Supplementary Material

N2-Alkylation of semicarbazones. A general and efficient protocol for the synthesis of 2-alkylsemicarbazides from semicarbazide

Anastasia A. Fesenko, Ludmila A. Trafimova, Maxim O. Zimin, Alexander S. Kuvakin, and Anatoly D. Shutalev*

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 119991 Moscow, Russian Federation Email: anatshu@gmail.com

Table of Contents

¹ H and ¹³ C NMR spectra of 2-alkyl-substituted semicarbazones 2b-I	S2
¹ H and ¹³ C NMR spectra of hydrochlorides of 2-alkylsemicarbazides 5a-e	S24
¹ H spectrum of hydrochloride of 2-oktylsemicarbazide 5f	S34
¹ H spectra of 2-alkylsemicarbazides 6a,c-e	S35
¹ H and ¹³ C NMR spectra of 2-oktylsemicarbazide 6f	\$39
IR spectra of semicarbazones 2b-I, hydrochlorides of 2-alkylsemicarbazides 5a-e and 2-oktylsemicarl	bazide
6f	S41
Computational details	\$58

¹H NMR spectrum of compound **2b** (DMSO-*d*₆)

ARKIVOC 2019, *ii*, S1-S61

[©]ARKAT USA, Inc

¹³C NMR spectrum of compound **2b** (DMSO- d_6)

ARKIVOC 2019, *ii*, S1-S61

¹H NMR spectrum of compound 2c (DMSO- d_6)

¹³C NMR spectrum of compound **4b** (DMSO- d_6)

¹H NMR spectrum of compound **2d** (DMSO-*d*₆)

Page S6

©ARKAT USA, Inc

¹³C NMR spectrum of compound **2d** (DMSO-*d*₆)

ARKIVOC 2019, *ii*, S1-S61

Issue in honor of Dr. Lorenzo Testaferri

¹H NMR spectrum of compound 2e (DMSO- d_6)

Issue in honor of Dr. Lorenzo Testaferri

ARKIVOC 2019, *ii*, S1-S61

¹H NMR spectrum of compound **2f** (DMSO- d_6)

©ARKAT USA, Inc

Issue in honor of Dr. Lorenzo Testaferri

ARKIVOC 2019, *ii*, S1-S61

Page S12

[©]ARKAT USA, Inc

Issue in honor of Dr. Lorenzo Testaferri

ARKIVOC 2019, *ii*, S1-S61

©ARKAT USA, Inc

¹H NMR spectrum of compound **2h** (DMSO-*d*₆)

¹³C NMR spectrum of compound **2h** (DMSO-*d*₆)

Issue in honor of Dr. Lorenzo Testaferri

ARKIVOC 2019, *ii*, S1-S61

¹H NMR spectrum of compound **2i** (DMSO-*d*₆)

13 C NMR spectrum of compound **2i** (DMSO- d_6)

Page S17

©ARKAT USA, Inc

¹H NMR spectrum of compound **2j** (DMSO-*d*₆)

H₃C

ARKIVOC 2019, *ii*, S1-S61

160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 Chemical Shift (ppm)

¹H NMR spectrum of compound **2k** (DMSO-*d*₆)

160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 Chemical Shift (ppm)

[©]ARKAT USA, Inc

©ARKAT USA, Inc

©ARKAT USA, Inc

¹H NMR spectrum of compound **5a** (DMSO- d_6)

¹³C NMR spectrum of compound **5a** (DMSO- d_6)

¹H NMR spectrum of compound **5b** (DMSO- d_6)

[©]ARKAT USA, Inc

¹³C NMR spectrum of compound **5b** (DMSO- d_6)

¹H NMR spectrum of compound **5c** (DMSO-*d*₆)

[©]ARKAT USA, Inc

¹H NMR spectrum of compound **5d** (DMSO- d_6)

©ARKAT USA, Inc

¹³C NMR spectrum of compound **5d** (DMSO- d_6)

©ARKAT USA, Inc

¹³C NMR spectrum of compound **5e** (DMSO-*d*₆)

©ARKAT USA, Inc

¹H NMR spectrum of compound **5f** (DMSO-*d*₆)

¹H NMR spectrum of compound **6a** (DMSO-*d*₆)

¹H NMR spectrum of compound **6c** (DMSO-*d*₆)

[©]ARKAT USA, Inc

¹H NMR spectrum of compound **6d** (DMSO- d_6)

Page S37

[©]ARKAT USA, Inc

¹H NMR spectrum of compound **6e** (DMSO-*d*₆)

[©]ARKAT USA, Inc

¹H NMR spectrum of compound **6f** (DMSO-*d*₆)

[©]ARKAT USA, Inc

¹³C NMR spectrum of compound **6f** (DMSO- d_6)

©ARKAT USA, Inc

©ARKAT USA, Inc

©ARKAT USA, Inc

Page S44

©ARKAT USA, Inc

©ARKAT USA, Inc

[©]ARKAT USA, Inc

Page S47

[©]ARKAT USA, Inc

©ARKAT USA, Inc

©ARKAT USA, Inc

©ARKAT USA, Inc

©ARKAT USA, Inc

Page S52

©ARKAT USA, Inc

Page S53

©ARKAT USA, Inc

Issue in honor of Dr. Lorenzo Testaferri

ARKIVOC 2019, *ii*, S1-S61

Page S54

[©]ARKAT USA, Inc

©ARKAT USA, Inc

Computational details

The geometry optimizations of all key stationary points were carried out at the B3LYP level of theory using Gaussian 09 suite¹ of quantum chemical programs. Pople's basis sets, 6-311++G(d,p), was employed for geometry optimization. The effect of continuum solvation was incorporated by using the polarizable continuum model (PCM). Enthalpies and Gibbs free energies were obtained by adding unscaled zero-point vibrational energy corrections (ZPVE) and thermal contributions to the energies. All transition states were fully optimized and characterized as a first-order saddle point by harmonic vibrational frequency analysis. One and only one imaginary frequency of the first-order saddle point was subjected to visual inspection to examine whether it represented the desired reaction coordinate. Furthermore, the intrinsic reaction coordinate (IRC) analysis was performed to authenticate that the transition state pertains to the desired reaction coordinate. The IRC calculations were done at the B3LYP/6-311++G(d,p) level of theory.

Data 1: Cartesian coordinates and energies of the optimized geometry for the most stable conformer of (E)-isomer of the conjugated base of ethanal semicarbazone (DMSO solution).

Sum of electronic and thermal Enthalpies=	-357.534945
Sum of electronic and thermal Free Energies=	-357.575058

Standard	orient	ation:

stroms)	linates (Angs	Coord	Atomic	Atomic	Center
Z	Y	Х	Туре	Number	Number
0.016573	0.290977	-3.139302	0	6	1
-0.024449	-0.498270	-1.866689	0	6	2
0.023783	0.064938	-0.716332	0	7	3
-0.004246	-0.767860	0.384784	0	7	4
-0.005328	-0.103485	1.555110	0	6	5
0.027715	-0.705459	2.662870	0	8	6
-0.100994	1.297437	1.570575	0	7	7
0.286807	1.719120	2.401885	0	1	8
0.155272	1.744725	0.700110	0	1	9
0.873391	-0.000338	-3.758971	0	1	10
-0.880208	0.112974	-3.745017	0	1	11
0.087582	1.360511	-2.930667	0	1	12
-0.095138	-1.590252	-1.938197	0	1	13

Data 2: Cartesian coordinates and energies of the optimized geometry for the most stable conformer of (Z)-isomer of the conjugated base of ethanal semicarbazone (DMSO solution).

Electronic Energy =	-357.640318732 a.u.
Zero-point correction=	0.098553 (Hartree/Particle)
Thermal correction to Energy=	0.106063
Thermal correction to Enthalpy=	0.107007
Thermal correction to Gibbs Free Energy=	0.066382
Sum of electronic and zero-point Energies=	-357.541766
Sum of electronic and thermal Energies=	-357.534256
Sum of electronic and thermal Enthalpies=	-357.533312
Sum of electronic and thermal Free Energies=	-357.573937

Standard	orientation:				
Center	Atomic	Atomic	Coord	inates (Angst	roms)
Number	Number	Туре	Х	Y	Z

Issue in honor of Dr. Lorenzo Testaferri

1	6	0	2.732175	-0.641119	0.038473
2	6	0	1.941585	0.635795	-0.029716
3	7	0	0.656683	0.735148	-0.049165
4	7	0	-0.058742	-0.439041	-0.015615
5	6	0	-1.395444	-0.240029	0.005518
6	8	0	-2.209527	-1.200141	-0.029089
7	7	0	-1.908208	1.058237	0.123668
8	1	0	-2.844126	1.164390	-0.238985
9	1	0	-1.255727	1.790663	-0.124500
10	1	0	2.485235	-1.214247	0.939163
11	1	0	3.803808	-0.431967	0.041755
12	1	0	2.505747	-1.294600	-0.811575
13	1	0	2.483259	1.578596	-0.071015

Data 3: Cartesian coordinates, energy, imaginary frequency of the transition state for the transformation of (Z)-isomer of the conjugated base of ethanal semicarbazone into (E)-isomer (DMSO solution).

Imaginary Frequency=	-461.3578 cm ⁻¹
Electronic Energy =	-357.578981015 a.u.
Zero-point correction=	0.095364 (Hartree/Particle)
Thermal correction to Energy=	0.102798
Thermal correction to Enthalpy=	0.103742
Thermal correction to Gibbs Free Energy=	0.063525
Sum of electronic and zero-point Energies=	-357.483617
Sum of electronic and thermal Energies=	-357.476183
Sum of electronic and thermal Enthalpies=	-357.475239
Sum of electronic and thermal Free Energies=	-357.515456

Standard orientation:

Center	Atomic	Atomic	Coordin	ates (Angst	roms)
Number	Number	Туре	Х	Y	Z

1	6	0	-3.180811	-0.194762	-0.001815
2	6	0	-1.779020	0.411721	0.000880
3	7	0	-0.700695	-0.222473	0.007019
4	7	0	0.442133	-0.919275	0.005678
5	6	0	1.572662	-0.134403	-0.004062
6	8	0	2.714313	-0.644170	0.005791
7	7	0	1.438711	1.248231	-0.073538
8	1	0	2.247211	1.772107	0.225777
9	1	0	0.541751	1.625690	0.195629
10	1	0	-3.134542	-1.286758	-0.004739
11	1	0	-3.747572	0.136477	-0.881824
12	1	0	-3.749296	0.131051	0.879138
13	1	0	-1.810083	1.534088	-0.004435

Data 4: The intrinsic reaction coordinate analysis for the transformation of (Z)-isomer of the conjugated base of ethanal semicarbazone into (E)-isomer (DMSO solution).

Reference

Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.