The reactivity of Oxone towards 4,6-di(cycloamino)-1,3-phenylenediamines: synthesis of spirocyclic oxetane ring-fused imidazobenzimidazoles

Darren Conboy and Fawaz Aldabbagh

Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, U.K.
Email: f.aldabbagh@kingston.ac.uk

Dedicated to Professor Jan Bergman on the occasion of his 80th birthday

Received 04-25-2020		Accepted 06-29-2020		Published on line 07-31-2020

Abstract

Spirocyclic oxetane ring-fused imidazo[4,5-f]benzimidazole and imidazo[5,4-f]benzimidazole are reported. Oxone-mediated ring-closures to give imidazobenzimidazoles require acid and the functionalization of the 4,6-di(cycloamino)-1,3-phenylenediamine to the anilides. This is in contrast to benzimidazole forming oxidative cyclizations, which use 2-(cycloamino)anilines and require no acid. New evidence for N-oxide and nitroso-intermediates in respective imidazobenzimidazole and benzimidazole forming reactions is provided.

Keywords: Anilide, oxidative cyclization, benzimidazole, heterocycle, HFIP

DOI: https://doi.org/10.24820/ark.5550190.p011.229
Introduction

Imidazobenzimidazoles exist in a [4,5-ƒ] and [5,4-ƒ] arrangement and are scaffolds at the core of antitumor agents.¹⁻⁵ A valuable strategy for the discovery of chemotherapeutics is the targeting of proteins over-expressed in solid tumors, such as NAD(P)H:quinone oxidoreductase 1 (NQO1, also known as DT-diaphorase).⁶ For iminoquinone derivatives of imidazo[5,4-ƒ]benzimidazoles, a hydrogen bonding acceptor improves binding at the NQO1 active site.⁵ Oxtane is a robust hydrogen bonding alternative to carbonyl functionalities and a polar analogue of the gem-dimethyl group.⁷,⁸ Spirocyclic oxetane 1 was fused onto benzimidazole via oxidative cyclizations of 2-(2-oxa-7-azaspiro[3.5]nonan-7-yl)aniline 2a and acetamide analogue 2b using H₂O₂ with HI and Oxone (potassium peroxymonosulfate) in formic acid to give 3a and 3b respectively (Scheme 1).⁹,¹⁰ In this article, our synthetic targets are spirocyclic oxetane ring-fused isomers, imidazo[4,5-ƒ]benzimidazole 4 and imidazo[5,4-ƒ]benzimidazole 5 (Figure 1).

Scheme 1. Reported preparations of benzimidazoles with ring-fused spirocyclic oxetane.⁹,¹⁰

Figure 1. Target imidazobenzimidazoles and the investigated diamine.

The fundamental advantage of using the Oxone protocol over earlier reported radical cyclization methods,³ is the ability to synthesize imidazobenzimidazoles (e.g. 7) containing two different fused rings (Scheme 2).⁴ For cyclization, acid has to be present, and m-CPBA in acetone gave the diamine N-oxide 8, as the sole product. Treatment of diamine-N-oxide 8 with formic acid in the absence of an external oxidant gave ring-fused benzimidazole 9, and a mechanism for oxidative cyclization through the internal conjugated system of 8 was provided.⁴ The use of Oxone for the preparation of these fanciful imidazobenzimidazole scaffolds is reminiscent of early work by Spiegel and Kaufmann, who utilized Caro’s acid (peroxysulfuric acid) to cyclize 5-nitro-2-(piperidin-1-yl)aniline to give benzimidazole.¹¹ Our group has also shown that H₂O₂ can be utilized in the absence of acid for some cyclizations of 2-(cycloamino)anilines,¹² and with HX (X = Cl and Br) to give selectively halogenated ring-fused benzimidazoles,¹³ and benzimidazolequinones.¹⁴ In this article, we examine the reactivity of Oxone towards anilide derivatives of 4,6-di(piperidin-1-yl)-1,3-phenylenediamine (6) (Figure 1), as part of studies towards the preparation of spirocyclic oxetane ring-fused imidazobenzimidazoles 4 and 5.
Results and Discussion

Treating diamine 6 with Oxone in acid did not give imidazo[4,5-f]benzimidazole, but led to intractable mixtures. This is in line with our findings in Scheme 2, where decreasing the electron-density by acetylation at the primary amines of 6 was necessary. This led us to investigate the effect of Oxone on the mono-anilide derivative of 6. Slow addition of sterically hindered pivaloyl chloride was necessary in order to minimize reaction at both amines of 6, which gave the desired \(N\)-[5-amino-2,4-di(piperidin-1-yl)phenyl]-2,2-dimethylpropanamide (10) and \(N,N'\)-[4,6-di(piperidin-1-yl)-1,3-phenylene]bis(2,2-dimethylpropanamide) (11) in 61 and 14% yield respectively (Scheme 3).

Reaction of amine-anilide 10 with Oxone in a 10% aqueous solution of hexafluoroisopropanol (HFIP) gave the intriguing adduct 12 in 58% yield, resulting from cyclization and \(N\)-oxide formation at the amine and anilide parts respectively (Scheme 4). Mono-cyclized adduct 13 was also formed in 29% yield due to insufficient oxidation to 12. The amide singlet is shifted to 14 ppm in the \(^1\)H-NMR spectrum of 12, consistent with strong hydrogen bonding to the \(N\)-oxide (amide-NH at ≈ 9.3 ppm in compounds 10, 11 and 13), a trait observed for related \(N\)-oxides, including diacetamide 8. The use of HFIP as reaction solvent enabled the solvation of hydrogen-bonding acceptors, including 10 and/or intermediates. Treating 12 with...
methanesulfonic acid (MsOH) gave the imidazo[4,5-f]benzimidazole 14 in 42%,3,16 and benzimidazole-anilide 13 in 44% yield, in which presumably the N-oxide part of 12 allowed intermolecular oxidative aromatization.4


The formation of 12 highlights the difference in mechanism for oxidative cyclization of 2-(cycloamino)anilines and 2-(cycloamino)anilides (Scheme 4). Literature advocates a nitroso intermediate for the formation of benzimidazoles from 2-(cycloamino)anilines,9,17-19 although the o-nitroso-tert-aniline has never been isolated. Most recently, we observed the 4-(2-nitrosophenyl)morpholine intermediate by GC-MS from the oxidative cyclization to the ring-fused benzimidazole, which under certain conditions underwent displacement of oxazine to give 1,4,6,9-tetramethoxyphenazine.9 Evidence for the o-nitroso-tert-aniline intermediate 16 is now provided from the reaction of 2-(morpholin-4-yl)aniline (15) with Oxone in a CH2Cl2:aq mixture (Scheme 5). Quenching this reaction at short times of 30 s and 2 min gave mostly 4-(2-nitrophenyl)morpholine (18), which indicates formation of intermediate 16 and advantageous air-oxidation. After 18 and 40 h, it is apparent from the 1H NMR spectra that the morpholine signals at 3.06 and 3.85 ppm for 4-(2-nitrophenyl)morpholine (18) have been replaced by those for benzimidazole at 4.20 and 5.05 ppm.

The above mechanistic work clarified the requirement for diacetamides 21 and 24 for the respective formation of imidazobenzimidazoles 4 and 5, negating direct oxidative cyclizations from phenylenediamines 20 and 23 (Scheme 6). Moreover treatment of diamines 20 and 23 with Oxone in HFIP under the conditions of Scheme 4 gave an intractable mixture. Syntheses began by nucleophilic aromatic substitution (SNAr) onto 1,5-difluoro-2,4-dinitrobenzene and 1,4-difluoro-2,5-dinitrobenzene with bis(2-oxa-7-azaspiro[3.5]nonan-7-iium) ethanedioate (oxalate salt of 1), followed by SNAr with the stronger nucleophile, piperidine to give the respective unsymmetrically substituted dinitrobenzenes 19 and 22 in 85 and 79% yield. Hydrogenation to the phenylenediamines 20 and 23 occurred in 91 and 88% yield, and reaction with acetic anhydride gave the cyclization precursors 21 and 24 in 84 and 86% yield respectively. Oxidative cyclizations of 21 and 24 with Oxone (6 equiv) in acetic acid gave imidazo[4,5-f]benzimidazole 4 and imidazo[5,4-f]benzimidazole 5 in 55 and 49% yield respectively, representing cumulative yields of ≥70% for each ring closure.
Conclusions

This article demonstrates the necessity for converting 4,6-di(cycloamino)-1,3-phenylenediamines to dianilide/diacetamide prior to imidazobenzimidazole formation. New evidence is presented for nitroso and N-oxide intermediates in the respective oxidative cyclizations of 2-(cycloamino)anilines and 2-(cycloamino)anilides. Oxetane is incorporated into ring-fused imidazobenzimidazoles for the first time, with Oxone in acetic acid allowing the formation of both [4,5-f] and [5,4-f] isomers. Future work should complete overall oxidation of the aromatic part of 4 and 5 to give the (imino)quinone NQO1 substrates.

Scheme 5. $^1$H NMR reaction monitoring, providing evidence for the o-nitroso-tert-aniline intermediate 16.

Experimental Section

Materials. Pd-C (Sigma Aldrich, 5% wt. loading), EtOAc (VWR, 99.9%), pet. ether (Fisher Scientific, 40-60°C, Extra Pure, SLR), pivaloyl chloride (Sigma Aldrich, 99%), Oxone (Sigma Aldrich, KHSO$_5$•0.5KHSO$_4$•0.5K$_2$SO$_4$), HFIP (Fluorochem, 99%), NaHCO$_3$ (Fisher Scientific, ≥99.7%), 1,5-difluoro-2,4-dinitrobenzene (Sigma Aldrich,
97%), MeCN (Fisher Scientific, HPLC grade), piperidine (ACROS Organics™, 99%), AcOH (Fisher Scientific, glacial), Ac₂O (ACROS Organics™, 99%), MsOH (Fluorochem, >98%), Na₂CO₃ (Fisher Scientific, 99.5%), D₂O (Fluorochem, >99.9%), and MgSO₄ (Fisher Scientific, Extra Pure, SLR, Dried) were used as received. CH₂Cl₂ (Fisher Scientific, 99.8%) was distilled over CaH₂ (ACROS Organics™, ca. 93%, extra pure, 0-2 mm grain size) prior to use. 1,1'-(4,6-Dinitro-1,3-phenylene)dipiperidine was prepared (1.198 g, 92%) by modifying the reported procedure,² by reacting piperidine (2.50 mL, 29.00 mmol) and NaHCO₃ (1.600 g, 19.50 mmol) with 1,5-difluoro-2,4-dinitrobenzene (0.800 g, 3.90 mmol) in THF (30 mL) at room temperature for 1 h. The synthesis of 4-(2-nitrophenyl)morpholine (18) (1.042 g, 83%) was achieved by S_N_Ar of morpholine (1.56 ml, 18.09 mmol, Alfa Aesar, 99%) onto 1-fluoro-2-nitrobenzene (0.850 g, 6.03 mmol, Fluorochem, 99%) in the absence of solvent at 110 °C for 1 h. 2-(Morpholin-4-yl)aniline (15) was obtained in 91% yield, through reduction of 18 with iron powder, according to our previously reported method.⁹,¹⁰,¹²,¹⁴ The Aldabbagh group has previously described the synthesis of bis(2-oxa-7-azaspiro[3.5]nonan-7-ium) ethanedioate (oxalate salt of 1),¹⁰ and 1,4-difluoro-2,5-dinitrobenzene.⁴ All reactions (apart from those using aqueous solutions) were carried out under an inert nitrogen atmosphere. Thin Layer Chromatography (TLC) was carried out on TLC silica gel 60 F₂₅₄ plates, and preparative TLC was done on TLC Silica Gel 60 F₂₅₄ glass plates. Flash column chromatography was carried out on silica gel (Apollo Scientific 60/40–63 μm).

**Scheme 6.** Synthesis of (a) imidazo[4,5-f]benzimidazole 4 and (b) imidazo[5,4-f]benzimidazole 5: (i) 1 oxalate salt, NaHCO₃ (aq), rt, 16 h; piperidine, rt, 1 h; (ii) H₂ (balloon), Pd-C, EtOAc, rt, 18 h; (iii) Ac₂O (10 equiv), AcOH, 80 °C, 30 min; (iv) Oxone (6 equiv), AcOH, 40 °C, 7 h.
Instruments. Melting points were measured on a Stuart Scientific melting point apparatus SMP1. IR spectra were recorded using a PerkinElmer Spec 1 with ATR attached. NMR spectra were recorded using a Bruker Avance II 400 MHz spectrometer. Chemical shifts are in ppm, relative to Me₄Si. ¹H NMR NH amide and amine assignments were verified by D₂O exchange experiments. ¹³C NMR spectra are at 100 MHz with complete proton decoupling and assignments supported by Distortionless Enhancement by Polarization Transfer (DEPT). NMR assignments for synthetic targets 4 and 5 used data of reported spirocyclic oxetane ring-fused compounds.⁹,¹⁰ HRMS spectra of compounds 4, 5, 19, 21, 22 and 24 were obtained at the National University of Ireland Galway, using an ESI time-of-flight mass spectrometer (TOFMS) on a Waters LCT Mass Spectrometry instrument. HRMS spectra of all other compounds were obtained at the National Mass Spectrometry Facility at Swansea University using a Waters Xevo G2-S mass spectrometer with an Atmospheric Solids Analysis Probe (ASAP) or Thermo Scientific LTQ Orbitrap XL instrument with Nanospray Ionization (NSI). The precision of all accurate mass measurements was better than 5 ppm.

Synthesis of 4,6-di(piperidin-1-yl)benzene-1,3-diamine (6). 1,1′-(4,6-Dinitro-1,3-phenylene)di(piperidine) (0.750 g, 2.25 mmol), and Pd-C (75 mg) in EtOAc (50 mL) were stirred under H₂ at room temperature for 24 h. The mixture was filtered through Celite and evaporated to dryness. The residue was purified by column chromatography using gradient elution of pet. ether and EtOAc to give the title compound (0.512 g, 83%) as a brown solid; Rf 0.32 (2:1 pet. ether:EtOAc); mp 172-174 °C; νmax (neat, cm⁻¹) 3378, 3264, 2946, 2923, 2844, 2799, 2742, 1626, 1518, 1466, 1441, 1382, 1339, 1296, 1273, 1257, 1242, 1214, 1149, 1149, 1129, 1111, 1037, 1029; ¹H NMR (400 MHz, CDCl₃) δ: 6.69 (s, 1H), 6.11 (s, 1H), 4.00-3.31 (br.s, 4H, NH₂), 2.85-2.55 (br.s, 8H), 1.64-1.55 (m, 8H), 1.54-1.36 (br.s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ: 138.6, 132.5 (both C), 112.6, 102.1 (both CH), 53.6, 27.1, 24.4 (all CH₂); HRMS (ASAP) m/z [M+H]+ found 275.2234, C₁₆H₁₂N₄ requires 275.2236.

Anilide formation. Pivaloyl chloride (45 mL, 0.33 mmol) in CH₂Cl₂ (8 mL) was added via syringe pump at a rate of 2 mL/h to diamine 6 (0.103 g, 0.37 mmol) in CH₂Cl₂ (8 mL). The mixture was stirred for a further 2 h at room temperature. H₂O (20 mL) was added, and the mixture was extracted with CH₂Cl₂ (2 x 20 mL). The combined organic extracts were dried (MgSO₄), evaporated and purified by column chromatography using gradient elution of pet. ether and EtOAc.

N-[5-Amino-2,4-di(piperidin-1-yl)phenyl]-2,2-dimethylpropanamide (10). (81 mg, 61%); pale brown solid; Rf 0.44 (7:3 pet. ether:EtOAc); mp 149-151 °C; νmax (neat, cm⁻¹) 3423, 3333, 2931, 2851, 2801, 2739, 2360, 1669 (C=O), 1618, 1593, 1519, 1480, 1435, 1377, 1364, 1321, 1272, 1235, 1206, 1193, 1150, 1121, 1110, 1063, 1035, 1029; ¹H NMR (400 MHz, CDCl₃) δ: 9.13 (s, 1H, NH), 7.92 (s, 1H), 6.85 (s, 1H), 4.05-3.82 (br.s, 2H, NH₂), 2.90-2.62 (m, 8H), 1.75-1.64 (m, 8H), 1.63-1.47 (br.s, 4H), 1.31 (s, 9H, Me); ¹³C NMR (100 MHz, CDCl₃) δ: 176.2 (C=O), 138.9, 135.7, 133.8, 130.5 (all C), 112.4, 105.5 (both CH), 54.3, 53.0 (both CH₂), 40.0 (C), 27.8 (Me), 27.3, 26.9, 24.4, 24.1 (all CH₂); HRMS (ASAP) m/z [M+H]+ found 359.2809, C₂₁H₂₅N₄O requires 359.2811.

N,N′-[4,6-Di(piperidin-1-yl)-1,3-phenylene]bis(2,2-dimethylpropanamide) (11). (22 mg, 14%); brown solid; Rf 0.37 (pet. ether:EtOAc); mp 236-237 °C; νmax (neat, cm⁻¹) 3344, 2949, 2930, 2917, 2849, 1682 (C=O), 1596, 1519, 1480, 1448, 1428, 1393, 1377, 1362, 1356, 1340, 1309, 1269, 1219, 1190, 1162, 1150, 1103, 1063, 1027; ¹H NMR (400 MHz, CDCl₃) δ: 9.36 (s, 1H), 8.77 (s, 1H, NH), 6.95 (s, 1H), 2.74 (t, J 5.2 Hz, 8H), 1.75-1.68 (m, 8H), 1.62-1.55 (m, 4H), 1.30 (s, 18H, Me); ¹³C NMR (100 MHz, CDCl₃) δ: 175.6 (C=O), 138.0, 130.8 (both C), 112.4, 110.7 (both CH), 53.9 (CH₂), 39.9 (C), 27.8 (Me), 27.1, 24.1 (CH₂); HRMS (ASAP) m/z [M+H]+ found 443.3384, C₂₈H₄₃N₄O₂ requires 443.3386.

Reaction of amine-anilide 10 with Oxone (in the absence of acid). Oxone (0.277 g, 0.90 mmol) was added to amine-anilide 10 (65 mg, 0.18 mmol) in HFIP (3.6 mL, 10% aq.) and stirred at room temperature for 16 h. H₂O (10 mL) was added, and the mixture extracted with CH₂Cl₂ (2 x 10 mL). The organic extracts were dried (MgSO₄), evaporated and purified by column chromatography using gradient elution of CH₂Cl₂ and MeOH.

Page 186 ©AUTHOR(S)
2,2-Dimethyl-N-[8-(1-oxidopiperidin-1-yl)-1,2,3,4-tetrahydropyrido[1,2-a]benzimidazol-7-yl]propenamide (12). (39 mg, 58%); pale brown solid; \( R_f \) 0.26 (9:1 CH\(_2\)Cl\(_2\):MeOH); mp (decomp. >161 °C); \( v_{\text{max}} \) (neat, cm\(^{-1}\)) 2952, 2927, 2866, 1652 (C=O), 1594, 1497, 1474, 1430, 1417, 1366, 1237, 1273, 1199, 1148, 1011; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \( \delta \): 13.99 (s, 1H, NH), 8.84 (s, 1H), 7.29 (s, 1H), 4.05 (t, J 6.0 Hz, 2H), 3.84 (d, J 10.7 Hz, 2H), 3.59-3.47 (m, 2H), 3.08 (t, J 6.3 Hz, 2H), 2.80-2.70 (m, 2H), 2.17-2.11 (m, 2H), 2.05-2.01 (m, 2H), 1.89 (d, J 13.0 Hz, 1H), 1.75 (d, J 13.6 Hz, 2H), 1.48-1.37 (m, 1H), 1.35 (s, 9H, Me); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \( \delta \): 176.9 (C=O), 154.1, 142.7, 1376, 130.6, 129.1 (all C), 114.0, 98.2 (both CH), 66.5, 42.5 (both CH\(_2\)), 40.0 (C), 27.8 (Me), 25.5, 22.5, 21.9, 20.9, 20.5 (all CH\(_2\)); HRMS (ASAP) \( m/z \) [M+H]+ found 371.2447, C\(_{23}\)H\(_{35}\)N\(_4\)O\(_2\) requires 371.2447, \( m/z \) 372 (25%), 371 (M+1, 100%), 356 (16%), 355 (M-16, 73%), 354 (26%), 353 (M-18, 97%), 269 (M-102, 28%).

Ring-closure with acid. MsOH (0.05 mL, 0.77 mmol) was added to a solution of N-oxide 12 (28 mg, 0.08 mmol) in CH\(_2\)Cl\(_2\) (0.8 mL) and stirred at room temperature for 5 h. Na\(_2\)CO\(_3\) (satd., 2 mL) was added, and the mixture extracted with CH\(_2\)Cl\(_2\) (3 x 2 mL). The organic extracts were dried (MgSO\(_4\)), evaporated and purified by preparative TLC.

2,2-Dimethyl-N-[8-(piperidin-1-yl)-1,2,3,4-tetrahydropyrido[1,2-a]benzimidazol-7-yl]propenamide (13). (19 mg, 29%); brown solid; \( R_f \) 0.44 (9:1 CH\(_2\)Cl\(_2\):MeOH); mp 171-173 °C; \( v_{\text{max}} \) (neat, cm\(^{-1}\)) 3340, 2935, 2863, 2809, 1667 (C=O), 1589, 1511, 1473, 1440, 1418, 1365, 1322, 1268, 1242, 1194, 1146, 1136, 1064, 1034; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \( \delta \): 9.25 (s, 1H, NH), 8.74 (s, 1H), 7.08 (s, 1H), 4.03 (t, J 6.1 Hz, 2H), 3.05 (t, J 6.4 Hz, 2H), 2.96-2.67 (br.s, 4H), 2.16-2.06 (m, 2H), 2.05-1.95 (m, 2H), 1.84-1.54 (m, 6H), 1.36 (s, 9H, Me); \(^13\)C \( ^1\)H NMR (100 MHz, CDCl\(_3\)) \( \delta \): 176.0 (C=O), 151.7, 139.7, 139.1, 130.2, 129.8 (all C), 109.0, 101.0 (both CH), 54.7, 42.4 (both CH\(_2\)), 40.1 (C), 27.9 (Me), 27.2, 25.3, 24.1, 22.7, 20.7 (all CH\(_2\)); HRMS (ASAP) \( m/z \) [M+H]+ found 355.2495, C\(_{21}\)H\(_{33}\)N\(_4\)O requires 355.2498.

Reaction of aniline 15 with Oxone. Aniline 15 (0.356 g, 2.00 mmol) and Oxone (1.846 g, 6.01 mmol) in CH\(_2\)Cl\(_2\) (4 mL) and H\(_2\)O (1 mL) were rapidly stirred at rt. Aliquots (0.2 mL) were taken at the times shown in Scheme 5, quenched with water (0.5 mL), and extracted with CDCl\(_3\) (0.5 mL) for \(^1\)H NMR analysis. After 2 min, nitrobenzene 18 was the apparent major product; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \( \delta \): 7.78 (dd, J 8.1 Hz, 1.6 Hz, 1H), 7.53-7.48 (m, 1H), 7.16 (dd, J 8.3, 1.2 Hz, 1H), 7.11-7.06 (m, 1H), 3.85 (t, J 4.6 Hz, 4H), 3.06 (t, J 4.6 Hz, 4H). The reaction under the same conditions was stirred for 40 h. H\(_2\)O (5 mL) was added, and the mixture extracted with CH\(_2\)Cl\(_2\) (2 x 6 mL). The organic extracts were dried (MgSO\(_4\)), evaporated and purified by column chromatography using gradient elution of pet. ether and EtOAc to give 3,4-dihydro-1H-[1,4]oxazino[4,3-a]benzimidazole 17 (0.259 g, 74%) as a pale brown solid; \( R_f \) 0.21 (EtOAc); mp 123-125 °C (lit m.p. \(^{17}\) 129-130 °C); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \( \delta \): 7.76-7.72 (m, 1H), 7.37-7.32 (m, 1H), 7.31-7.27 (m, 2H), 5.05 (s, 2H), 4.24-4.16 (m, 4H). Spectral data and melting point were consistent with reported.\(^{20}\)

Procedure for the synthesis of nitrobenzenes 19 and 22. Oxalate salt of 1 (0.540 g, 1.57 mmol), NaHCO\(_3\) (1.020 g, 12.48 mmol) and 1,5-difluoro-2,4-dinitrobenzene or 1,4-difluoro-2,5-dinitrobenzene (0.636 g, 3.12 mmol) in MeCN (40 mL) and H\(_2\)O (4 mL) were added to the mixture at room temperature for 16 h. Piperidine (3.00 mL, 30.42 mmol) was added to the mixture and stirred for a further 1 h. The mixture was evaporated, EtOAc (50 mL) added, washed with brine (3 x 50 mL), dried (MgSO\(_4\)), and evaporated to dryness. The residue was purified by column chromatography using gradient elution of pet. ether and EtOAc.

Arkivoc 2020, vii, 180-191

Conboy, D. et al.
1-(2,4-Dinitro-5-piperidin-1-ylphenyl)-2-oxa-7-azaspiro[3.5]nonane (19). (0.993 g, 85%); yellow solid; \( R_f \) 0.32 (1:1 pet. Ether:EtOAc); mp 156-157 °C; \( \nu_{\text{max}} \) (neat, cm\(^{-1}\)) 2941, 2855, 1600, 1555, 1489 (NO\(_2\)), 1441, 1326 (NO\(_2\)), 1299, 1254; \(^1^H\) NMR (400 MHz, CDCl\(_3\)) \( \delta \): 8.66 (s, 1H), 6.25 (s, 1H), 4.48 (s, 4H, OCH\(_2\)), 3.12 (t, J 5.3 Hz, 4H), 3.04 (t, J 5.5 Hz, 4H), 2.06 (t, J 5.5 Hz, 4H), 1.76-1.69 (m, 4H), 1.69-1.62 (m, 2H); \(^1^C\) NMR (100 MHz, CDCl\(_3\)) \( \delta \): 150.8, 131.1, 130.6 (all C), 130.0, 107.4 (both CH), 81.4 (OCH\(_2\)), 52.3, 48.6 (both CH\(_2\)), 38.5 (C), 34.4, 25.5, 23.9 (all CH\(_2\)); HRMS (ESI) \( m/z \) [M+H]\(^+\) found 377.1813, C\(_{18}\)H\(_{25}\)N\(_4\)O\(_5\) requires 377.1825.

1-[2,5-Dinitro-4-piperidin-1-ylphenyl]-2-oxa-7-azaspiro[3.5]nonane (22). (0.926 g, 79%); red-brown solid; \( R_f \) 0.49 (4:1 pet. Ether:EtOAc); mp 148-149 °C; \( \nu_{\text{max}} \) (neat, cm\(^{-1}\)) 2929, 2859, 2810, 1533, 1495 (NO\(_2\)), 1466, 1445, 1410, 1385, 1346 (NO\(_2\)), 1324 (NO\(_2\)), 1272, 1236, 1225, 1209, 1131, 1042; \(^1^H\) NMR (400 MHz, CDCl\(_3\)) \( \delta \): 7.45 (s, 1H), 7.41 (s, 1H), 4.45 (s, 4H, OCH\(_2\)), 2.95 (t, J 5.3 Hz, 4H), 2.87 (t, J 5.5 Hz, 4H), 1.99 (t, J 5.5 Hz, 4H), 1.71-1.65 (m, 4H), 1.60-1.53 (m, 2H); \(^1^C\) NMR (100 MHz, CDCl\(_3\)) \( \delta \): 146.8, 144.9, 141.8, 139.5 (all C), 119.3, 118.1 (both CH), 81.6 (OCH\(_2\)), 53.1, 49.8 (both CH\(_2\)), 38.2 (C), 34.9, 25.9, 23.8 (all CH\(_2\)); HRMS (ESI) \( m/z \) [M+H]\(^+\) found 377.1818, C\(_{18}\)H\(_{25}\)N\(_4\)O\(_5\) requires 377.1825.

Procedure for the synthesis of diamines 20 and 23. Dinitrobenzene 19 or 22 (0.500 g, 1.33 mmol), and Pd-C (50 mg) in EtOAc (50 mL) were stirred under H\(_2\) (balloon) at room temperature for 16 h. The mixture was filtered through Celite and evaporated to dryness.

4-[2-Oxa-7-azaspiro[3.5]nonan-7-yl]-6-(piperidin-1-yl)benzene-1,3-diamine (20). (0.381 g, 91%); brown solid; mp 187-188 °C; \( \nu_{\text{max}} \) (neat, cm\(^{-1}\)) 3372, 3264, 2951, 2920, 2848, 2740, 1626, 1519, 1468, 1442, 1380, 1296, 1278, 1257, 1246, 1215, 1149, 1132, 1036, 1026; \(^1^H\) NMR (400 MHz, CDCl\(_3\)) \( \delta \): 6.60 (s, 1H), 6.07 (s, 1H), 4.40 (s, 4H, OCH\(_2\)), 3.78-3.64 (br.s, 4H, NH\(_2\)), 2.81-2.41 (br.s, 8H), 2.02-1.79 (br.s, 4H), 1.64-1.53 (m, 4H), 1.52-1.36 (br.s, 2H); \(^1^C\) NMR (100 MHz, CDCl\(_3\)) \( \delta \): 138.9, 138.5, 132.5, 131.2 (all C), 112.4, 102.1 (both CH), 82.1 (OCH\(_2\)), 53.6, 49.6 (both CH\(_2\)), 38.5 (C), 36.1, 27.1, 24.4 (all CH\(_2\)); HRMS (NSI) \( m/z \) [M+H]\(^+\) found 317.2342, C\(_{18}\)H\(_{29}\)N\(_4\)O\(_2\) requires 317.2336.

Procedure for the synthesis of diacetamides 21 and 24. Diamine 20 or 23 (0.354 g, 1.12 mmol) in Ac\(_2\)O (1.06 mL, 11.20 mmol) and AcOH (30 mL) was stirred at 80 °C for 30 min. The mixture was evaporated, NaHCO\(_3\) (5%, 100 mL) added and stirred for 1 h. The precipitate was collected, washed with water, dried, and recrystallized from EtOAc.

\(N,N'\)-[4-{2-Oxa-7-azaspiro[3.5]nonan-7-yl}-6-piperidin-1-yl,1,3-phenylene]diacetamide (21). (0.375 g, 84%); white solid; mp 226-228 °C; \( \nu_{\text{max}} \) (neat, cm\(^{-1}\)) 3291, 2935, 2856, 2797, 2735, 1728, 1672 (C=O), 1659, 1589, 1524, 1491, 1420, 1378, 1368, 1289, 1276, 1256, 1232, 1218, 1196, 1158, 1136, 1122, 1112, 1066, 1032; \(^1^H\) NMR (400 MHz, CDCl\(_3\)) \( \delta \): 8.98 (s, 1H), 8.19 (s, 1H, NH), 8.07 (s, 1H, NH), 6.76 (s, 1H), 4.43 (s, 4H, OCH\(_2\)), 2.71-2.58 (m, 8H), 2.13-2.06 (m, 6H, Me), 2.00-1.90 (br.s, 4H), 1.68-1.60 (m, 4H), 1.55-1.46 (br.s, 2H); \(^1^C\) NMR (100 MHz, CDCl\(_3\)) \( \delta \): 167.5 (C=O), 138.6, 137.4, 130.3, 129.8 (all C), 112.0 (2 x CH), 81.7 (OCH\(_2\)), 53.8, 49.9 (both CH\(_2\)), 38.3 (C), 35.8, 26.9 (both CH\(_2\)), 24.8 (Me), 24.0 (CH\(_2\)); HRMS (ESI) \( m/z \) [M-H]\(^-\) found 399.2397, C\(_{22}\)H\(_{31}\)N\(_4\)O\(_3\) requires 399.2396.

\(N,N'\)-[2-{2-Oxa-7-azaspiro[3.5]nonan-7-yl}-5-(piperidin-1-yl)-1,4-phenylene]diacetamide (24). (0.386 g, 86%); pale brown solid; mp 221-222 °C; \( \nu_{\text{max}} \) (neat, cm\(^{-1}\)) 3362, 3286, 2941, 2869, 2808, 1672 (C=O), 1527, 1477,
Supplementary Material

\[ \text{Acknowledgements} \]

We gratefully acknowledge Kingston University for a PhD studentship for Darren Conboy. We thank Dr. Styliana I. Mirallai (NUI Galway) for HRMS analysis.

\[ \text{Supplementary Material} \]

\[ ^{1} \text{H and } ^{13} \text{C NMR spectra of novel compounds 4-6, 10-13, and 19-24, and } ^{1} \text{H NMR spectra of known compounds 14, 17 and 18 can be found in the Supplementary Material file. For spirocyclic oxetane ring-fused compounds 4 and 5 atom numbering is included, which is derived from the systematic compound names.} \]
References

https://doi.org/10.1021/jm990210q
https://doi.org/10.1021/jm0104365
https://doi.org/10.1039/c003511d
https://doi.org/10.1002/ejoc.201101687
https://doi.org/10.1016/j.bmc.2012.03.063
https://doi.org/10.1021/acs.jmedchem.8b00124
https://doi.org/10.1021/acs.chemrev.6b00274
https://doi.org/10.1021/jm9018788
https://doi.org/10.1021/acs.joc.9b01427
https://doi.org/10.3390/molecules200813864
https://doi.org/10.1002/cber.190804101129
https://doi.org/10.1016/j.tetlet.2017.07.102
https://doi.org/10.1021/acs.orglett.5b01317
https://doi.org/10.1021/acs.orglett.8b03135
https://doi.org/10.1038/s41570-017-0088
https://doi.org/10.3390/M1118
https://doi.org/10.1021/ja01477a038
https://doi.org/10.1016/S0065-2725(08)60954-X
https://doi.org/10.1021/acs.orglett.7b00832
https://doi.org/10.1039/C6GC00902F

This paper is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)