Supplementary Material

Auxiliary-controlled diastereoselective synthesis of a syn C-6-epimer of the ADAM 10 inhibitor GI254023X

Shankari Nair, a, b, c Jan Rijn Zeevaart, b and Roger Hunter* c

a Radiation Biophysics Division, Department of Nuclear Medicine, iThemba LABS, Cape Town 7131, South Africa
b Department of Radiochemistry, South African Nuclear Energy Corporation, Pretoria, 0001, South Africa
c Department of Chemistry, University of Cape Town, Cape Town, 7700, South Africa
Email: roger.hunter@uct.ac.za

Table of Contents

(R)-4-Benzyl oxazolidin-2-one (1) ... S2
(R)-4-Benzyl-3-(5-phenylpentanoyl)oxazolidin-2-one (3) .. S3
(R)-4-Benzyl-3-([(R)-2-((S)-1-hydroxyethyl)-5-phenylpentanoyl]oxazolidin-2-one (4) S4
(R)-2-([(S)-1-Hydroxyethyl]-5-phenylpentanoic acid (5) ... S6
(R)-N-(Benzyloxy)-2-([(S)-1-hydroxyethyl]-5-phenylpentanamide (6) .. S7
(3R,4R)-1-(Benzyloxy)-4-methyl-3-(3-phenylpropyl)azetidin-2-one (7) ... S8
(R)-2-([(R)-1-((Benzyloxy)amino)ethyl]-5-phenylpentanoic acid (8) .. S10
(R)-2-([(R)-1-((N-(Benzyloxy)formamido)ethyl]-5-phenylpentanoic acid (9) ... S11
(S)-2-Amino-N,3,3-trimethylbutanamide (10) .. S12
(R)-2-([(R)-1-((N-(Benzyloxy)formamido)ethyl]-N-([(R)-3,3-dimethyl-1-(methylamino)-1-oxobut-2-yl]-5-phenylpentanamide (11) .. S13
(R)-N-([(R)-3,3-Dimethyl-1-(methylamino)-1-oxobut-2-yl]-2-([(R)-1-(N-hydroxyformamido)ethyl]-5-phenylpentanamide (12) ... S14
(R)-4-Benzyl oxazolidin-2-one (1)

1. 1H NMR in CDCl$_3$

- E (s) 6.24
- D (m) 4.32
- C (m) 4.05
- B (m) 2.84
- A (m) 2.76

2. 13C NMR in CDCl$_3$

- δ 155.4
- δ 124.2
- δ 21.2
- δ 114.8
- δ 31.8
- δ 16.7
- δ 15.3
- δ 15.2
(R)-4-Benzyl-3-(5-phenylpentanoyl)oxazolidin-2-one (3)

3 - 1H NMR in CDCl$_3$

3 - 13C NMR in CDCl$_3$
(R)-4-Benzyl-3-((R)-2-((S)-1-hydroxyethyl)-5-phenylpentanoyl)oxazolidin-2-one (4)

4 - 1H NMR in CDCl$_3$

4 - 13C NMR in CDCl$_3$
(R)-2-((S)-1-Hydroxyethyl)-5-phenylpentanoic acid (5)
(R)-N-(Benzyloxy)-2-((S)-1-hydroxyethyl)-5-phenylpentanamide (6)

$\text{6} - ^1\text{H NMR in CD}_3\text{OD}$

$\text{6} - ^{13}\text{C NMR in CD}_3\text{OD}$
(3R,4R)-1-(Benzyloxy)-4-methyl-3-(3-phenylpropyl)azetidin-2-one (7)

Expansion of the 3.17-3.25 ppm signal for H-4 of 7 is shown above, revealing a dq with $J = 2.0, 6.1$ Hz vicinal couplings. This confirms the trans-relative stereochemistry between H-3 and H-4 based on a near 90 ° dihedral angle and, hence, a low vicinal J value (2.0 Hz). In the Hoettecke paper (reference 7 in the text) for the cis-isomer (14 in the text of their paper), their J value was recorded as close to 6 Hz. The cis-stereochemistry of 14 was confirmed by X-ray. The absolute stereochemistry in our case was taken to be in accordance with the Evans’ model.
1H NMR in CDCl$_3$
(R)-2-((R)-1-((Benzyloxy)amino)ethyl)-5-phenylpentanoic acid (8)
(R)-2-((R)-1-(N-(Benzyloxy)formamido)ethyl)-5-phenylpentanoic acid (9)
(S)-2-Amino-N,3,3-trimethylbutanamide (10)
(R)-2-((R)-1-(N-(Benzyloxy)formamido)ethyl)-N-((R)-3,3-dimethyl-1-(methylamino)-1-oxobutan-2-yl)-5-phenylpentanamide (11)

1H NMR in CD$_3$OD

13C NMR in CD$_3$OD
(R)-N-((R)-3,3-Dimethyl-1-(methylamino)-1-oxobutan-2-yl)-2-((R)-1-(N-hydroxyformamido)ethyl)-5-phenylpentanamide (12)
Chiral HPLC analysis of 12 on a Chiracel OD column with the eluent composed of Hex (60%): i-PrOH (40%), for 20 min with a flow rate of 1 mL/min at λ = 254 nm