Supplementary Material

Oligoyne-bridged boron subphthalocyanine dimers – synthesis and redox properties

Anne Ugleholdt Petersen,¹ Mads Georg Rasmussen,¹ Maria Cecilia Helleskov Thomsen, Aurore Ceuninck, and Mogens Brøndsted Nielsen*

Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark Email: <u>mbn@chem.ku.dk</u> ¹These authors contributed equally

Table of Contents

NMR Spectroscopy	S2
UV-Vis Absorption Spectroscopy	S16
Electrochemistry	S18

Figure S1. ¹H-NMR spectrum of compound 3 in CDCl₃.

ARKIVOC 2020, vii, S1-S20

Issue in honor of Dr. Jan Bergman

Compound 3

— 150.15 ~ 130.80 ~ 129.74 — 122.12

110 100 f1 (ppm) 200 170 . 160 150 140 130 120 90 80 70 60 50 40 . 30 20 10 0 190 180

Figure S2. ¹³C-NMR spectrum of compound 3 in CDCl₃.

Figure S7. ¹³C-NMR spectrum of compound 5 in CDCl₃.

тмз

Figure S8. COSY spectrum of compound 7 in $CDCI_3$

Figure S9. ¹H-NMR spectrum of compound 7 in CDCl₃.

ARKIVOC 2020, vii, S1-S20

Issue in honor of Dr. Jan Bergman

Figure S12. ¹³C-NMR spectrum of compound 8 in CDCl₃.

ARKIVOC 2020, vii, S1-S20

Issue in honor of Dr. Jan Bergman

Figure S13. ¹H-NMR spectrum of compound **9** in CDCl₃. Toluene residues marked with x.

Figure S14. ¹³C-NMR spectrum of compound 9 in CDCl₃. Toluene residues marked with x.

Figure S17. ¹³C-NMR spectrum of compound **10** in CDCl₃.

UV-Vis Absorption Spectroscopy

Figure S19. Absorption spectra of **4** in toluene, red lines showing the measured spectra and the black showing the average

Figure S20. Absorption spectra of 5 in toluene, red lines showing the measured spectra and the black showing the average

Figure S21. Absorption spectrum of 8 in toluene.

Figure S22. Absorption spectrum of 9 in toluene.

Figure S23. Absorption spectra of 10 in toluene, red lines showing the measured spectra and the black showing the average

Electrochemistry

Figure S27. Cyclic voltammogram of compound **4** (0.094 mM) in CH₂Cl₂ (+ Bu₄NPF₆). Scan rate 0.1 V s⁻¹. Reference electrode: Ag/AgCl, counter electrode: Pt wire; working electrode: glassy-carbon disc electrode (diameter 3 mm). Potentials are referenced to the ferrocene/ferrocenium (Fc/Fc⁺) redox couple.

Figure S29. Cyclic voltammogram of compound **5** (0.99 mM) in CH₂Cl₂ (+ Bu₄NPF₆). Scan rate 0.1 V s⁻¹. Reference electrode: Ag/AgCl, counter electrode: Pt wire; working electrode: glassy-carbon disc electrode (diameter 3 mm). Potentials are referenced to the ferrocene/ferrocenium (Fc/Fc⁺) redox couple.