Supplementary Material

Rate constant for the generation of ${}^{1}O_{2}$ from commonly used triplet sensitizers: a systematic study on the wavelength effect using an ene reaction of 2,3-dimethyl-2-butene

Mamiko Hayakawa, Tadashi Aoyama, and Akihiko Ouchi*

Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan

Table of contents

1.	Derivation of eq 5 from eqs 3' and 4.	S2
2.	Number of photons absorbed by the solution per unit time.	S3

Page S1 ©AUTHOR(S)

[1] Derivation of eq 5 from eqs 3' and 4.

When we consider steady state of [1O2], eq 3' becomes

$$d[{}^{1}O_{2}]_{t}/dt = k_{1} p [sen]_{t} [{}^{3}O_{2}]_{t} - k_{2} [{}^{1}O_{2}]_{t} [\mathbf{1}]_{t} = 0$$
(3")

From eq 3"

$$[{}^{1}O_{2}]_{t} = k_{1} p [sen]_{t} [{}^{3}O_{2}]_{t} / k_{2} [1]_{t}$$
 (3''')

By substituting 3" to eq 4, we obtain

$$-d[1]_t/dt = k_l p [sen]_t [^3O_2]_t$$
 (4')

As p, [sen] $_t$ (\approx [sen] $_t$ (\approx [sen] $_t$ (\approx [3 O₂] $_t$, concentration of saturated 3 O₂) can be considered as constants, eq 4' is solved as

$$[1]_t = -k_I p [\text{sen}]_{\theta} [^3O_2]_s t + C$$
 (4")

where C is a constant.

At t = 0, [1]_t is [1]₀ = 3.0×10^{-2} [M], so that from eq 4"

$$[1]_t = -k_1 p [\text{sen}]_0 [^3\text{O}_2]_s t + 3.0 \times 10^{-2}$$
 (5)

Page S2 ©AUTHOR(S)

[2] Number of photons absorbed by the solution per unit time.

In our reactions, 10 mL of solutions were introduced in a cylindrical cell with 3.0 cm diameter. Therefore, the height of the solution in the cell (l_H) is calculated to be $l_H = 10/(1.5^2 \pi)$ cm.

Figure 2 shows the horizontal projection of the cylindrical cell. When the radius of the cell is divided into n segments, the optical path of the rectangular parallelepipeds at m th segment, l_m cm, is calculated to be

$$l_m = 2 \sqrt{1.5^2 - \left(\frac{1.5}{n}m\right)^2}$$
$$= \frac{3}{n} \sqrt{n^2 - m^2}$$

The number of photons (wavelength λ) absorbed by m th rectangular parallelepiped shown in Figure 3 in 1 min ([sens] $\theta p_{\lambda} m$) is,

$$[\operatorname{sen}]_{\theta} p_{\lambda m} = \frac{60 \times \frac{1.5}{n} l_H E_{\lambda m} \left(1 - 10^{-\epsilon_{\lambda}} c_n^{\frac{3}{n} \sqrt{n^2 - m^2}} \right)}{\frac{hC}{\lambda} N_A}$$

where $E_{\lambda m}$ W/cm² is the intensity of incident light (wavelength λ) at m th segment, c is the concentration of the sensitizer, h is Planck's constant, C is the speed of light, ε_{λ} is the molar absorption coefficient of the sensitizer at wavelength λ , and N_A is the Avogadro's number.

Figure 2. Horizontal projection of cylindrical cell

Figure 3. Rectangular parallelepiped of the solution at *m* th segment

Page S3 ©AUTHOR(S)

Figure 4 shows the relationship between the light intensities of flat panel LED 395 (370-475 nm, λ_{max} 400 nm) and LED 525 (455-600 nm, λ_{max} 518 nm), and distance from the LEDs. As shown in the figure, the light intensities decrease proportionally with the distance. Therefore, the intensity of incident light (wavelength λ) at m th segment (cf. Figure 2), $E_{\lambda m}$ W/cm², is

$$E_{\lambda m} = E_{\lambda 1.5} + (E_{\lambda 1.5} - E_{\lambda 3}) - (E_{\lambda 1.5} - E_{\lambda 3})/1.5 \times \left\{ 3 - \sqrt{1.5^2 - \left(\frac{1.5 \, m}{n}\right)^2} \right\}$$
$$= 2 E_{\lambda 1.5} - E_{\lambda 3} - (E_{\lambda 1.5} - E_{\lambda 3})/1.5 \times \left\{ 3 - \sqrt{1.5^2 - \left(\frac{1.5 \, m}{n}\right)^2} \right\}$$

where $E_{\lambda 1.5}$ and $E_{\lambda 3}$ are the intensities of incident light (wavelength λ) at 1.5 and 3 cm from the LED, respectively.

Therefore, the total number of photons absorbed by the solution at m th segment of the cylindrical cell in 1 min ([sen] θp) falls between the volume of rectangular parallelepipeds having lengths l_m and l_{m+1} (cf. Figure 3), which is

Figure 4. Intensity of light vs distance from LED

$$[\text{sen}]_{\theta} p_{\min} = \sum_{\lambda_1}^{\lambda_2} \sum_{m=1}^{n} 2[\text{sen}]_{\theta} p_{\lambda m} < [\text{sen}]_{\theta} p < \sum_{\lambda_1}^{\lambda_2} \sum_{m=0}^{n-1} 2[\text{sen}]_{\theta} p_{\lambda m} = [\text{sen}]_{\theta} p_{\max}$$

where λ_I and λ_2 are the wavelengths of the both ends of the emission of LEDs, namely, $\lambda_I = 370$ nm and $\lambda_2 = 475$ nm for the 395 nm LED, and $\lambda_I = 455$ nm and $\lambda_2 = 620$ nm for the 525 nm LED.

Calculated [sen] θp_{max} and [sen] θp_{min} for n = 1000 are listed in Table S1. The ε_{λ} s in the above equations were calculated from the absorbance of each sensitizer that were measured by UV spectroscopy. $E_{\lambda 1.5}$ and $E_{\lambda 3}$ are the average emission intensities measured at 1.5 and 3 cm from the flat pannel LEDs. The value [sen] θp was obtained as an average of [sen] θp_{max} and [sen] θp_{min} .

Page S4 ©AUTHOR(S)

Table S1. Minimum ([sen] θp_{min}), maximum ([sen] θp_{max}), and average ([sen] θp) number of photons absorbed by the sensitizer per unit time.

		395 nm LED	(n=1000)	525 nm LED	(n=1000)
Sensitizer	Solvent	[sen] ₀ p _{min} [sen] ₀ p _{max} (E/min)	[sen] ₀ p (E/min)	[sen] $_0$ p_{min} [sen] $_0$ p_{max} (E/min)	[sen] ₀ p (E/min)
EY	МеОН	6.705×10 ⁻⁶ 6.713×10 ⁻⁶	6.709×10 ⁻⁶	2.418×10 ⁻⁶ 2.420×10 ⁻⁶	2.419×10 ⁻⁶
RB	МеОН	6.200×10 ⁻⁶ 6.207×10 ⁻⁶	6.204×10 ⁻⁶	$2.568 \times 10^{-6} \\ 2.571 \times 10^{-6}$	2.569×10 ⁻⁶
MB	МеОН	3.250×10^{-6} 3.255×10^{-6}	3.253×10 ⁻⁶	$2.196 \times 10^{-6} \\ 2.198 \times 10^{-6}$	2.197×10 ⁻⁶
MB	CH ₂ Cl ₂	3.173×10 ⁻⁶ 3.177×10 ⁻⁶	3.175×10 ⁻⁶	1.953×10 ⁻⁶ 1.956×10 ⁻⁶	1.955×10 ⁻⁶
TPP	CH ₂ Cl ₂	10.682×10 ⁻⁶ 10.693×10 ⁻⁶	10.687×10 ⁻⁶	2.464×10 ⁻⁶ 2.467×10 ⁻⁶	2.466×10 ⁻⁶
C ₆₀	CH ₂ Cl ₂	7.666×10 ⁻⁶ 7.675×10 ⁻⁶	7.670×10 ⁻⁶	1	-
C ₆₀	Toluene	7.714×10 ⁻⁶ 7.723×10 ⁻⁶	7.719×10 ⁻⁶	1.178×10 ⁻⁶ 1.180×10 ⁻⁶	1.179×10 ⁻⁶

E = mol-photons

Page S5 ©AUTHOR(S)