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Abstract 

1,2-Azaphospholes, 1,2-azaphosphorines and 1,2-azaphosphepines are prominent phosphorus heterocycles 

and are of interest due to their potent pharmacological activities. In this review, we provide the available 

literature data on the synthesis of 1,2-azaphospholes, 1,2-azaphosphorines and 1,2-azaphosphepines. 
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1.  Introduction  
 

Organophosphorus compounds are important intermediates in organic synthesis and have been widely used 

as pharmaceutical,1–9 agricultural,10 and chemical agents.11–15 Recently, phosphorus heterocycles16,17 have 
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received considerable interest because of their unique biological activities as antimicrobial18 and their 

anticancer effects.19–22 Ifosfamide and cyclophosphamide are two important examples of phosphorus 

heterocycles that were launched on the market more than 30 years ago and are still used in treatment of 

cancer.23,24 Much attention has been directed to the synthesis of phosphorus heterocycles due to their wide-

ranging utilities as synthetic intermediates in organic syntheses.25–31 Among these phosphorus heterocycles, 

1,2-azaphospholes, 1,2-azaphosphorines and 1,2-azaphosphepines are of interest in several laboratories due 

to their potent pharmacological activities such as antitumor,32 complexing agents,33,34 and inhibitor of 

mammalian dihydroorotase.35 The present review is focused on the most methodologies for the construction 

of 1,2-azaphospholes, 1,2-azaphosphorines and 1,2-azaphosphepines up to the end of 2019 and to 

supplement the information available in literature. In addition, there is discussion of mechanisms.  

 

2.  Synthetic Methods for Functionalized 1,2-Azaphosphole Derivatives 
 

2.1 Cyclization of ethyl N-methyl-3-bromopropylphosphonamidate with NaH 

Cyclization of ethyl N-methyl-3-bromopropylphosphonamidate (1) with sodium hydride in xylene at 120-125 
oC gave 2-ethoxy-1-methyl-2-oxido-l,2-azaphospholidine (2) (Scheme 1).36 

 

 
 

Scheme 1 

 

2.2 Cyclization of -aminophosphorus compounds with bases 

Ring closure of N-[3-(phenylphosphanyl)propyl]prop-2-en-1-amine (3) by using bromine in the presence of 

triethylamine or 1,2-diphenyldisulfane at 50-60 oC led to 1-allyl-2-phenyl-1,2-azaphospholidine (4) (Scheme 

2).36  

 

 
Scheme 2 

 

Treatment of 2-amino-4-[hydroxy(methyl)phosphoryl]butanoic acid (5) with phosphorus pentachloride in 

the presence of triethylamine as a catalyst and ethanol at 45-50 oC furnished ethyl 2-amino-4-[ethoxy(methyl) 

phosphoryl] butanoate (6) and ethyl 2-methyl-2-oxido-1,2-azaphospholidine-5-carboxylate (7) (Scheme 3). The 

product 7 was also formed by treatment of acid 5 with thionyl chloride and a catalytic amount of DMF at 100-

110 oC, followed by addition of absolute ethanol. Enzyme catalyzed hydrolysis of product 7 to afford the 

corresponding free acid 8 (Scheme 3).37 
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Scheme 3 

 

2.3 Reaction of methyleneaminophosphanes with activated alkenes and alkynes 

Methyleneaminophosphanes 9 reacted with activated alkenes such as acrylonitrile and methyl acrylate at 

room temperature to give the corresponding 5,5-diphenyl-4,5-dihydro-3H-1,25-azaphospholes 10 (Scheme 

4), while its reaction with dimethyl acetylenedicarboxylate furnished dimethyl 2,2-dimethyl-5,5-diphenyl-5H-

1,25-azaphosphole-3,4-dicarboxylate (11) (Scheme 4).38 

 

 
Scheme 4 

 

2.4 Cyclization of 2-[2-(t-butylimino)cyclohexyl]acetonitrile with PCl3 

1-t-Butyl-4,5,6,7-tetrahydro-1H-1,2-benzazaphosphole-3-carbonitrile (13) was prepared by condensation of    

2-[2-(t-butylimino)cyclohexyl]acetonitrile (12) with PCl3 at 50-55 oC in the presence of triethylamine as a base. 

The yield was improved when 1,4-diazabicyclo[2.2.2]octane (DABCO) was used in place of triethylamine 

(Scheme 5).39 

 
 

Scheme 5 
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2.5 Cyclization of 2-imino-2H-chromene-3-carboxamide with chlorodiphenylphosphine and diethyl 

phosphite 

2-Imino-2H-chromene-3-carboxamide (14) reacted with chlorodiphenylphosphine in dry dioxane containing    

a few drops of triethylamine at 90-95 oC to yield 1,1-diphenyl-4-imino-3a,4-dihydro-15-chromeno[4,3-c][1,2] 

azaphosphol-3(2H)-one (15) (Scheme 6).40 

 

 
 

Scheme 6 

 

4-Amino-1-ethoxy-1-oxido-1,9b-dihydrochromeno[4,3-c][1,2]azaphosphole-3(2H)-one (16) was obtained 

by treatment of the carboxamide 14 with diethyl phosphite in the presence of BF3.Et2O as a catalyst at 80-

90 oC (Scheme 7).41 

 
Scheme 7 

 

2.6 Cyclization of chromonyl arylidenes and hydrazones with phosphorus tribromide and diethyl phosphite  

2-Cyano-3-(4-oxo-4H-chromen-3-yl)prop-2-enamide (17) reacted with phosphorus tribromide in dry dioxane 

containing a catalytic quantity of triethylamine 90-95 oC to give two isomeric chromonyl-1,2-azaphospholes 18 

and 19 (Scheme 8).42 

Fusion of the chromonyl phenylhydrazone 20 with diethyl phosphite at 80-90 oC in the presence of 

BF3.Et2O as a catalyst under Pudovik reaction conditions resulted in the nonisolable diethyl hydrazino-

phosphonate 21 (Scheme 9). The latter intermediate underwent spontaneous cyclization by elimination of 

ethanol to provide the chromeno[3,2-d][1,2]azaphosphole 22 as two diastereoisomers (Scheme 9).32 
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Scheme 8 

 

 

 
 

Scheme 9 

 

2.7 Reaction of dialkyl acetylenedicarboxylate with isocyanates and triphenylphosphine 

Dialkyl 2,5-dihydro-5-oxo-1,2-azaphosphole-3,4-dicarboxylates (25) resulted from a three-component reaction 

between triphenylphosphine, dialkyl acetylenedicarboxylate and arylsulfonyl isocyanates (Scheme 10). The 

product 25 was a result of the initial addition of triphenylphosphine to the acetylenic diester and subsequent 

attack of the resulting anion 23 to the carbonyl carbon atom of the arylsulfonyl isocyanate to yield the betaine 

24. The latter betaine underwent spontaneous cyclization to produce the 1,2-azaphosphole 25 (Scheme 10).43 
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Scheme 10 

 

2.8 Dearomatizing anionic cyclization of N-alkyl-N-benzyl-diarylphosphinamides 

Treatment of N-alkyl-N-benzyl-diphenylphosphinamides (26) at low temperature with n-BuLi in THF in the 

presence of HMPA or DMPU gave the anions 27. The developed anions 27 underwent anionic cyclization by 

Michael addition to the ortho position of the P-phenyl ring, which resulted in tetrahydro-2,1-

benzazaphospholes 28 as a dearomatized species trapped with methanol with high regio- and stereo-control 

(Scheme 11).44 Similarly, the cyclization of N-alkyl-N-benzyl-dinaphthylphosphinamides 29 by using n-BuLi in 

THF and subsequent trapping with a series of alkyl halides afforded a series of tetrahydro-1H-naphtho[1,2-c]-

[1,2]azaphospholes 31-36 (Scheme 12).44 

 

 
Scheme 11 

 

Scheme 12 
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N-Benzyl-N-methyl-dinaphthylphosphinamide (29) underwent cyclization by using n-BuLi in THF then 

adding acetic anhydride to isolate the azaphosphole 38 as the major product in the presence or absence of the 

co-solvent HMPA (Scheme 13). The acylation then deprotonation of the methyl group of the CH3CO moiety 

and trapping gave the product of O-acetylation 37, or C-acetylation 39 with low yields (Scheme 13).45 

 

 
Scheme 13 

 

In the same way, the reaction of compound 29 with n-BuLi in THF then acyclic α,β-unsaturated aldehydes 

and ketones afforded the functionalized tricyclic 1,2-azaphospholes 40-44 (Scheme 14).45 

 

 
Scheme 14 

 

The reaction of starting material 29 with n-BuLi in THF followed by addition of 2-cyclopenten-1-one or 

2-cyclohexen-1-one took place with good yield and low selectivity to form a mixture of tricyclic 

1,2-azaphospholes 45 and 46 with a cis-junction in a ratio of 1:1.6 (Scheme 15). Other products (47 and 48) 

were also formed due to the dearomatization of the two naphthalene rings (Scheme 15).45 
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Scheme 15 

 

2.9 Rearrangement of 4,8-diaza-1-phosphaspiro[2.5]oct-1-ene with GaCl3 

Reaction of 2-t-butyl-6,6-dimethyl-4,8-bis(methylthio)-4,8-diaza-1-phosphaspiro[2.5]oct-1-ene-5,7-dione (49) 

with GaCl3 induced an unexpected rearrangement leading to the formation of the complex 50 which stabilized 

into 1,2-azaphosphole form 51 (Scheme 16).46 

 

 
Scheme 16 

 

2.10 Thermal ring opening of 2H-azaphosphirene complexes 

The thermolysis of the (2H-azaphosphirene)tungsten carbonyl complex 52 at 60 oC gave the nitrilium 

phosphanylide complex 54, which reacted with acetylene to yield the 1,2-azaphosphole complex 55 (Scheme 

17).47 

 

 
Scheme 17 

 

Thermal ring opening of the (2H-1,2-azaphosphirene)tungsten complex 56 with dimethyl acetylene-

dicarboxylate and nitriles yielded the corresponding 1,2-azaphosphole complexes 57 (Scheme 18). When 

1-piperidinocarbonitrile or dimethyl cyanamide was used, 1,3,2-oxazaphospholene complexes 58 (meso and 
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racemic in ratio of 1:1) was also obtained beside the desired product 57 (Scheme 18). Furthermore, the 

reaction of complex 56 with 2-(triphenyl-5-phosphanyl)acetonitrile led to the formation of 1,2-azaphosphole 

59 (Scheme 18).33,48-50  

 

 
 

Scheme 18 

 

Also, ring opening reaction of 1,2-azaphosphirene complex 56 with dimethyl acetylenedicarboxylate and 

benzonitrile in toluene furnished a mixture of 2H-1,2-azaphosphole complexes 60 and 61 (Scheme 19). The 

yield of complex 60 was significantly improved to 90% when the reaction was carried out photochemically in 

pentane at -50 °C. Heating of complex 60 in benzonitrile with sulfur gave the 2-sulfido-2H-1,2-azaphosphole 63 

(Scheme 19).33,51-53 

 

 
Scheme 19 

 

On the other hand, the three component reactions of 2H-azaphosphirene complex 56, ethyl propiolate 

and nitriles led to the formation of the regioisomeric 2H-1,2-azaphosphole complexes 64 and 65 (Scheme 20). 

In case of using Ph3P=CH(CN) (66), a mixture of 1,2-azaphosphole complexes 64 and 67 were formed. Also, 



Arkivoc 2020, i, 472-498  Hassanin, N. M. et al. 

 

 Page 482  ©AUTHOR(S) 

reaction of complex 56 with ethyl propiolate and different nitriles in pentane gave 1,2-azaphospholes 65 in 

high yield (Scheme 20).49,50,52,54 

 

 
 

Scheme 20 

 

Similarly, the ring-opening of the 1,2-azaphosphirene complex 68 in benzonitrile in the presence of 

dimethyl acetylenedicarboxylate as a trapping reagent afforded the 1,2-azaphosphole complex 69. When the 

reaction was performed with Ph3P=NCN in dry toluene, the 1,2-azaphosphole complex 70 was formed in high 

yield (Scheme 21).33,55 

 

 
 

Scheme 21 

 

Reaction of the (2H-azaphosphirene)tungsten complex 71 with trifluoromethanesulfonic acid, 

phenylacetylene and triethylamine in CH2Cl2 proceeded through P–C bond ring enlargement to afford 2H-1,2-

azaphosphole complex 72 in low yield (Scheme 22).56 
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Scheme 22 

 

2.11 Photolysis of azidophosphetanes 

Photolysis of 1-azido-2,2,4,4-tetramethylphosphetane 1-oxide 73 (R=H) afforded the cyclic 1,2-aza-

phospholidine 75 by elimination of N2 and addition of methanol (Scheme 23). Likewise, photolysis of azide 73 

(R = Me) gave a mixture of cis- and trans-1,2-azaphospholidines 76 (Scheme 23).57  

 

 
Scheme 23 

 

 
Scheme 24 
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Unlike 73, the azide 77 lacks symmetry and has two possible modes of ring expansion. Thus, its photolysis 

in methanol yielded an approximately equimolar mixture (40% total) of the isomeric 1,2-azaphospholidines 79 

and 81 (Scheme 24).57 

 

2.12 Reaction of adduct of phosphaalkynes and imidovanadium with acetylenes 

The cycloadduct 84 was generated in situ by addition of an equimolar amount of a phosphaalkynes 83 to the 

imidovanadium complexes 82 (Scheme 25). The cycloadduct 84 was treated with an excess of disubstituted 

acetylenes in toluene at -78 oC to form the tetrasubstituted 1,2-azaphospholes 85 in 31-71% yields (Scheme 

25).58 

 
Scheme 25 

 

2.13 Thermal decomposition of 7-phosphanorbornadiene complex 

In the presence of piperidine-1-carbonitrile and dimethyl acetylenedicarboxylate, 7-phosphanorbornadiene 

complex 86 underwent thermal decomposition in xylene at 120 °C to afford the 1,2-azaphosphole complex 87  

 
Scheme 26 
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beside a complicated mixture of the regioisomeric complexes 88 and 89 (Scheme 26). When the reaction was 

performed in dry toluene, the product 2H-1,2-azaphosphole complex 87 only was isolated. When another 

carbonitrile derivative such as Ph3P=NCN was used, the thermal decomposition of complex 86 in xylene 

furnished the 2H-1,2-azaphosphole complex 92 through [3+2] cycloaddition reaction of nitrilium phosphane 

ylide complexes 91 formed with dimethyl acetylenedicarboxylate (Scheme 26).59-61 

 

2.14 Reaction of l,3,2-diazaphosphole-4,5-dicarbonitriles with alkynes 

The regioselective cyclization of l,3,2-diazaphosphole-4,5-dicarbonitriles 93 with symmetrical and                 

non-symmetrical alkynes in chloroform at room temperature yielded the l,2-azaphosphole-5-carbonitriles 94 

(Scheme 27). In some cases of non-symmetrical alkynes, the other isomers 95 were also formed (Scheme 

27).62 

 

 
Scheme 27 

 

2.15 Flash vacuum pyrolysis of 5-butyl-3-phenyl-l,2,3,4-triazaphosphole 

Dinitrogen was split off from 5-butyl-3-phenyl-l,2,3,4-triazaphosphole (96) on flash vacuum pyrolysis to give 

the azaphosphirene intermediate 97. This intermediate underwent 1,5-electrocyclization followed by proton 

migration to form the annulated 3-butyl-1H-[1,2]benzazaphosphole (98) and 2-butyl-1H-[1,3]benzazaphosphole 

(99) in a ratio of 4:1 (Scheme 28).39 

 
Scheme 28 

 

2.16 Reaction of chlorophosphenium triflate with potassium metal 

Treatment of chlorophosphenium triflate 100 with potassium metal in toluene at 25 oC resulted in a pale 

yellow crystalline 1,2-azaphospholidine 104 (Scheme 29). It was assumed that the two-electron reduction of 

the idealized chlorophosphenium ion 100 proceeded in two steps; addition of the first electron would 

generate the monoradical 101. Addition of the second electron would then generate the triplet diradical 

phosphinidene 102. The conversion of 102 to 103 took place by an intramolecular P–C bond formation to 

afford the derivative 103. Finally, the latter 103 underwent N–C bond cleavage and hydrogen transferred from 
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β-methyl group to the nascent imido nitrogen center forming the isolated 1,2-azaphospholidine isomer 104 

(Scheme 29).63 

 

 
Scheme 29 

 

3. Synthetic Methods for Functionalized 1,2-Azaphosphorine Derivatives 
 

3.1 Cyclization of phosphinamides using various bases 

Cyclization of different phosphinamides 105 using various bases at the boiling point of the used solvent 

furnished 2-oxido-1,2-azaphosphinanes 106 in different yields through removal of ethanol or hydrogen halide 

(Scheme 30).64,65 

 

 
 

Scheme 30 

 

3.2 Cyclization of N-[2-ethyl-3-methylhexa-1,3-dien-1-yl]butan-1-imine with RPCl2 

Cyclocondensation of N-[2-ethyl-3-methylhexa-1,3-dien-1-yl]butan-1-imine (107) with dichlorophosphine 

derivatives in dry benzene at 50 oC containing Et3N afforded 1-butyl-3,5-diethyl-1,2-dihydro-1,2-aza-

phosphorines (108) (Scheme 31).66  
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Scheme 31 

 

3.3 Cyclization of 2-aminobiphenyl with PCl3 

Reaction of 2-aminobiphenyl (109) with phosphorus trichloride in boiling benzene at 65 oC containing a 

catalytic amount of AlCl3 afforded 10-chloro-9,10-dihydro-9,10-azaphosphaphenanthrene (110). Compound 

110 has an active chlorine atom which can be substituted by a wide range of nucleophiles. Thus, treatment of 

the product 110 with methyl magnesium iodide in CH2Cl2 gave 10-methyl-9,10-dihydro-9,10-

azaphosphaphenanthrene 10-methiodide (111) while its reaction with aryl magnesium bromide in dry CH2Cl2 

at room temperature formed 10-aryl-9,10-dihydro-9,10-azaphosphaphenanthrenes 112 (Scheme 32). Also, 

reaction of compound 110 with (2-methoxyphenyl) magnesium bromide in THF at 60 oC gave 10-(2-methoxy-

phenyl)-9,10-dihydro-9,10-azaphosphaphenanthrene (113) which was phosphorylated with chlorodiaryl-

phosphine in acetonitrile at room temperature to give 5-(diarylphosphanyl)-6-(2-methoxyphenyl)-5,6-dihydro-

dibenzo[c,e][1,2]azaphosphinines 114 and 115 (Scheme 32).67-69 

 

 
Scheme 32 
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Compound 112 (R = H) acts as a substrate for the preparation of a series of functionalized 1,2-azaphospha-

phenanthrenes. Thus, its reaction with bromobenzene in the presence of anhydrous AlCl3 in current of 

nitrogen gas furnished 10-pheny1-9,10-dihydro-9,10-azaphosphaphenanthrene 10-oxide (116) (Scheme 33). 

Moreover, its reaction with methyl iodide in dry benzene gave 10-phenoxy-9,10-dihydro-9,10-azaphospha-

phenanthrene methiodide 117 (Scheme 33). Oxidation of compound 112 by hydrogen peroxide in ethanol at 

room temperature afforded the corresponding oxide 118. Furthermore, reaction of compound 112 with 

chlorodiphenylphosphine or bis(2-methoxyphenyl)chlorophosphine in acetonitrile in the presence of 

triethylamine gave 5-(diarylphosphanyl)-6-phenyl-5,6-dihydrodibenzo[c,e][1,2]azaphosphinines (119) (Scheme 

33).67-69 

 

 
Scheme 33 

 

3.4 Cyclization of naphthylethylamine with thiophosphoryl chloride 

Treatment of naphthylethylamine 120 with thiophosphoryl chloride in dry pyridine at 100 °C gave                     

2-[(naphthalene-1-yl)ethyl]phosphoramidothioic dichloride (121), which with AlCl3 at 165 °C for 8 h gave          

4-chloro-1,2,3,4-tetrahydronaphtho[2,1-c][1,2]azaphosphinine 4-sulfide (122) (Scheme 34).70 

 

 
Scheme 34 

 

3.5 Cyclization of 2-amino-3-ethynylnaphthalenes with triphenoxyphosphine 

Cyclization of 2-amino-3-ethynylnaphthalenes (123) with triphenoxyphosphine in dry pyridine for 12 h 

furnished naphtho[2,3-e][1,2]azaphosphorines (124) in moderate yields (Scheme 35).71 
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Scheme 35 

 

3.6 Cyclization of 2-(1H-indol-3-yl)-N-phenethylacetamides with phosphorus oxychloride 

2-(1H-indol-3-yl)-N-phenethylacetamides (125) underwent double condensation using excess of phosphorus 

oxychloride at 175 oC to form the phosphoramide derivatives 127 (Scheme 36). Compounds 127 underwent 

another cyclocondensation reaction through the α-position of the indole nucleus followed by treatment with 

ethanol at room temperature to yield 8-ethoxy-5,6-dihydro-2,3-disubstituted-9H-indolo[2,3-c]isoquino[1,2-f] 

[1,2]azaphosphorine 8-oxides 128 (Scheme 36).72,73 

 

 
Scheme 36 

 

3.7 Reaction of a 15,35-diphosphete adduct with ethyl isothiocyanate 

Reaction of 1,2-dihydro-15,35-diphosphete-2-carbothioamide adduct 129 with ethyl isothiocyanate gave the 

1,2,4-azadiphosphinine intermediate 130, which reacted with a second molecule of ethyl isothiocyanate to 

give the acyclic ketenimine 131 (Scheme 37). This easily underwent cyclization to afford the isolated 

1,2-azaphosphinine 132 (Scheme 37).74   
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Scheme 37 

 

3.8.  Ring expansion of 2,3-dihydro-1,2-azaphospholes by dichlorocarbene 

Reaction of 2,3-dihydro-1H-1,2-azaphosphole oxides (133) with dichlorocarbene at -25 oC gave the 

corresponding 1,2-azaphosphinine oxides 134 through Ciamician-Dennsted rearrangement (Scheme 38).75 

 

 
Scheme 38 

 

3.9.  Reaction of 1,3,2-diazaphosphinines with alkynes 

Reaction of 4,6-di-t-butyl-1,3,2-diazaphosphinine (135) with different alkynes in toluene 100 °C afforded the 

corresponding substituted 1,2-azaphosphinines 136 through [4+2] cycloaddition, while its reaction with       

bis-alkynes furnished the 1,2-azaphosphinine-based bidentate ligands 137 (Scheme 39).76,77 

 

 
Scheme 39 
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4. Synthetic Methods for Functionalized 1,2-Azaphosphepine Derivatives 
 

4.1 Ring expansion of phospholenes with benzonitrile 

Treatment of 1-oxo-3,4-dimethyl-3-phospholenes (138) with n-BuLi in benzonitrile at -70 °C followed by 

hydrolysis formed the corresponding 1,2-azaphosphepine oxides 139 (Scheme 40).78 

 

 
Scheme 40 

 

4.2 Ring expansion of 1,2-azaphosphinines with dichlorocarbene 

Reaction of 1-t-butyl-2-phenyl-3,5-dipropyl-1H-1,2-azaphosphinine (140) with dichlorocarbene by 

regioselective addition to the C5-C6 double bond at -25 oC yielded the 3-oxo-2-aza-3-phosphabicycloheptene 

141 (Scheme 41). Flash vacuum thermolysis of 141 gave 6-chloro-3,4-dipropyl-2-phenyl-2-oxo-2H-1,2-

azaphosphepine (142) and substituted 3-chloropyridines 143 (Scheme 41).79 

 

 
Scheme 41 

 

5. Conclusions 
 

In conclusion, this survey has presented the synthetic methods for 1,2-azaphospholes, 1,2-azaphosphorines 

and 1,2-azaphosphepines. Most of these synthetic methods require special reaction conditions and specific 

starting materials that are not available in some laboratories. However, cyclization of amino- and hydrazino 

compounds with phosphorus reagents or cyclization of aminophosphorus compounds with simple 
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electrophiles are convenient and easy to perform. We hope that this review may encourage scientists to 

create new routes towards these ring systems with important biological activity. 
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