Synthesis bis-thienyl-substituted cyclobutenedione via the Liebeskind-Srogl and Stille cross-coupling reactions

Siddhant V. Kokate,a Angélica Aguilar-Aguilar,a Miguel A. Vázquez-Guevara,a Gabriel Luna-Bárcenas,b Alejandro J. Gimenez,b and Eduardo Peña-Cabrera*a

a Departamento de Química. Universidad de Guanajuato. Col. Noria Alta S/N. Guanajuato, Gto. 36050 Mexico

b Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional Unidad Querétaro, QRO 76230 Mexico

Email: eduardop@ugto.mx

to Professor Lanny S. Liebeskind on the occasion of his 70th birthday

Received 12-23-2020\hspace{1cm}Accepted 01-19-2021\hspace{1cm}Published on line 02-01-2021

Abstract

Dithien-2-yl and bis(dithien-2-yl)-substituted cyclobutenediones were prepared via Pd(0)-catalyzed cross-coupling reactions, namely, the Liebeskind-Srogl cross-coupling and Suzuki reactions in 85% and 82% yields, respectively.

Keywords: Thiophene, cyclobutenediones, Liebeskind-Srogl cross-coupling, palladium
Introduction

Oligothiophenes are among the most prominent π-conjugated organic oligomers. Their uses span molecular nanowires, organic dyes for molecular photovoltaics, organic field-effect transistors (OFET), and in general in molecular electronics. Thiophenes are remarkable heterocycles which are endowed with very useful properties such as efficient charge transport, tunable redox potentials, and high polarizability. Donor-acceptor (D-A) systems that contain thiophene units have become important over the last few years chiefly because of their useful properties. Herein, we present our efforts toward the synthesis of a novel derivative possessing a D-A architecture.

The design of bis(dithienyl)cyclobutenedione 1 was based upon two premises, i.e., (a) charge-separation is ensured by capping the thiophene chains with a cyclobutenedione (an electron-withdrawing fragment) and (b) if desired, cyclobutenedione could be transformed into either a quinone or a hydroquinone thereby changing the electronic and geometric features of 1 (Figure 1).

![Figure 1. Possible transformation of the cyclobutenedione nucleus.](image)

Being aware of the importance of the cyclobutenedione synthetic transformations, over the last few years our research group has devoted a significant amount of effort to develop a methodology that would allow for the introduction of different aryl and heteroaryl substituents at the olefinic positions. In this contribution, we disclose the application of that methodology to achieve the synthesis of the thien-2-yl-cyclobutenedione derivatives.

Results and Discussion

Our initial efforts to prepare 7 focused on our recently developed cross-coupling of 3,4-bis-(4-methoxyphenylthio)cyclobutenedione 4 with organoboron reagents to yield symmetric disubstituted cyclobutenediones. However, when this protocol was applied to the target molecule under a number of different reaction conditions, we always obtained a mixture of 4 and the mono- and bis-substituted products 6 (15% yield) and 7 (68% yield) (Scheme 1).
These results are in contrast to those observed with 3-thienylboronic acid 8, whereby under similar reaction conditions, isomer 9 was obtained in 94% yield (Scheme 2).

In view of these results, we decided to change our approach. The Suzuki cross-coupling between 2-thienylboronic acid 5 and 3,4-dichloro-3-cyclobuten-1,2-dione19 10 (Pd(OAc)\textsubscript{2}, S-Phos, K\textsubscript{3}PO\textsubscript{4} in toluene or THF) gave only traces of 7. Finally, 7 was efficiently prepared in 85% by using the Stille cross-coupling reaction20 between 3,4-dichloro-3-cyclobuten-1,2-dione 10 and commercially available tributyl(2-thienyl)stannane 11 (Scheme 3).

In order to incorporate the remaining thiophene units to 7 via a transition metal-catalyzed reaction, bromination of 7 was attempted with Br\textsubscript{2} in AcOH. However, even at 120 °C, no reaction was observed,
presumably, due to the deactivating effect of the electron-withdrawing cyclobutenedione unit. On the other hand, treatment of 7 with three equivalents of NBS in AcOH gave the desired product 12 in excellent yield (Scheme 4).

Scheme 4

With dibromide 12 in hand, we proceeded to react it with 2-thienylboronic acid according to the Suzuki conditions reported by Buchwald20 (Scheme 5).

Scheme 5

Despite the excellent results obtained using the Suzuki coupling to prepare 13, when the reaction was repeated at a larger scale, it became very sluggish with a significant amount of 12 remaining even after 3 days. We then turned our attention to the Stille coupling21-22 and carried out an optimization study for the synthesis of 13 (Table 1).
Table 1. Optimization of the Stille Reaction for the Synthesis of 13

\[
\begin{align*}
12 & \quad + \quad \text{SnBu}_3 \quad \xrightarrow{5\% \text{ [Pd], } 5\% \text{ CuI}} \quad 13 \\
11 & \quad \xrightarrow{2.5 \text{ equiv}} \quad \text{additive, solvent, } 50^\circ\text{C}
\end{align*}
\]

<table>
<thead>
<tr>
<th>entr</th>
<th>[Pd]</th>
<th>solvent</th>
<th>additive</th>
<th>Time (h)</th>
<th>% yield 13(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PdCl(_2)(CH(_3)CN) (_2)</td>
<td>CH(_3)C</td>
<td>-</td>
<td>72</td>
<td>nr</td>
</tr>
<tr>
<td>2</td>
<td>PdCl(_2)(PPh(_3)) (_2)</td>
<td>THF</td>
<td>-</td>
<td>2</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>PdCl(_2)(PPh(_3)) (_2)</td>
<td>DMF</td>
<td>-</td>
<td>1.5</td>
<td>84</td>
</tr>
<tr>
<td>4</td>
<td>PdCl(_2)(PPh(_3)) (_2)</td>
<td>THF</td>
<td>4.0 CsF</td>
<td>2</td>
<td>77</td>
</tr>
<tr>
<td>5</td>
<td>PdCl(_2)(PPh(_3)) (_2)</td>
<td>DMF</td>
<td>4.0 CsF</td>
<td>10 min</td>
<td>80</td>
</tr>
</tbody>
</table>

\(^a\) isolated yields.

The beneficial effect that fluoride has in the Stille reaction\(^{23}\) was observed in this system as well, for 13 was isolated in 80% yield after only 10 min.

During the isolation and characterization of 13 we made an interesting observation. Once in solution (hexanes/EtOAc) and exposed to air, [13 remained unchanged if the solution remained under N\(_2\)] the originally orange solution of 13 gradually turned deep red. TLC of this solution showed that 13 slowly transformed into a different compound. \(^1\)H NMR of the new compound was not very informative since it displayed the same signals as 13, only slightly shifted. However, \(^{13}\)C NMR of this material showed no carbonyl signal in the region typical of cyclobutenediones (190-200 ppm), it did, however, show a signal of a carbonyl group at 164.6 ppm, which is typical of anhydride carbonyl groups (C=O signal of maleic anhydride appears at 164.5 ppm). Based upon this information, it is believed that oxygen inserted between the carbonyl groups of 13 (Scheme 6).

\[
\begin{align*}
13 & \quad \xrightarrow{\text{O}_2} \quad \text{EtOAc/DCM} \\
14 & \quad \text{quantitative yield}
\end{align*}
\]

Scheme 6

In addition to the spectral data described above, HRMS analysis gives a molecular peak that matches the structure proposed. This oxidation reaction is not unprecedented. Tidwell and Zhao\(^{24}\) showed that bisketene 16, generated either thermally or photochemically from its corresponding cyclobutenedione precursor, formed the substituted maleic anhydride on exposure to oxygen (Scheme 7).
Scheme 7. Insertion of oxygen into cyclobutenediones.

A similar process may be operating in the transformation depicted in eq 6. It is important to notice that this process takes place only after two more thiophene units have been incorporated to 7. This seems to indicate that extension of the conjugated system activates the cyclobutenedione ring toward oxygen insertion.

Conclusions

An efficient methodology to prepare a D-A system comprising two bis-thienyl groups attached to a cyclobutenedione has been developed. Both the Liebeskind-Srogl and Stille cross-coupling reactions were attempted to furnish the target molecule, the latter being the method that gave the best results. The addition of CsF to the key Stille reaction was crucial to the success of the synthesis of 13. When 13 was exposed to air, the corresponding anhydride 17 was smoothly formed by the insertion of oxygen between the carbonyl groups. This transformation is currently under study in our laboratory and the results will be reported in due course.

Experimental Section

General. 1H and 13C NMR spectra were recorded in deuteriochloroform (CDCl$_3$), with either tetramethylsilane (TMS) (0.00 ppm 1H, 0.00 ppm 13C), chloroform (7.26 ppm 1H, 77.00 ppm 13C). Data are reported in the following order: chemical shift in ppm, multiplicities (br (broadened), s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), exch (exchangeable), app (apparent)), coupling constants, J (Hz), and integration. Infrared spectra were recorded on a FTIR spectrophotometer. Peaks are reported (cm$^{-1}$) with the following relative intensities: s (strong, 67–100 %), m (medium, 40–67%), and w (weak, 20–40%). Melting points are not corrected. TLC was conducted in silica gel on Al foils. Detection was by UV light (254 or 365 nm). HRMS samples were ionized by ESI+ and recorded via the TOF method.

Synthesis of 3,4-Bis(thien-2-yl)-3-cyclobuten-1,2-dione 7 using the Liebeskind-Srogl cross-coupling. A 50 mL Schlenk flask under N$_2$ was charged with 4 (100 mg, 0.28 mmol, 1.0 equiv), thienylboronic acid 5 (142.8 mg, 1.1 mmol, 4.0 equiv), and anhyd THF (10 mL), and the resulting yellow solution was deoxygenated by bubbling N$_2$ for 5 min. Then, CuTC (266 mg, 1.4 mmol, 5.0 equiv), Pd$_2$(dba)$_3$ (6.4 mg, 2.5 × 10$^{-3}$ mmol), and trifurylphosphine (4.9 mg, 7.5 × 10$^{-3}$ mmol) were added. The reaction mixture was heated at 55 °C for 22 h, the heating bath was removed, and the volatiles were removed in vacuo. The crude material was purified by flash chromatography (SiO$_2$ gel, 5% ethyl acetate/hexanes gradient) to give the product as a yellow solid (46.7 mg, 68%). Recrystallization was carried out by using DCM/cold petroleum ether. Mp 200-201 °C; TLC (SiO$_2$,
20% EtOAc/hexanes, \(R_f = 0.4 \); IR (KBr, cm\(^{-1}\)): 3108.4 (w), 3085 (d), 1764 (s), 1567 (s), 1417 (m), 1405 (m); \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta \) 8.43 (dd, \(J \) 3.8, 0.9 Hz, 2H), 7.96 (dd, \(J \) 5.0, 0.9 Hz, 2H), 7.39 (dd, \(J \) 4.9, 3.9 Hz, 2H); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta \) 193.0, 173.2, 135.2, 134.0, 129.3, 129.3; HRMS (C\(_{22}\)H\(_2\)O\(_2\)S\(_2\), M+1H) calcd. 246.9882, found 246.9883. Along with 7, the mono-coupled product 6 was isolated (13.0 mg, 15%) as a yellow solid. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.97 (d, \(J \) 3.4 Hz, 1H), 7.91 (d, \(J \) 5.0 Hz, 1H), 7.56 (d, \(J \) 8.7 Hz, 2H), 7.35 – 7.33 (t, 1H), 6.97 (d, \(J \) 8.7 Hz, 2H), 3.86 (s, 3H).

Synthesis of 3,4-Bis(thien-2-yl)-3-cyclobuten-1,2-dione 7 using the Stille cross-coupling. A 100 mL two-neck round bottom flask was charged with thien-2-yl stannane 6 (1.6 g, 4.29 mmol, 2.5 equiv), CH\(_3\)CN (16 mL), and a stir bar under N\(_2\). The reaction mixture was purged with N\(_2\) during 5 min after which dichlorocyclobutenedione 3 (261.7 mg, 1.73 mmol, 1 equiv), PdCl\(_2\)[CH\(_3\)CN]\(_2\) (22.2 mg, 0.09 mmol, 5 mol%) and CuI (16.6 mg, 0.09 mmol, 5 mol%) were added. The reaction mixture was heated at 70 °C for 3.5 h then it was allowed to reach rt. Once the reaction mixture reached rt, an abundant yellow precipitate formed. The acetonitrile volume was doubled, and the solid dissolved completely. The acetonitrile layer was extracted with hexanes (3 x 15 mL) to eliminate the tin by-products, then the solvent was evaporated under reduced pressure. The resulting solid was washed with hexanes (3 x 15 mL) and dried under vacuum. The product (359.7 mg, 1.46 mmol, 85%) was obtained as yellow crystalline solid. Mp 200-201 °C.

Synthesis of 3,4-Bis(5-bromo(thien-2-yl)cyclobut-3-ene-1,2-dione 12. A 50 mL Schlenk tube under N\(_2\) was charged with 7 (20 mg, 0.0812 mmol, 1.0 equiv.), N-bromosuccinimide (43.36 mg, 0.2436 mmol, 3.0 equiv.), glacial acetic acid (3.0 mL). The reaction mixture was stirred at rt for 5 min, then heated at reflux at 95 °C for 1 h, after which it was allowed to reach rt. An abundant yellow solid was observed. A saturated aq NH\(_4\)Cl solution was added (4 mL) followed by 0.25M NaOH (4 mL) and stirring continued for 10 min. The yellow solid was filtered using a Whatman filter paper and washed with 0.1M NaOH (4 x 5 mL) and then with H\(_2\)O (2 x 5 mL). The yellow solid was dried under vacuum (31.6 mg, 97% yield). Recrystallization was carried out using DCM/cold petroleum ether. Mp 192-193 °C; TLC (30% EtOAc/Hexanes, \(R_f = 0.7 \)); IR (KBr, cm\(^{-1}\)): 3095 (w), 1786 (s), 1761 (s), 1584 (m), 1411 (m); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 8.13 (d, \(J \) 3.8, 2H), 7.35 (d, \(J \) 3.9, 2H); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta \) 192.2, 171.2, 134.4, 132.5, 130.7, 124.9; HRMS (C\(_{12}\)H\(_8\)Br\(_2\)O\(_2\)S\(_2\), M+1H) calcd. 404.8100, found 404.8071.

Synthesis of 3,4-bis([2,2′-bithien-5-yl])cyclobut-3-ene-1,2-dione 13. A 25 mL Schlenk tube under N\(_2\) was charged with 12 (20 mg, 0.0498 mmol, 1.0 equiv), PdCl\(_2\)(PPh\(_3\))\(_2\) (1.74 mg, 0.0025 mmol, 5 mol%), CsF (30.24 mg, 0.1991 mmol, 4.0 equiv), DMF (4 mL). The reaction was stirred at rt for 1 min after which 2-(tributylstannyl)thiophene 11 was added (47 mg, 0.1244 mmol, 2.5 equiv). The reaction mixture was stirred at 50 °C for 10 min. After 10 min., the reaction was allowed to reach rt and quenched by adding Et\(_2\)O (15 mL) and equal volume of H\(_2\)O. The aqueous layer was extracted with Et\(_2\)O (5 x 15 mL) and the organic layers were combined and dried over MgSO\(_4\). The mixture was filtered through a cotton plug and concentrated under reduced pressure to get a red colored oily material. After trituration with hexanes, a red solid formed, which was washed further with hexanes (10 x 5 mL) to remove tin impurities. Finally, the material was washed with 2.5% EtOAc/hexanes (5 mL) to give the final product (16.4 mg, 80%). Mp > 196 °C (dec); TLC (30% EtOAc/Hexane, \(R_f = 0.5 \)); IR (KBr, cm\(^{-1}\)): 3098 (w), 1756 (s), 1572 (m), 1438 (s); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 8.33 (d, \(J \) 4.1 Hz, 2H), 7.46 (dd, \(J \) 3.6, 0.9 Hz, 2H), 7.44 – 7.41 (m, 4H), 7.13 (dd, \(J \) 5.1, 3.7 Hz, 2H); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta \) 192.8, 171.2, 147.6, 136.0, 135.1, 128.7, 127.7, 127.6, 126.5, 125.7; HRMS (C\(_{20}\)H\(_{11}\)O\(_2\)S\(_4\), M+1H) calcd 410.9636, found 410.9639.
Synthesis of 2,3-bis(5-[2,2′]-bithienyl) maleic anhydride 14. Compound 13 (49 mg, 0.1192 mmol) was dissolved in a 1:1 AcOEt:DCM mixture (20 mL) in a beaker. The reaction mixture was stirred at rt under air for 5 days, solvent was replenished when necessary to avoid dryness. After evaporation of the solvent the dark red colored compound 14 was obtained (50.9 mg, 100%). M.p. = 186-187 °C. TLC (30% EtOAc/Hexane, Rf = 0.54); IR (KBr, cm⁻¹): 3108 (d), 1745 (s), 1439 (s); ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, J 4.1 Hz, 2H), 7.34 (dd, J 6.7, 4.4 Hz, 4H), 7.25 (d, J 4.1 Hz, 2H), 7.08 (dd, J 5.0, 3.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 164.4, 144.6, 134.0, 128.4, 126.7, 125.7, 124.4; HRMS (C₂₀H₁₁O₃S₄, M+1H) calcd 426.9600, found 426.9586.

Acknowledgements

Financial support from CONACyT (grant 253623) and US Army (grant W911NF1810428) is acknowledged. S.V.K. thanks CONACyT for graduate scholarship.

Supplementary Material

¹H, ¹³C spectra of the compounds prepared are available as supplementary material.

References

 https://doi.org/10.1021/ja109926k
 https://doi.org/10.1021/ja207978v
 https://doi.org/10.1002/anie.200806269
 https://doi.org/10.1021/jo00365a043
 https://doi.org/10.1016/S0040-4020(01)80131-9
 https://doi.org/10.1021/jo00365a043
 https://doi.org/10.1021/jo701331m
 https://doi.org/10.1039/C9RA08275A
 https://doi.org/10.1016/S0022-328X(02)01264-0
 https://doi.org/10.1016/j.tetlet.2007.03.091
 https://doi.org/10.1002/anie.200353615
 https://doi.org/10.1021/jo00306a012
 https://doi.org/10.1021/jo00099a018
 https://doi.org/10.1002/anie.200352979
 https://doi.org/10.1021/ja00053a055

This paper is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)