Supplementary Material

Highly efficient and extremely simple protocol for the oxidation α-hydroxyphosphonates to α-ketophosphonates using Dess-Martin periodinane

Ravindra V. Kupwade, Satish D. Mitragotri, Makarand A. Kulkarni, Uday V. Desai and Prakash P. Wadagaonkar.

aDepartment of Chemistry, Smt. Kasturbai Walchand College, Sangli 416410, India
bDepartment of Chemistry, Walchand College of Arts and Science, Solapur 413 006, India
cInstrumentation center, P.A.H.Solapur University, Solapur 413 255, India
dDepartment of Chemistry, Shivaji University, Kolhapur 416 004, India
ePolymer Science and Engineering Division, National Chemical Laboratory, Pune-411 008, India

Email: sdmitragotri@rediffmail.com

Table of Contents

Spectral data ...S2
Spectroscopic data of α-hydroxyphosphonates ..S12
Spectral data
Diethyl (4-chlorobenzoyl) phosphonate, 2a: 1H-NMR (300 MHz, CDCl$_3$): δ 1.34 (t, $J = 7.2$ Hz, 6H, $2 \times$ OCH$_2$CH$_3$), 4.25 (m, 4H, $2 \times$ OCH$_2$CH$_3$), 7.44 (d, $J = 8.4$ Hz, 2H, ArHs), 8.18 (d, $J = 8.4$ Hz, 2H, ArHs); 13C-NMR (75 MHz, CDCl$_3$): δ 16.25 (d, 3J$_{C-P} = 6$ Hz, OCH$_2$CH$_3$), 64.26 (d, 2J$_{C-P} = 7.5$ Hz, OCH$_2$CH$_3$), 129.24, 131.17, 133.35, 134.21, 141.47, 175.30 (ArCs), 197.63 (d, 1J$_{C-P} = 177$ Hz, ArCO) ppm.

Figure S 1: 1H - NMR of compound 2a
Figure S 2: 13C - NMR of compound 2a

Figure S 3: DEPT of compound 2a
Figure S 4: 1H - NMR of compound 2d

Figure S 5: 13C - NMR of compound 2d
Figure S 6: DEPT of compound 2d

Figure S 7: 1H - NMR of compound 2f
Figure S 8: 13C - NMR of compound 2f

Figure S 9: DEPT of compound 2f
Figure S 10: 1H - NMR of compound 2k

Figure S 11: 13C - NMR of compound 2k
Figure S 12: DEPT of compound 2k

Figure S 13: 1H - NMR of compound 2l
Figure S 14: 13C - NMR of compound 2l

Figure S 15: DEPT of compound 2l
Figure S 16: 1H - NMR of compound 2n

Figure S 17: 13C - NMR of compound 2n
Figure S 18: DEPT of compound 2n
Spectroscopic data of α-hydroxyphosphonates

AHP-1 Dethyl-1-hydroxy-1-(4-chlorophenyl) methyl phosphonate

\(^1\)H NMR (300 MHz, CDCl\(_3\)): δ 1.23 (t, J = 8Hz, 3H) 1.26 (t, J = 8Hz, 3H), 4.01- 4.08 (m, 4H), 4.59(bs, 1H), 5.00(d, \(^1\)J\(_{\text{PC}}\) 12Hz, 1H), 7.31 (d J = 6Hz 2H), 7.41(d, J = 6Hz, 2H).

AHP-2 Dethyl-1-hydroxy-1-(4-methylphenyl) methyl phosphonate

\(^1\)H NMR (200 MHz, CDCl\(_3\)): δ 1.22(t, J = 8Hz, 3H) 1.27(t, J = 8Hz, 3H), 2.34 (s, 3H), 2.05(bs, 1H), 3.90-4.20 (m, 4H), 4.98(d, \(^1\)J\(_{\text{PH}}\) 11Hz, 1H), 7.16 (d J = 8Hz 2H), 7.36(dd, J=8Hz, 2Hz);
\(^{13}\)CNMR (75MHz, CDCl\(_3\)): δ 16.18, 21.04, 63.11, 70.37(d, \(^1\)J\(_{\text{PC}}\) = 169.5Hz), 127.02, 128.72, 133.70, 137.52

AHP-3 Dethyl-1-hydroxy-1-(4-isopropylphenyl) methyl phosphonate

\(^1\)H NMR (300 MHz, CDCl\(_3\)): δ 1.17-1.31(m, 6H), 2.89 (septet, J=6.9Hz, 1H), 3.96-4.08(m, 4H), 4.98(d, \(^1\)J\(_{\text{PH}}\) 10.5Hz, 1H), 5.41(bs, 1H), 7.19(d, J = 7.8Hz, 2H);7.38(d, J = 7.8Hz,2H);
\(^{13}\)CNMR (75MHz, CDCl\(_3\)): δ 16.20, 23.59, 23.82, 33.69, 63.13 (d, \(^2\)J\(_{\text{PC}}\) = 7.0Hz), 63.45(d, \(^2\)J\(_{\text{PC}}\) = 7.0Hz), 126.20, 127.06, 133.78, 148.62

**AHP-4 Diethyl [(2,6-dimethylphenyl)(hydroxy)methyl]phosphonate: 1H -NMR (300 MHz, CDCl\(_3\)): δ 1.22 (t, J = 7.2 Hz, 3H, OCH2CH3), 1.30 (t, J = 7.2 Hz, 3H, OCH2CH3), 2.50 (s, 6H, 2 x ArCH3), 3.68 (s, CHOH), 3.92 – 4.15 (m, 4H, 2 x OCH2CH3), 5.51 (d, J = 15.9 Hz, CH-P), 6.98 – 7.10 (m, 3H, ArHs); 13C-NMR (75 MHz, CDCl3): δ 16.18 (d, 3JC-P = 6 Hz, OCH2CH3), 16.40 (d, 3JC-P = 6 Hz, OCH2CH3), 21.12 (2 x CH3), 62.64 (d, 2JC-P = 7.5 Hz, OCH2CH3), 63.05 (d, 2JC-P = 7.5 Hz, OCH2CH3), 68.78 (d, 1JC-P = 158.25 Hz, ArCH), 127.81, 127.86, 129.39, 132.43, 137.77 (ArCs) ppm.AHP-5 5.

AHP-7 Dethyl-1-hydroxy-1-(3-nitrophenyl) methyl phosphonate

\(^1\)H NMR (200 MHz, CDCl\(_3\)): δ 1.25 (t, J = 8Hz, 3H) 1.28 (t, J = 8Hz, 3H), 4.00-4.25 (m, 4H), 5.16 (dd, \(^1\)J\(_{\text{PH}}\) =12Hz, \(^1\)J\(_{\text{H-OH}}\) = 6Hz, 1H), 5.50 (t, J = 6Hz, 1H), 7.49 (t, J = 8Hz, 1H), 7.80 (d, J = 8Hz, 1H), 8.14 (d, J = 8Hz, 1H), 8.40(bs, 1H);

AHP-8 Dethyl-1-hydroxy-1-(cinnamyl) methyl phosphonate
1H NMR (300 MHz, CDCl$_3$): δ 1.20-1.40 (2 X t, 6H), 4.0-4.25 (m 1H), 4.5 (bs, 1H), 4.68-4.78 6.26-6.40 (m, 1H), 6.75-6.87 (m, 1H), 7.28-7.38 (m, 5H); 13CNMR (75MHz, CDCl$_3$): δ 53.47, 53.61, 53.80, 67.29, 70.52, 123.67, 126.47, 128.37, 132.10, 132.37, 136.15;

AHP-9 Diethyl-1-hydroxy-1-(4-benzloxyphenyl) methyl phosphonate

1H NMR (200 MHz, CDCl$_3$): δ 1.21 (t, $J = 8$ Hz, 3H) 1.26 (t, $J = 8$ Hz, 3H), 3.9-4.2 (m, 4H), 4.95 (d, J_{PH} 10 Hz, 1H), 5.06 (s, 2H), 6.96 (d, $J = 8$ Hz, 2H), 7.31 (m, 5H), 7.39 (d, $J = 8$ Hz, 1H),

13CNMR (50 MHz, CDCl$_3$): 16.20, 63.02, 69.80, 70.08 (d, J_{PH} = 160.5 Hz), 114.44, 127.31, 128.40, 127.87, 129.10, 136.74, 158.47;

AHP-10 Dethyl-1-hydroxy-1-(4-allyloxyphenyl) methyl phosphonate

1H NMR (200 MHz, CDCl$_3$): δ 1.20 (t, $J = 8$ Hz, 3H) 1.26 (t, $J = 8$ Hz, 3H), 2.2 (bs, 1H), 3.9-4.2 (m, 4H), 4.52 (d, $J = 6$ Hz, 2H), 4.93 (d, J_{PH} = 10 Hz, 1H), 5.30 (d, $J = 9$ Hz, 1H), 5.37 (dd, $J = 16$ Hz, 2Hz, 2H), 5.9-6.3 (m, 1H), 7.00 (d, $J = 8$ Hz, 2H), 7.39 (d, $J = 8$ Hz, 2H), 13CNMR (50 MHz, CDCl$_3$): 16.20, 62.80, 68.64, 70.18 (d, J_{PH} = 154 Hz), 114.32, 117.54, 128.32, 128.78, 130.04, 158.33

AHP-12 Diethyl [hydroxy(thiophen-2-yl)methyl]phosphonate

1H -NMR (300 MHz, CDCl$_3$): δ 1.17 – 1.24 (m, 6H, 2 x OCH$_2$CH$_3$), 3.99 - 4.09 (m, 4H, 2 x OCH$_2$CH$_3$), 5.20 (d, $J = 11.4$ Hz, CH - P), 5.62 (s, OH), 6.92 (t, $J = 4.8$ Hz, 1H, ArH), 7.01 (t, $J = 3.0$ Hz, 1H, ArH), 7.22 (d, $J = 5.1$ Hz, 1H, ArH);

13C -NMR (75 MHz, CDCl$_3$): δ 16.30 (d, 3JC-P = 5. 2 Hz, 2 x OCH$_2$CH$_3$), 63.40 (d, 2JC-P = 7.5 Hz, OCH$_2$CH$_3$), 63.74 (d, 2JC-P = 6.75 Hz, OCH$_2$CH$_3$), 66.70 (d, 1JC-P = 168.00 Hz, ArCH), 125.46, 125.88, 126.67, 139.93 (ArCs) ppm.
Figure AHP-1: PMR Spectrum α-hydroxyphosphonate-1

![PMR Spectrum α-hydroxyphosphonate-1](image)

Acquisition Time (sec): 7.9167
Comment: P SANE
Date: 15/05/2007 18:40:10
Frequency (MHz): 200.13
Nucleus: 1H
Original Points Count: 32768
Points Count: 32768
Sweep Width (Hz): 4139.07
Temperature (grad C): 0.000

<table>
<thead>
<tr>
<th>No.</th>
<th>No. (ppm)</th>
<th>Height</th>
<th>Height</th>
<th>No. (ppm)</th>
<th>Height</th>
<th>Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.003</td>
<td>10</td>
<td>4.00</td>
<td>0.019</td>
<td>TMS</td>
</tr>
<tr>
<td>2</td>
<td>1.18</td>
<td>0.471</td>
<td>11</td>
<td>4.04</td>
<td>0.083</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.22</td>
<td>0.379</td>
<td>12</td>
<td>5.01</td>
<td>0.079</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.27</td>
<td>1.000</td>
<td>13</td>
<td>7.14</td>
<td>0.271</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.31</td>
<td>0.490</td>
<td>14</td>
<td>7.18</td>
<td>0.392</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.34</td>
<td>0.807</td>
<td>15</td>
<td>7.27</td>
<td>0.230</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3.95</td>
<td>0.193</td>
<td>16</td>
<td>7.34</td>
<td>0.294</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4.02</td>
<td>0.378</td>
<td>17</td>
<td>7.39</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4.05</td>
<td>0.436</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure AHP-2: PMR Spectrum α-hydroxyphosphonate-2
Figure AHP-3: PMR Spectrum α-hydroxyphosphonate-3

Figure AHP-7: PMR Spectrum α-hydroxyphosphonate-7
Figure AHP-8: PMR Spectrum α-hydroxyphosphonate-8

Figure AHP-9: PMR Spectrum α-hydroxyphosphonate-9
Figure AHP-10: PMR Spectrum α-hydroxyphosphonate-10

Figure AHP-13: PMR Spectrum α-hydroxyphosphonate-13
Figure AHP-14: PMR Spectrum α-hydroxyphosphonate-14