# **Supplemental Material**

# Pseudo-four-component synthesis of 5-(4-hydroxy-2-oxo-1,2-dihydropyridin-3yl)-substituted 5*H*-chromeno[2,3-*b*]pyridines and estimation of its affinity to sirtiun 2

## Yuliya E. Ryzhkova\*, Fedor V. Ryzhkov, Michail N. Elinson, Anatoly N. Vereshchagin, and Mikhail P. Egorov

N. D. Zelinsky Institute of Organic Chemistry, Leninsky prospect 47, 119991 Moscow, Russia Email: <u>yu.a.91@ya.ru</u>

# **Table of Contents**

| 1. | S1: PMR, CMR of compound <b>3b</b> | S2 |
|----|------------------------------------|----|
| 2. | S2: PMR, CMR of compound <b>3c</b> | S3 |
| 3. | S3: PMR, CMR of compound <b>3e</b> | S4 |
| 4. | S4: PMR, CMR of compound <b>3i</b> | S5 |
| 5. | S5: PMR, CMR of compound <b>3j</b> | S6 |
| 6. | Docking studies                    | S7 |
| 7. | References                         | S9 |
|    |                                    |    |

### **General Papers**

<sup>1</sup>H and <sup>13</sup>C NMR spectra of novel substituted 2,4-diamino-5-(4-hydroxy-6-methyl-2-oxo-1,2-dihydropyridin-3yl)-5*H*-chromeno[2,3-*b*]pyridine-3-carbonitriles (**3b**, **c**, **e**, **i** and **j**) with tetramethylsilane (TMS) as internal standard. Chemical shifts ( $\delta$ ) are reported in parts per million (ppm) downfield of TMS. Additional information for docking studies (Tables 3-7, references).

## S1: 2,4-Diamino-9-ethoxy-5-(4-hydroxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)-5*H*-chromeno[2,3*b*]pyridine-3-carbonitrile (3b)



©AUTHOR(S)

Page S2

## S2: 2,4-Diamino-5-(4-hydroxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)-8-methoxy-5*H*-chromeno[2,3*b*]pyridine-3-carbonitrile (3c)







# S4: 2,4-Diamino-5-(1-benzyl-4-hydroxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)-8-methoxy-5*H*-chromeno[2,3-*b*]pyridine-3-carbonitrile (3i)







### ©AUTHOR(S)

#### **General Papers**

### S6: Docking studies

For the current docking procedure, Schrodinger Suite Software 2020 was used. Maestro 12.3.013 was employed as the graphical user interface. Structures for all compounds were treated with Lig-Prep (Schrodinger Suite) to obtain possible 3D-forms. The target proteins were retrieved from the RCSB<sup>1</sup> protein databank, and prepared using the Schrodinger Suite protein preparation wizard. Missing chains and loops were filled with Prime (Shcrodinger Suite), water, and organic solvents beyond 3A of heteroatoms (if any) were removed. Hydrogen atoms were added and a minimization was performed until the RMSD value of all heavy atoms was within 0.3 A of the crystal structure. The OPLS3e force field was used. Docking was carried out using the Glide software from Schrodinger Suit in extra-precision (XP)<sup>2</sup> mode using GScore for ligand ranking, Emodel Score for pose ranking, Evdw Score for Van der Waals ranking.

### Table S3. Docking of 5H-chromeno[2,3-b]pyridines 3a-j to 5Y0Z

| Compound | XP GScore,<br>kcal/mol | Emodel<br>Score,<br>kcal/mol | Evdw<br>Score,<br>kcal/mol | Compound   | XP GScore,<br>kcal/mol | Emodel<br>Score,<br>kcal/mol | Evdw<br>Score,<br>kcal/mol |
|----------|------------------------|------------------------------|----------------------------|------------|------------------------|------------------------------|----------------------------|
| 3a       | -5,367                 | 1,341                        | -24,791                    | 3f         | -4,770                 | 6,012                        | -29,242                    |
| 3b       | -3,157                 | 13,372                       | -12,755                    | 3g         | -6,146                 | 189,477                      | -12,879                    |
| Зс       | -5,773                 | -22,06                       | -29,321                    | 3h         | -9,283                 | -41,234                      | -24,712                    |
| 3d       | -4,363                 | -1,176                       | -17,889                    | <b>3</b> i |                        | n/a                          |                            |
| Зе       | -7,299                 | 38,625                       | -23,453                    | 3j         | -7,235                 | 26,796                       | -23,221                    |

Presented data for the optimal binding mode.

### Table S4. Docking of 5H-chromeno[2,3-b]pyridines 3a-j to 5YQL

| Compound | XP GScore,<br>kcal/mol | Emodel<br>Score,<br>kcal/mol | Evdw<br>Score,<br>kcal/mol | Compound | XP GScore,<br>kcal/mol | Emodel<br>Score,<br>kcal/mol | Evdw<br>Score,<br>kcal/mol |
|----------|------------------------|------------------------------|----------------------------|----------|------------------------|------------------------------|----------------------------|
| 3f       | -2,594                 | -100,296                     | -26,799                    | 3i       | -7,437                 | -5,890                       | -37,648                    |
| 3h       | -8,657                 | -21,344                      | -33,523                    | Зј       | -7,973                 | 3,082                        | -33,233                    |

Presented data for the optimal binding mode.

| Compound | XP GScore,<br>kcal/mol | Emodel<br>Score,<br>kcal/mol | Evdw<br>Score,<br>kcal/mol | Compound   | XP GScore,<br>kcal/mol | Emodel<br>Score,<br>kcal/mol | Evdw<br>Score,<br>kcal/mol |
|----------|------------------------|------------------------------|----------------------------|------------|------------------------|------------------------------|----------------------------|
| 3a       | -1,364                 | -38,040                      | -25,249                    | 3f         | -1,489                 | -38,681                      | -25,525                    |
| 3b       | -3,771                 | -42,735                      | -32,391                    | 3g         |                        | n/a                          |                            |
| 3c       | -1,527                 | -39,144                      | -25,312                    | 3h         | -4,450                 | -41,868                      | -26,662                    |
| 3d       |                        | n/a                          |                            | <b>3</b> i | -3,127                 | -45,280                      | -28,938                    |
| 3e       | -1,940                 | -31,434                      | -29,370                    | Зј         | -3,163                 | -49,836                      | -33,205                    |

 Table S5.
 Docking of 5H-chromeno[2,3-b]pyridines 3a-j to 5DY5

Presented data for optimal binding mode. n/a = not applicable, no bind mode for a protein-ligand combination.

 Table S6.
 Docking of 5H-chromeno[2,3-b]pyridines 3a-j to 5G4C

| Compound | XP GScore,<br>kcal/mol | Emodel<br>Score,<br>kcal/mol | Evdw<br>Score,<br>kcal/mol | Compound   | XP GScore,<br>kcal/mol | Emodel<br>Score,<br>kcal/mol | Evdw<br>Score,<br>kcal/mol |
|----------|------------------------|------------------------------|----------------------------|------------|------------------------|------------------------------|----------------------------|
| 3a       | -8,772                 | -73,748                      | -47,471                    | 3f         | -8,342                 | -87,774                      | -55,328                    |
| 3b       | -9,720                 | -79,423                      | -51,666                    | Зg         | -11,730                | -84,304                      | -42,318                    |
| Зс       | -8,125                 | -77,013                      | -48,496                    | 3h         | -10,772                | -92,24                       | -51,879                    |
| 3d       | -7,871                 | -80,018                      | -41,265                    | <b>3</b> i | -6,588                 | -81,757                      | -57,053                    |
| Зе       | -9,292                 | -86,960                      | -56,528                    | Зј         | -9,732                 | -68,797                      | -58,936                    |

Presented data for the optimal binding mode.

| Compound | XP GScore,<br>kcal/mol | Emodel<br>Score,<br>kcal/mol | Evdw<br>Score,<br>kcal/mol | Compound   | XP GScore,<br>kcal/mol | Emodel<br>Score,<br>kcal/mol | Evdw<br>Score,<br>kcal/mol |
|----------|------------------------|------------------------------|----------------------------|------------|------------------------|------------------------------|----------------------------|
| За       | -7,658                 | -58,514                      | -31,712                    | 3f         | -7,112                 | -69,018                      | -41,922                    |
| 3b       | -9,158                 | -54,615                      | -42,100                    | 3g         | -8,114                 | -65,561                      | -36,533                    |
| 3c       | -7,828                 | -57,059                      | -32,762                    | 3h         | -11,194                | -73,371                      | -48,593                    |
| 3d       | -7,046                 | -60,265                      | -36,481                    | <b>3</b> i | -9,719                 | -74,01                       | -47,222                    |
| Зе       | -8,010                 | -68,023                      | -42,218                    | Зј         | -10,099                | -76,533                      | -44,087                    |

Table S7. Docking of 5H-chromeno[2,3-b]pyridines 3a-j to 4RMG

Presented data for best binding mode.

### S7: References

- 1. RCSB Protein Data Bank. Retrieved March 24, 2020, from <u>https://www.rcsb.org/</u>
- Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.; Halgren, T. A.; Sanschagrin, P. C.; Mainz, D. T. J. Med. Chem. 2006, 49, 6177–6196. <u>https://doi.org/10.1021/jm0512560</u>