chlor－4－allyloxy）－phenylglycyl］－glycine－（2S，6E）－10－（allyloxy－ carbonyl）－7－methyl－dec－6－en－2－yl ester（9d）

According to GP $2294 \mathrm{mg}(590 \mu \mathrm{~mol})$ tripeptide 7d in $3.0 \mathrm{~mL} \mathrm{THF} / \mathrm{MeOH}$（3：1）was reacted with 26.5 mg （ 620 $\mu \mathrm{mol}) \mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in $0.6 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ to the free acid $\mathbf{8 d}$（ $277 \mathrm{mg}, 570 \mu \mathrm{~mol}, 96 \%$ ）．According to GP 3 a the crude acid （ $246 \mathrm{mg}, 510 \mu \mathrm{~mol}$ ）in 4.1 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was reacted with $135 \mathrm{mg}(560 \mu \mathrm{~mol})(S)-6,6.20 \mathrm{mg}(50.0 \mu \mathrm{~mol})$ DMAP and $117 \mathrm{mg}(610 \mu \mathrm{~mol}) \mathrm{EDC} \cdot \mathrm{HCl}$ in 1.5 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ．Purification by column chromatography（silicagel， petroleum ether／ethyl acetate 6：4）gave rise to 9 d （ $217 \mathrm{mg}, 310 \mu \mathrm{~mol}, 60 \%, d r=1: 1$ ）as brown resin． $\mathrm{R}_{\mathrm{f}}=0.26$ （petroleum ether／ethyl acetate 6：4）．Diastereomer 1：${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.23(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H})$ ， $1.25-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.32(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{td}, \mathrm{J}=7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{t}, \mathrm{J}=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{dd}, J=18.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=5.8 \mathrm{~Hz}$ ， $2 \mathrm{H}), 4.59-4.67(\mathrm{~m}, 3 \mathrm{H}), 4.96(\mathrm{qt}, \mathrm{J}=6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{dd}, J=10.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.28-5.36$ （m， 2 H ）， 5.40 （d，J＝ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.47$（d，J＝ $17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.91$（ddt，J＝16．6，10．8，5．8 Hz， 1 H ）， 6.06 （ddt，J＝ $17.3,10.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}$ ， $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=15.9$（q）， 18.0 （q）， 19.9 （q）， 25.4 （t）， 27.5 （t）， 28.3 （q）， 32.2
 118.1 （ t ）， 123.4 （ s$), 124.8$（d）， 131.4 （d）， 132.3 （ s$), 132.3$（d）， 133.8 （s）， 133.8 （d）， 155.1 （s）， 158.9 （ s$), 168.7$（s）， 168.9 （s）， 169.0 （s）， 173.0 （s）ppm．Diastereomer $2:{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.24(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-$ $1.56(\mathrm{~m}, 4 \mathrm{H}), 1.38(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{td}, \mathrm{J}=7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$ ， $2 \mathrm{H}), 2.44(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{dd}, J=16.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H})$ ， 4．59－4．67（m，3 H）， 4.96 （qt，J＝6．5， $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{dd}, J=10.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.28-5.36(\mathrm{~m}, 2$ H）， $5.40(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.91$（ddt，J＝16．6，10．8， $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.06$（ddt，J＝17．3， $10.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H})$ ppm．${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=15.9$（q）， 18.0 （q）， 19.9 （q）， 25.4 （ t$), 27.5$（ t$), 28.3$（q）， 32.2 （q）， $33.1(\mathrm{t}), 34.6(\mathrm{t}), 35.4(\mathrm{t}), 41.6(\mathrm{t}), 46.8(\mathrm{~d}), 60.1(\mathrm{~d}), 65.0(\mathrm{t}), 69.7(\mathrm{t}), 72.7(\mathrm{~d}), 79.9(\mathrm{~s}), 113.6(\mathrm{~d}), 118.1(\mathrm{t}), 123.4$ （s）， 124.8 （d）， 131.4 （d）， 132.3 （s）， 132.3 （d）， 133.8 （s）， 133.8 （d）， 155.1 （s）， 158.9 （s）， 168.7 （s）， 168.9 （s）， 169.0 （s）， 173.0 （s）ppm． $\mathrm{HRMS}(\mathrm{Cl})$ calcd for： $\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{ClN}_{3} \mathrm{O}_{7}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 605.2861$ ，found： 605.2860 ．

（S）－N－tert－Butoxcarbonyl－alanyl－（N－methyl－2－naphthylglycyl）－glycine－（2S，6E）－10－（allyloxycarbonyl）－7－methyl－ dec－6－en－2－yl ester（9e）

According to GP 2 methyl ester $7 \mathrm{e}(251 \mathrm{mg}$ ， 570 ⿴mol $)$ in THF／MeOH（ $3: 1,2.8 \mathrm{~mL}$ ）was saponified with a solution of LiOH（ $25.7 \mathrm{mg}, 600$ ⿴囗玉mol）in $\mathrm{H}_{2} \mathrm{O}(1.9 \mathrm{~mL})$ ．The crude acid $8 \mathrm{e}(250 \mathrm{mg}, 570$（lmol，quant．，dr 1：1）was directly used without further purification．For that，the acid（ 222 mg ， 500 mol ）in 4.0 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was converted according to GP 3a with $132 \mathrm{mg}(550 \mu \mathrm{~mol})(S)-6,6.1 \mathrm{mg}(50.0 \mu \mathrm{~mol})$ DMAP and $115 \mathrm{mg}(600 \mu \mathrm{~mol})$ EDC． HCl in 1.5 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ．Purification by column chromatography（silicagel，petroleum ether／ethyl acetate 6：4）gave rise to 9 e（ $198 \mathrm{mg}, 296 \mu \mathrm{~mol}, 59 \%, d r=54: 46$ ）as colorless oil．Diastereomer 1： $\mathrm{R}_{\mathrm{f}}=0.20$（petroleum ether／ethyl acetate 6：4）．${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.23(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.27-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.33(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H})$ ， $1.44(\mathrm{~s}, 9 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{td}, \mathrm{J}=7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{dd}, \mathrm{J}=$ $17.6 \mathrm{~Hz}, 5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{dq}, J=7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{t}, J=6.8 \mathrm{~Hz}$ ， $1 \mathrm{H}), 5.22(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, \mathrm{~J}=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~m}, 1 \mathrm{H}), 5.90(\mathrm{~m}, 1 \mathrm{H}), 6.39(\mathrm{bs}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H})$ ，
$7.40(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.90(\mathrm{~m}, 3 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=15.9$ (q), 18.2 (q), 19.9 (q), 25.3 (t), $27.5(\mathrm{t}), 28.3$ (q), $32.4(\mathrm{q}), 33.1(\mathrm{t}), 34.6(\mathrm{t}), 35.4(\mathrm{t}), 41.6(\mathrm{t}), 46.8(\mathrm{~d}), 60.3(\mathrm{~d}), 64.9(\mathrm{t})$, 72.6 (d), 79.5 (s$), 118.0$ (t), 124.8 (d), 126.4, 126.5, 126.6 (3 d), 127.6 (s), 128.2 (s),128.7 (s),129.0 (d), 131.9 (s), 132.2 (d), 133.0 (s), 133.1 (s), 133.8 (s), 155.5 (s), 169.0 (s), 169.2 (s), 169.3 (s), 173.0 (s) ppm. Diastereomer 2: Rf $=0.16$ (petroleum ether/ethyl acetate 6:4). (selected signals): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.41$ (d, J=6.8 Hz, $3 \mathrm{H}), 1.59(\mathrm{~s}, 9 \mathrm{H}), 2.30(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{dd}, \mathrm{J}=17.8 \mathrm{~Hz}, 4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~m}, 2 \mathrm{H}), 5.11$ (t, J = 6.2 Hz, 1 H), $5.50(\mathrm{~m}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{bs}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=18.7(\mathrm{q}), 25.3(\mathrm{t}), 27.5(\mathrm{t}), 32.2(\mathrm{q}), 35.3(\mathrm{t}), 41.6(\mathrm{t}), 72.5(\mathrm{~d}), 79.8(\mathrm{~s}), 124.8(\mathrm{~d}), 126.6(\mathrm{~d}), 126.7(\mathrm{~d})$, 126.7 (d), 129.0 (d), 131.5 (s), 133.0 (s), 133.1 (s), 133.8 (s), 155.1 (s) ppm. HRMS (Cl) calcd for: $\mathrm{C}_{37} \mathrm{H}_{52} \mathrm{~N}_{3} \mathrm{O}_{8}{ }^{+}$ [M+H]+: 666.3749, found: 666.3750.
(S)-N-tert-Butoxcarbonyl-alanyl-(N-methyl-phenylalanyl)-glycine-(2S,6E)-10-(allyloxycarbonyl)-7-methyl-dec-6-en-2-yl ester (9f)
According to GP 2307 mg ($728 \mu \mathrm{~mol}$) Tripeptide 7f in $3.6 \mathrm{~mL} \mathrm{THF} / \mathrm{MeOH}$ (3:1) was reacted with 18.3 mg (764 $\mu \mathrm{mol}$) $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in $1.5 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$. After aqueous workup, $181 \mathrm{mg}(440 \mu \mathrm{~mol}, 60 \%)$ crude acid 8 f in 3.5 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was converted directly according to GP 3a with $115 \mathrm{mg}(480 \mu \mathrm{~mol})(S)-6,5.40 \mathrm{mg}(44.0 \mu \mathrm{~mol})$ DMAP and 102 $\mathrm{mg}(530 \mu \mathrm{~mol}) \mathrm{EDC} \cdot \mathrm{HCl}$ in 3.5 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Purification by column chromatography (silicagel, petroleum ether/ethyl acetate 6:4) gave rise to $9 f\left(166 \mathrm{mg}, 263 \mu \mathrm{~mol}, 60 \%, d r=63: 37\right.$) as colorless oil. $\mathrm{R}_{\mathrm{f}}=0.21$ (petroleum ether/ethyl acetate 6:4). Diastereomer 1: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.84(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.27$ (d, J=7.3 $\mathrm{Hz}, 3 \mathrm{H}), 1.30-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{td}, J=7.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.44$ (t, J = $7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.96(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=15.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 4.49$ (m, 1 H), $4.57(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.93(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{bs}, 1 \mathrm{H})$, $5.31(\mathrm{dd}, J=17.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~m}, 1 \mathrm{H}), 5.91(\mathrm{ddt}, J=16.8,10.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.31(\mathrm{~m}, 5$ H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=15.9(\mathrm{q}), 17.3(\mathrm{q}), 19.9(\mathrm{q}), 25.3(\mathrm{t}), 27.5(\mathrm{t}), 28.3(3 \mathrm{q}), 30.8(\mathrm{q}), 33.1(\mathrm{t})$, $33.4(\mathrm{t}), 34.6$ (t$), 35.4(\mathrm{t}), 41.3(\mathrm{t}), 46.5(\mathrm{~d}), 56.8(\mathrm{~d}), 65.0(\mathrm{t}), 72.4(\mathrm{~d}), 79.8(\mathrm{~s}), 118.1(\mathrm{t}), 124.8(\mathrm{~d}), 128.4$ (d), 128.4 (d), 128.7 (d), 132.2 (d), 133.7 (s), 137.7 (s), 155.6 (s), 169.1 (s), 169.5 (s), 170.1 (s), 173.0 (s) ppm. Diastereomer 2 (selected signals): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.16-1.34(\mathrm{~m}, 6 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~m}, 1 \mathrm{H})$, $3.22(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 4.94(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.2(\mathrm{q}), 72.1(\mathrm{~d})$, 80.6 (s), 129.4 (d), 129.4 (d) ppm. Rotamer (selected signals): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.16-1.34(\mathrm{~m}, 6 \mathrm{H})$, $1.36(\mathrm{~s}, 9 \mathrm{H}), 3.05(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$. HRMS (Cl) calcd for: $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{~N}_{3} \mathrm{O}_{8}{ }^{+}$ [M+H]+: 630.3749, found: 630.3755.

(S)-(N-tert-Butoxycarbonyl-alanyl)-(R)-(O-allyl-3-bromo-N-methyl-tyrosyl)-glycine-(2S,6E)-10-

(allyloxycarbonyl)-7-methyl-dec-6-en-2-yl ester (9g)

According to GP 3a $180 \mathrm{mg}(380 \mu \mathrm{~mol})$ crude acid $8 \mathrm{~g}^{3}$ in 3.0 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was reacted with 101 mg ($420 \mu \mathrm{~mol}$) $(S)-6,4.6 \mathrm{mg}(38.0 \mu \mathrm{~mol})$ DMAP and $88.2 \mathrm{mg}(460 \mu \mathrm{~mol}) \mathrm{EDC} \cdot \mathrm{HCl}$ in 1.1 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Purification by column chromatography (silicagel, petroleum ether/ethyl acetate 1:1) gave rise to $9 \mathrm{~g}(142 \mathrm{mg}, 186 \mu \mathrm{~mol}, 49 \%$) as colorless oil. $\mathrm{R}_{\mathrm{f}}=0.33$ (petroleum ether/ethyl acetate $1: 1$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.97(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3$ H), $1.21(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.25-1.37(\mathrm{~m}, 4 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{td}, \mathrm{J}=7.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{t}, \mathrm{J}$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{dd}, J=15.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=$

[^1]$17.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{qd}, J=6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.58(\mathrm{~m}, 4 \mathrm{H}), 4.93(\mathrm{qt}, J=6.2,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.12(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.34(\mathrm{~m}, 4 \mathrm{H}), 5.44(\mathrm{dd}, J=17.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dd}, J=10.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.90$ (ddt, $J=17.1,11.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.02 (ddt, $J=17.3,10.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{bs}, 1 \mathrm{H}), 7.07$ (dd, J = 8.5, $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.34 (d, J = $1.8 \mathrm{~Hz}, 1 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=15.9$ (q), 17.4 (q), 19.9 (q),
 72.3 (d), 79.9 (s$), 112.0$ (s$), 113.6$ (d), 117.7 (t), 118.0 (t$), 124.8$ (d), 128.6 (d), 130.8 (s$), 132.2$ (d), 132.5 (d), 133.4 (d), 133.7 (s), 153.6 (s), 155.7 (s), 169.1 (s), 169.9 (s), 173.0 (s), 174.9 (s) ppm. HRMS (Cl) calcd for: $\mathrm{C}_{37} \mathrm{H}_{47} \mathrm{BrN}_{3} \mathrm{O}_{7}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 664.2592$, found: 664.2587.
(S)-N-tert-Butoxycarbonyl-alanyl-(N-methyl-phenylglycyl)-glycine-(2S,6E)-10-carboxy-7-methyl-dec-6-en-2-yl ester (10b)
According to GP $4164 \mathrm{mg}(270 \mu \mathrm{~mol})$ allylester 9 b in 5.4 mL dry THF was reacted with $31.2 \mathrm{mg}(30.0 \mu \mathrm{~mol})$ $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $46.7 \mu \mathrm{~L}(640 \mu \mathrm{~mol})$ morpholin. After column chromatography (silica gel, petroleum ether/ethyl acetate 1:1) acid $10 \mathrm{~b}(80.7 \mathrm{mg}, 140 \mu \mathrm{~mol}, 52 \% \mathrm{~d}$. Th., $d r=2: 1$) could be isolated as yellow resin. Diastereomer 1: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{~s}, 9$ H), $1.60(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{td}, J=6.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 3.96$ (dd, J = 18.0, 5.2 Hz, 1 H), 4.13 (dd, J = 18.1, $6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.67 ($q d, J=7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.98 (qt, J = 6.0, $6.0 \mathrm{~Hz}, 1$ $\mathrm{H}), 5.14(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=5.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.41(\mathrm{~m}, 5 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=15.9$ (q), 19.7 (q), 20.8 (q), $25.0(\mathrm{t}), 27.3$ (t), 28.3 (q), 32.4 (q), 32.9 (t), 34.6 (t$), 34.9$ (t$), 41.6$ (t), 46.8 (d), 61.2 (d), 72.4 (d), 79.6 (s), 124.8 (d), 128.4 (d), 128.5 (d), 128.8 (d), 132.0 (s$), 132.1$ (s), 155.6 (s), 169.2 (s), 175.9 (s) ppm. Diastereomer 2: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.19$ (m, 3 H), 1.37 (d, J = $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{td}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.43$ (t, J = 7.0 Hz, 2 H), $2.92(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{qd}, J=7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(q t, J=6.0,6.0 \mathrm{~Hz}, 1$ H), $5.14(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{dd}, J=5.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.41(\mathrm{~m}, 5 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=15.9$ (q), 19.8 (q), 20.8 (q), $25.02(\mathrm{t}), 27.2(\mathrm{t}), 28.3(3 \mathrm{q}), 32.3$ (q), $32.8(\mathrm{t})$, 34.5 (t$), 35.0$ (t$), 41.6$ (t$), 46.8$ (d), 61.2 (d), 72.6 (d), 79.8 (s$), 124.8$ (d), 128.4 (d), 128.5 (q$), 128.9$ (d), 131.8 (s$)$, 131.9 (s), 155.6 (s), 169.2 (s), 175.9 (s) ppm. HRMS (CI) calcd for: $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{~N}_{3} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}: 576.3279$, found: 576.3286.

(S)-N-tert-Butoxycarbonyl-alanyl-[N-methyl-(3-brom-4-hydroxy)-phenylglycyl]-glycine-(2S,6E)-10-carboxy-7-methyl-dec-6-en-2-yl ester (10c)

According to GP $4242 \mathrm{mg}(320 \mu \mathrm{~mol})$ allylester 9 c in 6.4 mL dry THF was reacted with $37.2 \mathrm{mg}(30.0 \mu \mathrm{~mol})$ $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $33.5 \mu \mathrm{~L}(390 \mu \mathrm{~mol})$ morpholin. After aqueous workup and evaporation of the solvent acid 10c ($179 \mathrm{mg}, 270 \mu \mathrm{~mol}, 83 \% \mathrm{~d}$. Th., $d r=1: 1$) could be isolated as yellow resin. $\mathrm{R}_{\mathrm{f}}=0.11$ (petroleum ether/ethyl acetate 1:1). Diastereomer 1: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.24(\mathrm{~m}, 3 \mathrm{H}), 1.28-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.32(\mathrm{~d}, \mathrm{~J}=7.0$ Hz, 3 H), 1.45 ($\mathrm{s}, 9 \mathrm{H}$), 1.61 ($\mathrm{s}, 3 \mathrm{H}), 1.99(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{~m}, 2$ H), $4.66(q d, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(q t, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1$ H), 6.71 (dd, J = 5.5, 5.5 Hz, 1 H), $6.99(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=15.9(\mathrm{q}), 17.9$ (q), 19.8 (q), $25.2(\mathrm{t}), 27.1(\mathrm{t}), 28.3(3 \mathrm{q}), 32.3(\mathrm{q}), 32.5(\mathrm{t}), 34.4(\mathrm{t})$, 34.9 (t$), 41.7$ (t$), 46.9$ (d), 60.4 (d), 72.7 (d), 79.9 (s$), 110.5$ (s$), 116.4$ (d), 125.1 (d), 128.5 (d), 130.2 (s$), 132.1$ (d), 133.2 (s), 152.9 (s), 155.3 (s), 169.1 (s), 169.3 (s), 174.4 ($s), 176.2$ (s) ppm. Diastereomer 2 : ${ }^{1} \mathrm{H}-\mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 400\right.}$ $\mathrm{MHz}): \delta=1.25(\mathrm{~m}, 3 \mathrm{H}), 1.28-1.41(4 \mathrm{H}, 17-\mathrm{H}), 1.37(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~m}, 2 \mathrm{H})$, $2.31(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{qd}, \mathrm{J}=6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{qt}, \mathrm{J}=6.0$,
$6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 6.71$ ($\mathrm{dd}, J=5.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=15.9(\mathrm{q}) \text {, }, ~, ~, ~}$ 17.9 (q), $19.8(\mathrm{q}), 25.2(\mathrm{t}), 27.2(\mathrm{t}), 28.3(3 \mathrm{q}), 32.3(\mathrm{q}), 32.5(\mathrm{t}), 34.8(\mathrm{t}), 34.9(\mathrm{t}), 41.7(\mathrm{t}), 46.9(\mathrm{~d}), 60.4(\mathrm{~d}), 72.5$ (d), 79.9 (s), 110.5 (s), 116.3 (d), 125.1 (d), 128.6 (d), 130.4 (s), 132.2 (d), 133.3 (s), 152.7 (s), 155.3 (s), 169.1 (s), 169.3 (s), 174.4 (s), 176.2 (s) ppm.

(S)-N-tert-Butoxycarbonyl-alanyl-[N-methyl-(3-chlor-4-hydroxy)-phenylglycyl]-glycine-(2S,6E)-10-carboxy-7-methyl-dec-6-en-2-yl ester (10d)

According to GP $4199 \mathrm{mg}(280 \mu \mathrm{~mol})$ allylester 9d in 5.6 mL dry THF was reacted with $32.4 \mathrm{mg}(30.0 \mu \mathrm{~mol})$ $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $29.2 \mu \mathrm{~L}(340 \mu \mathrm{~mol})$ morpholin. After aqueous workup and evaporation of the solvent acid 10 d (173 mg, $280 \mu \mathrm{~mol}, 98 \% \mathrm{~d}$. Th., $d r=1: 1$) could be isolated as brown resin. $\mathrm{R}_{\mathrm{f}}=0.11$ (petroleum ether/ethyl acetate 1:1). Diastereomer 1: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.25(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.28-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 3.94$ (m, 2 H), $4.64(\mathrm{qd}, J=7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{qt}, J=6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1$ $\mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=5.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=15.9(\mathrm{q}), 17.9(\mathrm{q}), 19.8(\mathrm{q}), 25.2(\mathrm{t}), 27.2(\mathrm{t}), 28.3(\mathrm{q}), 32.3(\mathrm{q}), 32.6(\mathrm{t}), 34.4(\mathrm{t})$, 34.9 (t), 41.7 (t), 46.9 (d), 60.3 (d), 72.6 (d), 79.9 (s$), 116.7$ (d), 120.4 (s), 125.0 (d), 128.5 (d), 130.3 (s), 132.0 (d), 133.6 (s), 152.0 (s), 155.4 (s), 169.2 (s), 171.2 (s), 174.5 (s), 176.5 (s) ppm. Diastereomer 2: ${ }^{1} \mathrm{H}-\mathrm{NMR}^{\left(\mathrm{CCDCl}_{3}, 400\right.}$ $\mathrm{MHz}): \delta=1.27(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.28-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.36(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~m}$, $2 \mathrm{H}), 2.30(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{qd}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{qt}, J=6.0$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=5.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=15.8$ (q), 18.3 (q), 19.6 (q), $24.9(\mathrm{t}), 27.2(\mathrm{t}), 28.3(3 \mathrm{q}), 32.2(\mathrm{q}), 32.7(\mathrm{t}), 34.5(\mathrm{t}), 34.9(\mathrm{t}), 41.7(\mathrm{t}), 46.9(\mathrm{~d}), 60.3(\mathrm{~d}), 72.5(\mathrm{~d}), 80.1(\mathrm{~s})$, 116.6 (d), 120.3 (s), 125.1 (d), 128.6 (d), 130.4 (s), 132.1 (d), 133.6 (s), 151.8 (s), 155.8 (s), 169.3 (s), 171.2 (s), 174.4 (s), 176.4 (s) ppm. $\mathrm{HRMS}(\mathrm{Cl})$ calcd for: $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{ClN}_{3} \mathrm{O}_{7}^{+}[(\mathrm{M}-\mathrm{Boc})+\mathrm{H}]^{+}: 524.2158$, found: 524.2139.

(S)-N-tert-Butoxcarbonyl-alanyl-(N-methyl-(4-allyloxy-3-chlor)-phenylglycyl)-glycine-(2S,5E)-10-(tert-butyldimethylsiloxy)-5-methyl-dec-5-en-2-yl ester (12d)

According to GP $2294 \mathrm{mg}(590 \mu \mathrm{~mol})$ tripeptide 7d in $3.0 \mathrm{~mL} \mathrm{THF} / \mathrm{MeOH}(3: 1)$ was reacted with 26.5 mg (620 $\mu \mathrm{mol}$) $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in $0.6 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$. After aqueous workup, 277 mg ($570 \mu \mathrm{~mol}, 96 \%$) crude acid 8 d in 4.6 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was converted according to GP 3b with $189 \mathrm{mg}(630 \mu \mathrm{~mol})(S)-2,83.1 \mathrm{mg}(680 \mu \mathrm{~mol})$ DMAP and 140 mg ($680 \mu \mathrm{~mol}$) DCC in 1.7 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Purification by column chromatography (silicagel, petroleum ether/ethyl acetate 6:4) gave rise to $\mathbf{1 2 d}$ ($206 \mathrm{mg}, 266 \mu \mathrm{~mol}, 47 \%, d r=1: 1$) as colorless oil. Additionally alcohol (S)-2 (95.4 $\mathrm{mg}, 317 \mu \mathrm{~mol}, 50 \%$) could be reisolated. $\mathrm{R}_{\mathrm{f}}=0.25$ (petroleum ether/ethyl acetate 6:4). Diastereomer 1: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.04(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.43(\mathrm{~s}, 9 \mathrm{H}), 1.50(\mathrm{tt}, J=7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~m}, 2 \mathrm{H}), 1.93-2.03(\mathrm{~m}, 4 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{t}, \mathrm{J}=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{dd}, J=18.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=19.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.67(\mathrm{~m}, 3 \mathrm{H}), 4.94(\mathrm{~m}, 1 \mathrm{H}), 5.12$ $(\mathrm{m}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.06$ (ddt, J = 17.1, 10.8, 5.3 $\mathrm{Hz}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=8.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1$ H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-5.3$ (q), 15.9 (q), 18.3 (q), 19.8 (q), $26.0(\mathrm{t}, \mathrm{q}, \mathrm{C}-23), 27.6$ (t), 28.3 (q), $32.1(\mathrm{t}), 32.5(\mathrm{q}), 34.2(\mathrm{t}), 35.3(\mathrm{t}), 41.6$ (t$), 46.8(\mathrm{~d}), 60.0(\mathrm{~d}), 63.1(\mathrm{t}), 69.7(\mathrm{t}), 72.6$ (d), 79.9 (s$), 113.6$ (d), 118.0 (t), 123.4 (s$), 125.1$ (d), 127.7 (s$), 128.9$ (d), 131.3 (d), 132.3 (d), 133.8 (s$), 154.3$ (s$), 155.6$ (s$), 168.7$ (s$), 169.0$ (s$)$,
174.1 (s) ppm. Diastereomer 2 (selected signals): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.24$ (d, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.32 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 7.42(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=15.9(\mathrm{q})$, 32.0 (t$), 34.1$ (t$), 41.5$ (t$), 59.6$ (d), 72.5 (d), 79.6 (s$), 113.6$ (d), 118.1 (t$), 125.1$ (d), 129.0 (d), 131.4 (d), 132.3 (d), 133.9 (s), 154.1 (s), 168.9 (s), 169.1 (s), 174.0 (s) ppm.
(9S,5E)-9-((S)-(N-tert-Butoxycarbonyl-alanyl)-(N-methyl-(4-allyloxy-3-chlor)-phenylglycyl)-glycinyl-oxy)-6-methyldec-5-enoic acid (13d)
According to GP $6203 \mathrm{mg}(265 \mu \mathrm{~mol})$ silylester 12d in 0.8 mL THF was reacted with 92.0 mg ($292 \mu \mathrm{~mol}$) TBAF•3 $\mathrm{H}_{2} \mathrm{O}$ in $0.6 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$. After complete deprotection and aqueous workup, the corresponding alcohol ($159 \mathrm{mg}, 238$ $\mu \mathrm{mol}, 90 \%$) was directly subjected to Jones oxidation. According to GP $788.3 \mathrm{mg}(135 \mu \mathrm{~mol})$ alcohol in 1.0 mL acetone was reacted with $135 \mu \mathrm{~L}(405 \mu \mathrm{~mol})$ Jones reagent at $0{ }^{\circ} \mathrm{C}$. Purification by column chromatography (silica gel, petroleum ether/ethyl acetate $1: 1+1 \% \mathrm{AcOH}$) gave rise to acid $\mathbf{1 3 d}(41.7 \mathrm{mg}, 63.0 \mu \mathrm{~mol}, 51 \%, d r=$ 58:42) as colorless oil. $\mathrm{R}_{\mathrm{f}}=0.26$ (petroleum ether/ethyl acetate 1:1+1\%AcOH). Diastereomer $1:{ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.24(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.79(\mathrm{~m}, 4 \mathrm{H})$, 1.96-2.08 (m, 4 H$), 2.24(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{dd}, \mathrm{J}=18.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, \mathrm{J}=18.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.61$ $(\mathrm{m}, 2 \mathrm{H}), 4.66(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{qt}, J=6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=$ $17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{ddt}, J=16.3,10.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.16(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=15.7$ (q), 18.4 (q), $20.0(\mathrm{q}), 24.6(\mathrm{t}), 27.0(\mathrm{t}), 28.3(\mathrm{q}), 32.1(\mathrm{q}), 33.3(\mathrm{t}), 33.6(\mathrm{t}), 35.5(\mathrm{t}), 41.4(\mathrm{t}), 46.8(\mathrm{~d}), 60.1(\mathrm{~d}), 69.6(\mathrm{t}), 72.0$ (d), 79.7 (s), 113.5 (d), 118.0 (t$), 123.3$ (s$), 124.1$ (d), 127.1 (s$), 128.8$ (d), 131.2 (d), 132.3 (d), 134.8 (s$), 154.2$ (s$)$, 155.2 (s), 169.0 (s), 169.3 (s), 174.3 (s), 177.7 (s) ppm. Diastereomer 2 (selected signals): ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.23(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{dd}, \mathrm{J}=$ $17.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=15.6(\mathrm{q}), 18.1(\mathrm{q}), 20.2(\mathrm{q}), 24.7(\mathrm{t}), 27.1(\mathrm{t}), 33.6(\mathrm{t}), 33.6(\mathrm{t}), 41.5(\mathrm{t}), 72.3(\mathrm{~d}), 80.2(\mathrm{~s}), 113.6$ (d), 118.0 (t), 123.2 (s), 124.2 (d), 129.0 (d), 131.4 (d), 132.3 (d), 154.0 (s), 155.8 (s) ppm.

Cyclization towards miuraenamide derivatives

(9S,19S,14E)-6-Phenyl-7,9,14,19-tetramethyl-1-oxa-4,7,10-triazacylono-nadec-14-en-2,5,8,11-tetraon (11b) According to GP $541.8 \mathrm{mg}(71.6 \mu \mathrm{~mol})$ acid $\mathbf{1 0 b}, 14.7 \mathrm{mg}(79.9 \mu \mathrm{~mol})$ pentafluorophenol and $15.3 \mathrm{mg}(79.9$ $\mu \mathrm{mol}) \mathrm{EDC} \cdot \mathrm{HCl}$ were reacted in 0.8 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The corresponding active ester was dissolved in 0.8 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ TFA (4:1). After Boc deprotection the reaction mixture was diluted with 1.0 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and added dropwise to $29 \mathrm{mLCHCl} 3 / \mathrm{sat}$. NaHCO_{3} (7:1). Column chromatography (silica gel, petroleum ether/ethyl acetate 3:7) gave rise to macrocycle 11b ($16.2 \mathrm{mg}, 35.4 \mu \mathrm{~mol}, 44 \%, d r=9: 1$) as colorless resin. $R_{f}=0.12$ (petroleum ether/ethyl acetate 3:7) ppm. Diastereomer 1: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.25(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~d}, \mathrm{~J}$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{td}, J=7.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.18-2.49(\mathrm{~m}, 4 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H})$, 3.76 (dd, $J=17.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=17.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{qd}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{t}, \mathrm{J}=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.41(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta=16.3(\mathrm{q}), 18.4(\mathrm{q}), 20.0(\mathrm{q}), 24.8(\mathrm{t}), 27.8(\mathrm{t}), 32.1(\mathrm{q}), 33.9(\mathrm{t}), 34.0(\mathrm{t}), 35.7(\mathrm{t}), 42.0(\mathrm{t}), 45.9(\mathrm{~d}), 60.5$ (d), 72.3 (d), 126.1 (d), 128.6 (d), 128.9 (d), 129.4 (d), 133.3 (s), 134.0 (s), 168.5 (s), 169.2 (s), 172.0 (s), 173.8 (s) ppm. Diastereomer 2: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.25(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.61$ ($\mathrm{m}, 4 \mathrm{H}$), $1.64(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{td}, \mathrm{J}=7.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.18-2.49(m, 4 H), 2.86 ($\mathrm{s}, 3 \mathrm{H}$), 3.76 (dd, J = 17.6, $4.5 \mathrm{~Hz}, 1$
H), $4.33(\mathrm{dd}, J=17.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{qd}, J=6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1$ H), $6.48(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.41(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=16.3$ (q), 18.4
 128.6 (d), 128.9 (d), 129.4 (d), 133.3 (s), 134.0 (s), 168.5 (s), 169.2 (s), 172.0 (s), 173.8 (s). HRMS (CI) cald for: $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 458.2649$, found: 458.2654 .

(9S,19S,14E)-6-(3-chlor-4-hydroxy)-phenyl-7,9,14,19-tetramethyl-1-oxa-4,7,10-triazacylononadec-14-en-2,5,8,11-tetraon (11d)

According to GP $5176 \mathrm{mg}(280 \mu \mathrm{~mol})$ acid 10d, $55.9 \mathrm{mg}(310 \mu \mathrm{~mol})$ pentafluorophenol and $59.2 \mathrm{mg}(310 \mu \mathrm{~mol})$ $\mathrm{EDC} \cdot \mathrm{HCl}$ were reacted in 2.8 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The corresponding active ester was disolved in 2.8 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{TFA}$ (4:1). After Boc deprotection the reaction mixture was diluted with 4.2 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and added dropwise to $112 \mathrm{~mL} \mathrm{CHCl} 3 / \mathrm{sat}$. NaHCO_{3} (7:1). Column chromatography (silica gel, petroleum ether/ethyl acetate 3:7) gave rise to macrocycle 11d ($54.2 \mathrm{mg}, 110 \mu \mathrm{~mol}, 38 \%, d r=7: 3$) as yellow resin. $\mathrm{R}_{\mathrm{f}}=0.13$ (petroleum ether/ethyl acetate 3:7). Diastereomer 1: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$: $\delta=1.24(\mathrm{~m}, 3 \mathrm{H}), 1.30-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.34(\mathrm{~m}, 3 \mathrm{H})$, $1.62(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{td}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.29-2.56(\mathrm{~m}, 4 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{dd}, J=14.1,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{~m}, 1$ H), $4.90(\mathrm{qd}, \mathrm{J}=5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~m}, 1 \mathrm{H})$, $6.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=14.6$ (q), 18.2 (q), 19.9
 126.0 (d), 128.0 (d), 129.4 (s), 130.4 (d), 133.2 (s), 152.0 (s), 168.5 (s), 169.0 (s), 172.3 (s), 173.7 (s) ppm. Diastereomer 2: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.24(\mathrm{~m}, 3 \mathrm{H}), 1.30-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.34(\mathrm{~m}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H})$, $1.95(\mathrm{td}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.29-2.56(\mathrm{~m}, 4 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{qd}, \mathrm{J}=6.0,6.0 \mathrm{~Hz}, 1$ $\mathrm{H}), 5.01(\mathrm{~m}, 1 \mathrm{H}), 5.53(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~m}, 1 \mathrm{H}), 7.41$ (m, 1 H), $7.89(\mathrm{~m}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=15.0(\mathrm{q}), 18.2$ (q), 19.9 (q), 24.8 (t$), 28.4$ (t$), 31.9$ (q), 32.9 (t$), 34.0$ (t$), 35.6$ (t$), 42.1$ (t$), 46.4$ (d), 61.3 (d), 72.8 (d), 116.7 (d), 120.5 (s$), 126.0$ (d), 128.0 (d), 129.6 (s$)$, 130.4 (d), 133.5 (s), 152.3 (s), 168.7 (s), 169.2 (s), 172.3 (s), 173.7 (s) ppm. HRMS (Cl) calcd for: $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{ClN}_{3} \mathrm{O}_{6}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 509.2101$, found: 509.2138 .

(9S,19S,14E)-7,9,14,19-tetramethyl-6-(2-naphthyl)-1-oxa-4,7,10-triazacylononadec-14-en-2,5,8,11-tetraon (11e)

According to GP 4197 mg ($296 \mu \mathrm{~mol}$) allylester 9 e in 5.9 mL dry THF was reacted with 34.2 mg ($29.6 \mu \mathrm{~mol}$) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $51.2 \mu \mathrm{~L}(592 \mu \mathrm{~mol})$ morpholin. According to GP $5197 \mathrm{mg}(296 \mu \mathrm{~mol})$ of the crude acid 10e, 60.0 $\mathrm{mg}(326 \mu \mathrm{~mol})$ pentafluorophenol and $62.5 \mathrm{mg}(326 \mu \mathrm{~mol}) \mathrm{EDC} \cdot \mathrm{HCl}$ were reacted in 3.0 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The corresponding active ester was dissolved in 3.0 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{TFA}(4: 1)$. After Boc deprotection the reaction mixture was diluted with 4.4 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and added dropwise to $118 \mathrm{mLCHCl} 3 / \mathrm{sat}$. NaHCO_{3} (7:1). Column chromatography (silica gel, petroleum ether/ethyl acetate 3:7) gave rise to macrocycle 11e ($20.1 \mathrm{mg}, 39.6 \mu \mathrm{~mol}$, $13 \%, d r=1: 1$) as yellow oil. $R_{f}=0.18$ (petroleum ether/ethyl acetate 3:7). Diastereomeric mixture: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.21-1.29(\mathrm{~m}, 3 \mathrm{H}), 1.29-1.59(\mathrm{~m}, 7 \mathrm{H}), 1.60,1.68(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.60(\mathrm{~m}, 4 \mathrm{H}), 2.96$ $(\mathrm{s}, 3 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{~m}, 1 \mathrm{H}), 4.73-5.27(\mathrm{~m}, 3 \mathrm{H}), 6.39(\mathrm{~m}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H})$, 7.32-7.42 (m, 2 H), 7.47-7.55 (m, 2 H), 7.81-7.90 (m, 3 H), 7.98, $7.00(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=15.6(q), 17.3,17.5(q), 20.5,20.8(q), 23.8,24.2(t), 26.8,27.3(t), 32.2(q), 33.5(t), 35.0(t), 36.4(t), 41.6(t)$, $45.9,46.2$ (d), 61.3 (d), $71.3,71.7$ (d), 117.0, 117.1 (d), 126.0 (d), 126.4 (d), 126.6 (d), 127.1 (d), 127.2 (d), 127.5
(d), 127.6 (d), 128.2, 128.4 (d), 131.7 (s$), 132.9$ (s$), 133.2$ (s$), 133.6$ (s$), 168.5$ (s$), 168.6$ (s$), 168.7$ (s$), 169.2$ (s), 173.5 (s) ppm. HRMS (CI) calcd for: $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 508.2806$, found: 508.2824.
($9 S, 19 S, 14 E$)-6-benzyl-7,9,14,19-tetramethyl-1-oxa-4,7,10-triazacylononadec-14-en-2,5,8,11-tetraon (11f)
According to GP $4165 \mathrm{mg}(260 \mu \mathrm{~mol})$ allylester 9 f in 5.2 mL dry THF was reacted with $30.0 \mathrm{mg}(26.0 \mu \mathrm{~mol})$ $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $27.0 \mu \mathrm{~L}(310 \mu \mathrm{~mol})$ morpholin. According to GP 5 the crude acid $10 f(150 \mathrm{mg}, 258 \mu \mathrm{~mol})$ was reacted with $53.4 \mathrm{mg}(290 \mu \mathrm{~mol})$ pentafluorophenol and $55.6 \mathrm{mg}(290 \mu \mathrm{~mol}) \mathrm{EDC} \cdot \mathrm{HCl}$ in 2.6 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The corresponding active ester was converted in 2.6 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{TFA}$ (4:1). After Boc deprotection the reaction mixture was diluted with 3.9 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and added dropwise to $104 \mathrm{mLCHCl} 3 / \mathrm{sat}$. NaHCO_{3} (7:1). Column chromatography (silica gel, petroleum ether/ethyl acetate 3:7) gave rise to two fractions of macrocycle 11f as colorless oils. Diastereomer $1: 33.4 \mathrm{mg}(70.8 \mu \mathrm{~mol}, 27 \%) . \mathrm{R}_{\mathrm{f}}=0.27$ (petroleum ether/ethyl acetate $3: 7$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.41(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{td}$, $J=7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-2.58(\mathrm{~m}, 4 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=17.1 \mathrm{~Hz}, 5.0 \mathrm{~Hz}, 1$ $\mathrm{H}), 4.23-4.44(\mathrm{~m}, 2 \mathrm{H}), 4.80-5.11(\mathrm{~m}, 3 \mathrm{H}), 5.94(\mathrm{bs}, 1 \mathrm{H}), 7.12-7.32(\mathrm{~m}, 5 \mathrm{H}), 8.33(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=16.2$ (q), 16.4 (q), 19.6 (q), 24.2 (t$), 25.8(\mathrm{t}), 29.1(\mathrm{q}), 33.5(\mathrm{t}), 34.0(\mathrm{t}), 34.1(\mathrm{t}), 34.2$ (t$), 41.8$ (t$), 44.4$ (d), 62.5 (d), 71.1 (d), 125.5 (d), 128.6 (d), 128.9 (d), 129.3 (d), 132.3 (s$), 137.8$ (s$), 169.2$ (s$)$, 169.4 (s), 173.0 (s), 73.2 (s) ppm. Diastereomer $2: 32.2 \mathrm{mg}(68.2 \mu \mathrm{~mol}, 26 \%) . R_{f}=0.17$ (petroleum ether/ethyl acetate 3:7). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.54(\mathrm{~m}, 4 \mathrm{H})$, $1.59(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{td}, J=7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-2.47(\mathrm{~m}, 4 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{dd}, J=15.3,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.34$ (dd, $J=15.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.82 (dd, $J=17.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.18 (dd, $J=17.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~m}, 1$ H), $5.09(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=10.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{bs}, 1 \mathrm{H}), 7.16-7.30(\mathrm{~m}, 5$ H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=16.6$ (q), 17.9 (q), 20.0 (q), 25.2 (t$), 27.4$ (t$), 30.6$ (q), $33.0(\mathrm{t}), 33.5$ (t), 34.0 (t), 35.5 (t$), 41.7$ (t), 45.8 (d), 56.7 (d), 72.2 (d), 124.8 (d), 126.7 (d), 128.5 (d), 128.7 (d), 132.0 (s$), 136.6$ (s$)$, 168.4 (s), 170.1 (s), 171.7 (s), 174.6 (s) ppm. HRMS (Cl) calcd for: $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 472.2806$, found: 472.2832 .

(6R,9S,19S,14E)-6-(4-allyloxy-3-bromobenzyl)-7,9,14,19-tetramethyl-1-oxa-4,7,10-triazacylononadec-14-en-2,5,8,11-tetraon (11g)

According to GP $4143 \mathrm{mg}(160 \mu \mathrm{~mol})$ allylester 9 g in 3.8 mL dry THF was reacted with $22.0 \mathrm{mg}(19.0 \mu \mathrm{~mol})$ $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $32.4 \mu \mathrm{~L}(374 \mu \mathrm{~mol})$ morpholin. According to GP $5130 \mathrm{mg}(160 \mu \mathrm{~mol})$ of the crude acid $\mathbf{1 0 g}, 32.4$ $\mathrm{mg}(176 \mu \mathrm{~mol})$ pentafluorophenol and $33.7 \mathrm{mg}(176 \mu \mathrm{~mol}) \mathrm{EDC} \cdot \mathrm{HCl}$ were reacted in 1.6 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The corresponding active ester was converted in 1.6 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{TFA}$ (4:1). After Boc deprotection the reaction mixture was diluted with 2.4 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and added dropwise to $64 \mathrm{mLCHCl} / \mathrm{sat}$. NaHCO_{3} (7:1). Column chromatography (silica gel, petroleum ether/ethyl acetate 3:7) gave rise to macrocycle 11 g ($6.6 \mathrm{mg}, 12.0 \mu \mathrm{~mol}$, 9%) as yellow oil. $\mathrm{R}_{\mathrm{f}}=0.30$ (petroleum ether/ethyl acetate 3:7). [$\left.\alpha\right]_{D}^{20}=-21.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=1.22(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{td}, \mathrm{J}=7.0,7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.26-2.46(\mathrm{~m}, 4 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=14.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=17.3,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.38(\mathrm{dd}, \mathrm{J}=17.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{qd}, J=6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{qt}, J=7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.02(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1$ H), $6.88(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=16.1$ (q), 18.3 (q), 19.7 (q), 24.2 (t), 25.9 (t$), 29.2$ (q), 32.8 $(\mathrm{t}), 33.6(\mathrm{t}), 34.2(\mathrm{t}), 35.4(\mathrm{t}), 41.8(\mathrm{t}), 44.5(\mathrm{~d}), 62.4(\mathrm{~d}), 71.1(\mathrm{~d}), 72.9(\mathrm{~s}), 110.4(\mathrm{~s}), 125.5(\mathrm{~d}), 129.5(\mathrm{~d}), 129.7(\mathrm{t})$, 130.5 (s), 132.8 (d), 133.8 (s), 152.2 (s), 169.1 (s), 169.2 (s), 173.3 (s$), 173.4$ (s). HRMS (Cl) calcd for: $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{BrN}_{3} \mathrm{O}_{6}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 566.1860$, found: 566.1859.
(9S,19S,5E)-6-(4-allyloxy-3-chlorophenyl)-7,9,16,19-tetramethyl-1-oxa-4,7,10-triazacyclononadec-15-en-2,5,8,11-tetraon (14d)
According to GP $541.0 \mathrm{mg}(63.0 \mu \mathrm{~mol})$ acid 13d was reacted with $12.8 \mathrm{mg}(69.3 \mu \mathrm{~mol})$ pentafluorophenol and $13.3 \mathrm{mg}(69.3 \mu \mathrm{~mol}) \mathrm{EDC} \cdot \mathrm{HCl}$ in 0.6 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The corresponding active ester was dissolved in $630 \mu \mathrm{~L}$ dry $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ TFA (4:1). After Boc deprotection the reaction mixture was diluted with $950 \mu \mathrm{~L}$ dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and added dropwise to $25.2 \mathrm{mLCHCl}_{3} /$ sat. NaHCO_{3} (7:1). Column chromatography (silica gel, petroleum ether/ethyl acetate 1:1, 4:6, 3:7) gave rise to macrocycle 14d ($24.6 \mathrm{mg}, 44.9 \mu \mathrm{~mol}, 71 \%, d r=66: 34$) as colorless foam. Diastereomer 1: $R_{f}=0.23$ (petroleum ether/ethyl acetate 3:7). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.27(\mathrm{~m}, 3 \mathrm{H}), 1.41(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.95-2.28(\mathrm{~m}, 6 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{~m}, 2 \mathrm{H}), 4.93(\mathrm{td}, \mathrm{J}=$ $7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{qt}, J=6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=10.75 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=17.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~m}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=16.1$ (q), 17.6 (q), 19.6 (q), 25.6 (t$), 26.2$ (t$), 31.2$ (q), 32.9 (t$), 34.6$ (t$), 35.2(\mathrm{t}), 41.1(\mathrm{t}), 46.0(\mathrm{~d}), 58.1(\mathrm{~d}), 69.7(\mathrm{t}), 71.4(\mathrm{~d}), 113.4$ (d), $118.1(\mathrm{t}), 123.2(\mathrm{~s}), 125.4(\mathrm{~d})$, 126.4 (s), 128.8 (d), 131.3 (d), 132.4 (d), 134.4 (s), 154.0 (s), 168.9 (s), 170.0 (s), 173.1 (s), 173.4 (s) ppm. Diastereomer 2: $\mathrm{R}_{\mathrm{f}}=0.17$ (petroleum ether/ethyl acetate 3:7) (selected signals): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $1.39(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 6.91(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$. HRMS (CI) calcd for: $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{ClN}_{3} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 548.2522$, found: 548.2550.

[^0]: ${ }^{1}$ B. Neises, W. Steglich, Angew. Chem. 1978, 90, 556-557; Angew. Chem. Int. Ed. Engl. 1978, 17, 522-523.
 2 a) U. Schmidt, M. Kroner, H. Griesser, Synthesis 1991, 294-300; b) U. Schmidt, V. Leitenberger, H. Griesser, J. Schmidt, R. Meyer, Synthesis 1992, $1248-1254$.

[^1]: ${ }^{3}$ a) L. Karmann, K. Schulz, J. Herrmann, R. Müller, U. Kazmaier, Angew. Chem. 2015, 127, 4585-4590; Angew. Chem. Int. Ed. 2015, 54, 4502-4507.b) S. Kappler, L. Karmann, C. Prudel, J. Herrmann, G. Caddeu, R. Müller, A. M. Vollmar, S. Zahler, U. Kazmaier, Eur. J. Org. Chem. 2018, 6952-6965.

