Supplementary Material

An efficient and scalable synthesis of thiazolo ring fused 2-pyridones using flow chemistry

Andrew G. Cairns,^a Souvik Sarkar,^a Pardeep Singh,^a Andreas Larsson,^{*b} and Fredrik Almqvist^{*a,c}

^a Department of Chemistry, Umeå University, 90187 Umeå, Sweden ^b FOI, Swedish Defence Research Agency, CBRN Defence & Security, SE 901 82, Umeå, Sweden ^c Umeå Centre for Microbial Research, Umeå University, SE-90187 Umeå, Sweden Email: <u>fredrik.almqvist@umu.se</u>, <u>andreas.larsson@foi.se</u>

Table of Contents

C10 from flow synthesis	S2
Chiral HPLC traces	S3

C10 from flow synthesis:

16384 4 29761.904 Hz 0.908261 Hz 1.1010048 sec 168.00 usec 298.0 K 2.0000000 sec 0.03000000 sec 1

0.0300000 mec 125.7703643 MHz 13C 13C Use 54.32600021 W 500.1320005 MHz 1H waltzl6 8.48099955 W 0.17315920 W 0.08678737 W

 P2
 Processing parameters

 SI
 32768

 SF
 125.757907

 MDW
 EM

 SSB
 0

 LB
 1.00

 PC
 1.40

AQ RG DW DE TE D1 D11 TD0 SF01 NUC1 P1 P1W1

PLW1 SF02 NUC2 CPDPRG[2 PCPD2 PLW2 PLW12 PLW13

60

40

20

ppm

100

80

140

120

160

200

180

Chiral HPLC traces:

Chiral HPLC of cyclopropyl thiazoline **11** was carried out using a Diacel Chiracel OD-H (250 x 4.6 mm) column and eluting isocratically (Hexane:ⁱPrOH 90:10) at ambient temperature, then detected by UV at 254 nm. Injection was 10 μ L at 1 mg/mL in CHCl₃. Chiral HPLC of pyridone **13** was carried out using a Lux 5 μ m i-amylose-1 (250 x 4.6 mm) column and eluting on a gradient (ⁱPrOH 30:70 to 100% hexane) at ambient temperature, then detected by UV at 254 nm. Injection was 10 μ L at 1 mg/mL in MeOH.

Thiazoline (pure):

Supporting Figure 1. Chiral HPLC trace of thiazoline **12**, as used for MWI and flow syntheses. *ee* of the mixture = 100%, $[\alpha]_D$ +83° (c 0.5, CHCl₃)

Thiazoline (epimerized):

Supporting Figure 2. Thiazoline **12** post-epimerization, demonstrating that *R* and *S* forms can be distinguished. *ee* of the mixture = 52%, $[\alpha]_D$ +44° (c 0.5, CHCl₃).

Thiazoline (mixture of enantiopure and epimerized thiazoline):

Supporting Figure 3. Mixture of pure and epimerised thiazoline **12** confirms the identity of the peaks. *ee* of the mixture = 74% (c 0.5, CHCl₃).

2-Pyridone 13 (Prepared using MWI conditions):

Supporting Figure 4. Enantiopurity of pyridone **13**, as synthesised by MWI. *ee* of the mixture = 82%, $[\alpha]_D$ -188° (c 0.5, CHCl₃).

2-Pyridone 13 (Prepared under flow conditions):

Supporting Figure 5. Enantiopurity of pyridone **13**, as synthesised by flow. *ee* of the mixture = 73%, $[\alpha]_D$ -146° (c 0.5, CHCl₃).

MeOH blank injection (baseline control)

Supporting Figure 6. Blank Injection of MeOH to account for the HPLC baseline.