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Abstract 

Computational methods are becoming essential in the drug discovery world. Structure-based methods (i.e. 

docking), ligand-based methods, and machine learning are common practice. In this review, we present the 

major methods and their application to the prediction of cytochrome P450 (CYP)-mediated drug metabolism. 

More specifically, this mini-review is focused on the different methods used in predicting sites of metabolism 

(SoMs), and presents the advantages and disadvantages of various SoM prediction tools that are currently in 

use in both academia and industry. 
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1.  Introduction 
 

Adverse drug reactions and toxicity are among the major causes of attrition observed in the drug discovery 

and development processes. Despite major investments in toxicology and in clinical trials, severe and even 

fatal toxic effects have resulted in drug withdrawals. In fact, analysis revealed that 30% of the pharmaceutical 

attrition was driven by toxicity, with 90% of drug withdrawals and 33% of clinical phase terminations 

attributed to various forms of toxicity.1-2 Although the primary causes of toxicity can be very different, the 

first-pass bioactivation by metabolic enzymes (phase 1 metabolism) such as cytochrome P450s (CYPs) is often 

an initiating step. Of drugs currently on the market, 75-90% are metabolized by one of the 57 human CYPs. 

Out of this set, six isoforms (CYP1A2, 2C9, 2C19, 2D6, 2E1 and 3A4), expressed mainly in the liver and in the 

gut, are responsible for over 90% of this oxidative metabolism and represent one of the main focus for 

medicinal chemists and pharmacologists when optimizing for drug-like properties.3-5 In phase 2 metabolism, 

the drug (or the metabolite from phase 1) is conjugated to water-soluble moieties (e.g., glucuronic acid), 

which facilitates its excretion. The metabolites produced by these various processes have their own intrinsic 

pharmacological effect and toxicity that may differ from the parent drug. They can also exhibit high reactivity, 

leading to, for instance, hepatotoxicity and/or cancer, and are referred to as reactive metabolites (Figure 1).  
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Figure 1. Potential metabolic pathways of anticancer drug prototype DF 203.6-7 

 

Interestingly, about 75% of the drugs withdrawn due to adverse drug reactions were in fact activated into 

reactive metabolites.2 Over the years, medicinal chemists have relied on structural alerts (functional groups 

known to possess high toxicity potentials), to flag drug candidates that could potentially form reactive 

metabolites. Thus, in their study of the top 200 drugs prescribed in the USA, Stepan et al. showed that 

approximately 80% of the drugs associated with toxicity contained structural alerts.2 However, this empirical 

approach has limitations, as not all structural alerts lead to toxicity and additional parameters such as daily 

dose and body burden have to be taken into account. Moreover, a further significant limitation of using 

structural alerts is that the absence of these alerts is not indicative of compound benignity. As an alternative, 

the computational prediction of reactive metabolite might represent a more viable and efficient approach. 

Specifically, the ability to predict reactive metabolites relies on the ability to accurately predict the sites of 

metabolism (SoMs) on a molecule of interest. In this context, several methods that predict SoMs are 

discussed: ligand-based (quantum mechanics, machine learning), structure-based (docking, molecular 

dynamics), hybrid (both ligand- and structure-based) and rule-based methods. In this general mini-review, we 

will highlight advantages and disadvantages of each of these methods and we will provide representative 

examples of computational tools that fit in these categories. For further in-depth information about each 

method, the reader is encouraged to consult more specialized and focused reviews.8-9  

 

 

2.  CYP Metabolism Mechanism 
 

CYP may contribute to the metabolism of xenobiotics in a number of ways. Among the common reactions are 

hydrogen abstraction – which may lead to N-dealkylation, alcohol and aldehyde oxidation among other 

reactions – sulfur oxidation, oxidative deboronation, and aromatic oxidation, to name a few. 

 

 

3.  Computational Methods 
 

In the past two decades, a multitude of methods have been developed for predicting xenobiotic metabolism. 

Amongst these are ligand-based methods, which focus on the properties of ligands such as reactivity, 

topological and molecular descriptors, and activation energies.10-17 These methods disregard the metabolizing 

enzymes, in terms of their polarization induced by proximity to amino acids, the ligand’s binding mode within 

their active site, etc. These ligand-based methods range from computationally-intensive quantum mechanics 

(QM), to fast computations such as machine learning (ML) techniques. With the advent of a significant 
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increase in computational power for even a single user, these methods have become widely applicable. 

Opposite to ligand-based methods are structure-based methods, including docking and molecular dynamics 

(MD), which put an emphasis on the metabolizing enzymes themselves, including but not limited to binding 

poses, interactions with ligands, conformational changes, and reaction mechanisms.18-22 Additionally, there 

exist expert-developed rule-based methods, based on years of in vivo and in vitro empirical data. Rule-based 

approaches consist of identifying a target fragment in a molecule of interest, followed by generation of a 

potential metabolic product and subsequent product search in a pre-existing catalogue. However, this 

approach gives rise to a plethora of potential products which might prove to be troublesome, as one needs to 

select an appropriate metabolic product from the generated ones. 

 

 
 

Figure 2. Summary of methods used to predict sites of metabolism.  

 

3.1  Ligand-based methods 

3.1.1  Quantum mechanics (QM). Since the 1950s the field of computational chemistry has been in a 

continuous expansion afforded by major breakthroughs, improved methodologies and increased 

computational power. Within the field of computational chemistry, QM approaches play a major role. The 

development of the Roothaan-Hall equations in 1951,23-24 the Kohn-Sham equations in 196525 and the 

intermediate neglect of differential overlap (INDO) and neglect of diatomic differential overlap (NDDO) 
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methods of Pople in the 1970s26-27 gave rise to some of the most popular computational methods in use today 

(semi-empirical methods, ab initio Hartree-Fock (HF) and Density Functional Theory (DFT)). These methods 

(discussed below) have proven to be indispensable in solving problems ranging from reaction mechanisms to 

molecular reactivity and predicting sites of metabolism. In the past decade or so, routine calculation (single 

point energies, geometry optimizations) using these methods have become more accessible to experimental 

chemists fuelled by the ongoing development of user-friendly QM packages such as ORCA28 and GAMESS.29 As 

such, computational chemistry is slowly becoming an integral part of an experimental chemist’s toolbox. 

3.1.2  Semi-empirical methods. Semi-empirical QM (SE-QM) methods are based on the Hartree-Fock 

formalism but fundamentally differ from HF by their use of empirical parameters and approximation (or 

omission) of electronic interactions, whose computation is the most expensive part of any HF or DFT 

calculation. To account for the lack of these interactions, the results of semi-empirical methods are empirically 

trained to predict experimental observations. By neglecting the electronic interactions, SE-QM methods are 

significantly less computationally expensive than HF or DFT; they have been used extensively in situations 

where the size of the molecule or molecular complex under scrutiny makes HF or DFT calculations intractable 

(e.g., greater than 200 atoms). Following the seminal work of Pople in the 1970s many SE-QM methods have 

been developed, with some of the most widely used models being AM1,30 PM3,31 PM6,32 and RM1.33 However, 

when using SE-QM methods one must be cautious - if the molecule of interest is not similar to those for which 

the method was parametrized the results can be both qualitatively and quantitatively wrong. 

Limitations. In the field of drug discovery, SE-QM methods are particularly attractive for predicting sites of 

metabolism for both small and large drug molecules due to their speed and possibility of application on 

libraries of thousands of compounds. A major limitation of these QM-based properties is the lack of 

consideration of the enzyme as these methods are only considering the intrinsic reactivity of the small 

molecule. Thus, CYP selectivity cannot be predicted nor whether the ligands are actual substrates of any given 

CYP isoform.  

Available methods. One method developed for small drug molecule metabolism around SE-QM is CYPScore,10 

currently in use at Bayer Schering Pharma among other places. CYPScore uses atomic reactivity descriptors 

obtained with the AM1 SE-QM model for seven CYP-catalyzed reactions, ranging from aliphatic hydroxylation 

to sulphur oxidation. These atomic descriptors include bond orders, solvent accessible surface area, atomic 

valence, atomic surface area, Coulson charge etc. and are used in the generation of an individual model for 

each type of catalyzed reaction. These models were validated on four differently designed datasets – in three 

out of four datasets over 60% of all major phase I metabolites were identified, furthermore in 70% of the 

compounds an active metabolite was found using the top 2 metabolites and 85% using the top 3 metabolites. 

One advantage of the CYPScore algorithm is that competing metabolic reactions are treated on the same 

reactivity scale, meaning that various metabolic positions and metabolites can be compared between 

molecules. With regards to availability, CYPScore is available as a free trial but ownership requires licensing.  

An improved version of CYPScore, called MetScore,34 will be discussed in the machine learning section. 

Another method based on the AM1 SE-QM model is EaMEAD13 (Activation energy of Metabolism reactions 

with Effective Atomic Descriptors), which predicts the activation energies Ea of four CYP-catalyzed reactions: 

aliphatic hydroxylation, N-dealkylation, O-dealkylation and aromatic hydroxylation. 

The sites of metabolism with lowest Ea are the ones most likely to undergo CYP-mediated metabolism. To be 

able to predict the Ea of a given reaction empirical models were built using a set of compounds for which the 

Ea and atomic reactivity descriptors (effective atomic charge, effective atomic polarizability, and bond dipole 

moments) were computed using AM1. The choice of AM1 for predicting the Ea was based on the results 

obtained by Korzewka et al35 which correlated well with experimental results while also being significantly 
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faster than DFT and other ab initio methods. EaMEAD was shown to accurately predict Ea for all four reactions 

and was used to predict the sites of metabolism of 46 compounds oxidized by CYP3A4. The accuracy of 

predicting the correct metabolites was ~60% when considering the first two lowest Eas. However, while 

accuracy was shown for CYP3A4 (responsible for the metabolism of almost half of the drugs currently on the 

market), the rest of the major CYP isoforms were not tested. As such, if one desires to use EaMEAD one should 

stay within the parameters of the published data. To the best of our knowledge, this program is not available 

for download. 

If a versatile method is required for predicting the sites of metabolism on isoforms not considered by the 

methods presented above, then StarDrop15 is a reliable option. The P450 metabolism module of StarDrop is 

based on pre-computed activation energies using SE-QM model AM1 calculations using high quality 

experimental and ab initio data. StarDrop can predict the reactivity of each site of metabolism while taking 

into account the molecular environment in approximately 1-2 minutes/compound on a single CPU. Based on 

these calculations, ligand-based models were built, with additional contributions from data correcting for 

steric and orientation effects. As such, along the seven CYP isoforms considered in the study, the accuracy of 

the method was between 82-91%. However, all seven isoforms are trained on relatively large sets (76-220 

compounds) while the testing sets are fairly small (27-84 compounds), which might have an impact on the 

established accuracy. Moreover, while StarDrop is available as a free trial for anyone willing to try it out, 

ownership requires licensing.  

3.1.3  DFT methods. While SE-QM methods are useful in obtaining fast and moderately accurate results, there 

are many cases in which higher accuracy is required due to the nature of the system under scrutiny. As a 

consequence, higher level methods have been developed, amongst which DFT is the most popular. Initially 

developed by Kohn and Hohenberg (and later by Kohn and Sham) in the 1960s, DFT fundamentally differs from 

SE-QM and HF methods in the fact that it only requires the electronic density for determining the ground state 

properties of many-electron systems. Although developed in the 1960s, DFT saw a rise in popularity in the 

field of computational chemistry only in the 1990s, with the ground-breaking work laid by Becke and others in 

the area of computing the contribution of electronic motions (exchange and correlation) to the total energy of 

the system, which includes the now famous B3LYP functional. Ever since, DFT has made major strides to 

overcome its limitations (e.g., describing intermolecular interactions, which is crucial in properly describing the 

behaviour of macromolecules).  

Available tools. Considering the versatility, relative low-computational cost (although much higher than for 

SE-QM methods) and accuracy of DFT, the field of drug discovery slowly turned its attention to it, with several 

DFT-based methods being developed to predict sites of metabolism. One such method is QMBO,12 which uses 

bond orders determined at the B3LYP/3-21G level of theory to compute C-H bond strengths. The relatively low 

level of theory used in the DFT computations makes QMBO calculations fairly fast. Based on these bond 

strengths, the weakest C-H bond is located and the hydrogen abstraction is predicted to take place at that 

bond. Moreover, a steric hindrance restriction on the reactivity is also considered through a penalty term 

(proportional to a function dependent on the solvent accessible surface area of each hydrogen atom), which is 

then applied to the bond strength. The method was tested on CYP3A4 and CYP2C9, for which it showed good 

prediction rates (~60% using the Top-1 metric and ~85% using the Top-3 metric) for both isoforms. Some 

disadvantages of this method include i) the small basis set used to compute the bond orders, which might give 

rise to inaccurate bond strengths, and ii) its applicability to only two of the six major CYP isoforms involved in 

xenobiotic metabolism. 

Another method that showed excellent results on various CYP isoforms is SMARTCyp.11, 36 Originally designed 

to be accurate on CYP3A4 and CYP2D6 , SMARTCyp is based on DFT-derived activation energies (B3LYP/6-
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31G* for the ligand) of various ligand fragments which are then stored in a database, making SMARTCyp one 

of the fastest programs currently available for predicting CYP metabolism. SMARTCyp uses 2D structures that 

are then matched to existing fragments in the database of precomputed activation energies and, in 

conjunction with an accessibility parameter, makes predictions regarding the site of metabolism. A possible 

disadvantage of this method comes from the assumption that the fragment will be found within the database. 

If that is not the case, a prediction cannot be made. This concern was addressed in an enhanced version of 

SMARTCyp called SMARTCyp 3.037 which contains a similarity measure between the query molecule and the 

model fragment, along with a more comprehensive database of fragments. Moreover, the CYP isoform 

predictivity was expanded to include CYP2C9 as well. Across 394 compounds, using the Top-1 metric the 

accuracy of the original version of SMARTCyp was ~65%, while when using the Top-3 metric it increased to 

~80%. Across 475 compounds,  SMARTCyp 3.0 showed an excellent area under the curve (AUC)  for all three 

isoforms (3A4 – 0.73, 2D6 – 0.78, 2C9 – 0.76). If the relative low coverage of the CYP isoforms is not an issue, 

SMARTCyp is available for free at https://smartcyp.sund.ku.dk/mol_to_som. 

 

3.2  Structure-based methods 

Method: molecular docking. One branch within structure-based methods is molecular docking which entails 

using a macromolecular crystal structure (ideally co-crystallized with a ligand, either endogenous or 

exogenous), placing a ligand of interest, and observing the resultant ligand-target interactions within the 

binding site. Many software programs have been designed for the purpose of docking ligands of interest to 

proteins (e.g., AutoDock, FlexX, GLIDE, GOLD, FITTED, etc.).18-22 Most programs consist of two steps/algorithms - 

conformational search and scoring. The former involves fitting the ligand into the active site while the later 

determines the most likely (e.g., lowest energy) ligand-protein conformation and/or predicts the binding free 

energy. Although scoring functions differ from program to program, they generally consist of sums of energy 

terms, such as the energies of hydrogen bonds or van der Waals interactions between the ligand and protein.  

In terms of docking and scoring in programs predicting metabolism, there are some slight differences. The CYP 

in their reactive form feature an oxidized heme complex while the crystal structures are often in the resting 

state (coordinated to a water molecule). Ideally, scoring would therefore require incorporating interactions 

with this oxidized heme often not parameterized in docking programs. 

Limitations. Of particular interest for molecular docking are the six CYP isoforms 1A2, 2C9, 2D6, 3A4, 2C19, 

and 2E1 (see Introduction). The most versatile of all these isoforms is CYP 3A4. The binding site of CYP 3A4 is 

very large and, virtually and biologically, can accommodate most ligands, including large macrolides such as 

Erythromycin ( 

Figure 3).38 It is therefore difficult to use structure-based methods to assess whether or not a ligand is 

likely to be metabolized by CYP 3A4. Although it is known that a majority of xenobiotics are metabolized by 

this CYP,38 it would be difficult to deduce from docking predictions. However, other isoforms such as 1A2, 2C9, 

2C19, 2E1 and 2D6 allow for more effective use of structure-based methods, as their active sites are smaller 

and more selective in terms of which functional groups participate in stabilizing interactions with key residues.  

 

https://smartcyp.sund.ku.dk/mol_to_som
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Figure 3. Known substrates of major CYP enzyme isoforms. Sites of metabolism highlighted in red. 

 

For example, while CYP 1A2 is most reactive toward aromatic amines and nitrogen-containing 

heterocycles,39 its active site is very narrow and contains mostly lipophilic and aromatic residues. Therefore, 

upon docking ligands of interest containing these functional groups it would be possible to see whether or not 

the enzyme active site would be likely to accommodate and complement the docked ligand. Such is the case 

with N-acetylbenzidine ( 

Figure 3), a flat aromatic lipophilic amine, which is a known substrate of CYP 1A2,39 and fits well in the 1A2 

active site upon docking. In the case of CYP 2D6, the binding site is narrow and therefore can accommodate 

flat lipophilic substrates. Furthermore, the substrate scope of CYP 2D6 tends towards lipophilic bases with 

aromatic rings.40  

Figure 4 shows the docked pose of the CYP 2D6 substrate DF 203, a flat, basic, aromatic amine.  

 

 
 

Figure 4. Left: DF 203’s predicted site of metabolism, aromatic hydroxylation, shown bound to the heme iron; 

Right: DF 203 docked to the active site of its metabolizer CYP 2D641 using IMPACTS
42 on the FORECASTER 

platform.43 Stabilizing interactions are shown with dashed lines (black). 

 

One further limitation of docking-based methods is the failure of the software to account for reactivity of the 

cytochrome enzyme. Most reactivity predictions are ligand-based to determine the most likely SoM and are 
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incorporated into some docking programs.42 However, the enzyme reactivity requires more time-consuming 

and computationally expensive studies, normally consisting of a combination of quantum mechanics and 

molecular mechanics.44 In most medicinal chemistry endeavors, however, the potential accuracy of 

predictions is sacrificed for the convenience of a simple docking experiment.  

 

3.3  Hybrid methods 

In order to account for both the protein environment and enzyme reactivity, as well as for ligand reactivity, 

several tools have been developed that combine docking with ligand reactivity determination methods. 

Among these is the reactivity-binding model proposed by Jung et al.45 who tried to predict the regioselectivity 

of biotransformations performed by CYP1A2. Their model proposed docking compounds to the crystal 

structure of CYP1A2, followed by determination of activation energies (based on AM1 calculations) of the 

metabolism reactions in which the predicted binding poses were involved. The energy terms obtained from 

docking and AM1 calculations were then used to compute the metabolic probability that a site would be 

preferred for a biotransformation. This approach provided excellent results, with the preferred site being 

predicted for 8 out of 12 compounds, although this set may be too small to draw conclusions. However, while 

this study provided an important insight into hybrid methods, it only involves one CYP isoform and a low 

number of tested compounds.  

Another hybrid method, this time describing CYP3A4 metabolism, was developed by Oh et al.45 The 

method, termed MLite, describes four CYP3A4-mediated reactions: aliphatic hydroxylation, N-dealkylation, O-

dealkylation and aromatic hydroxylation. To describe the accessibility of a compound inside the active site of 

CYP3A4 Oh et al. implemented the ensemble catalyticphore-based docking method, along with quantum 

mechanical calculations for the ligand reactivity predictions. The method was trained on a small set of 47 

molecules and tested on 25 – the success rate based on the top2 metric was 76%.  Metasite, a hybrid method-

based program developed by Cruciani et. al.,46 allows the user to predict both the potential cytochrome 

enzyme (of CYP1A2, CYP2C9, CYP2C19, CYP2D6, or CYP3A4) and the potential SoM of a compound of interest. 

This program utilizes GRID flexible molecular interaction fields (GRID-MIFs) to characterize the CYP enzyme 

and GRID probe pharmacophore recognition to characterize the ligand of interest. Metasite assesses the 

compatibility of the enzyme-ligand pairs, in terms of accessibility in the enzyme active site and of reactivity of 

the ligand and provides the user with the predicted SoM. Upon testing this program against CYP substrates 

provided by several pharmaceutical companies, the predictions typically achieved high accuracy, ranging from 

83-90%, with one 2D6-specific set achieving 62%. 

Our research group has been involved in the development of our own hybrid method – IMPACTS.42 This 

tool is based on our docking program FITTED
18, that takes care of providing an accurate binding pose of a 

compound of interest in the active site of a CYP isoform of interest. The docking is paired with pre-computed 

activation energies obtained at the B3LYP/6-31G* level of theory for a series of relevant fragments that are 

then assigned to the molecule of interest.42 Across 4 CYP isoforms, IMPACTS has showed excellent accuracies, 

ranging from 75% (considering the top2 metric) for CYP3A4 to 82% for 2C9. Overall, on average, the accuracy 

of IMPACTS is 77%. Importantly, our tool was extensively tested on over 700 drugs and drug-like compounds, 

which makes it reliable for a broad range of compounds. Another important consideration of IMPACTS is that it 

is fully implemented within our drug-discovery platform FORECASTER, which is freely available for academia.42, 47  

 

3.4  Rule-based / substrate-based methods 

Methods. Over the years, experts in the fields of medicinal chemistry, biology, toxicology, and 

pharmacology have developed databases of structural alerts, or “warning” functional groups, via 
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comprehensive studies of hepatotoxic drugs and drug metabolites, among others. It is known that liver-

related toxicity is associated with common toxicophores, including but not limited to alkynes and electron-rich 

aromatic heterocycles that either become oxidized into toxic metabolites or directly bind to the heme iron and 

inhibit the liver’s cytochrome P450 enzymes.  

Figure 5 gives three hepatoxic compounds: Gestodene, an oral contraceptive; OSI-930, a terminated oncology 

drug candidate; and L-739010, a terminated anti-asthma drug. All three were discovered to be CYP3A4 

inhibitors.48-49 

 

 
 

Figure 5. Selected hepatotoxic compounds, toxicophores highlighted in red.48 

 

Although these functional groups, among many others, are present in many hepatotoxic drugs or pre-clinical 

drug candidates, a potential drug candidate containing a known potential toxicophore may not present risks, 

depending on the stereoelectronic environment of the motif, as well as the projected daily dose of the 

molecule. To aid medicinal chemists in designing drugs that are less likely to be toxic, several more advanced 

computational rule-based methods have been developed. This category of tools is normally referred to as 

“expert systems”. 8 These programs are based on human knowledge of biotransformations instead of, for 

example, virtual ligand-CYP docking or computational predictions of relative atom energies. Predictive 

software based on experts’ knowledge normally involves analyzing structural fragments of the drug candidate 

and searching a biotransformation dictionary of fragment metabolites, considering all possibilities. Examples 

of such software include Meteor,50-53 which ranks metabolites by predicted probability, and Metabolizer,54 

which generate all possible metabolites of a drug candidate and includes predictions of non-human 

metabolism (e.g. bacteria). Despite the availability of these tools, using these expert-based predictive 

programs leads to a virtually endless library of possible drug metabolites. This overprediction of potential 

toxicity makes the lead optimization process much more difficult.  

One additional method for SoM prediction is the alignment-based method. This alignment-based approach 

involves comparing the molecule of interest against a database of reference molecules for which the SoM is 

known. Sykes et. al. applied this method to study the reaction of cytochrome P450 2C9 with the common 

antibiotic Flurbiprofen. The authors overlaid Flurbiprofen with its known metabolic sites against a small data 

set of known CYP2C9 substrates and applied their alignment method to predict the known SoMs of the 

compounds in this data set. Their method utilized the alignment program ROCS and achieved high accuracy, 

ranging from 73-89%.55 Another group, de Bruyn Kops et. al.,56 expanded upon the Sykes study. They utilized 

the aforementioned alignment method and combined it with a reactivity-based prediction to account for 

intrinsic reactivity in compounds structurally different from the reference databases. This hybrid approach 
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improved predictive accuracy significantly, further demonstrating that these types of complex predictions 

require more than one source of calculation. 56 

3.5  Machine learning  

3.5.1  Methods. Since the advent of Quantitative Structure-Activity Relationship (QSAR) methods in the 1960s, 

several groups have attempted to relate ADMET properties to simple molecular/atomic properties. LogP is an 

example of a widely used descriptor known to correlate with water solubility, and to some extent phase 1 

metabolism and passive permeability. More advanced machine learning techniques (e.g., random forest, 

support-vector machine and artificial neural networks) have since then been considered.57 Random Forest 

(RF) is a learning method first reported in the 1990s which produces sets of decision trees. In practice, a 

molecule can be given to these decision trees and be classified as either a CYP3A4 substrate or not. Support-

vector machine (SVM) methods are other learning techniques which process data for classification (e.g, CYP 

substrate or not) and regression analysis. The most popular of the Artificial intelligence algorithms, artificial 

neural networks (ANN) is a set of algorithms mimicking the behaviour of biological neural networks. In 

practice, ANN are a set of matrices connecting neurons. These matrices are derived from experimental data so 

that giving an input (e.g., a 2D structure), the output (e.g. CYP3A4 substrate or not) can be accurately 

predicted. Over the past few years, ANN have been extensively used to predict ADMET properties.58 Another 

approach that has been used in ADME prediction is Bayesian statistics. This approach enables a predictor to 

evolve or refine its models using additional data. As an example, if molecule A is oxidized by CYP3A4 and not 

molecule B, it is difficult from this data to predict whether C will be. If now, we just learn that A is aromatic 

and B is not, if C is aromatic the probability that it will be oxidized has raised.  

3.5.2  Limitations. Although promising, these methods must be trained on high quality data in order to 

produce highly accurate predictions. However, the publicly available data may be too diverse to be useful. For 

example, CYP3A4 metabolism can be measured as the disappearance of the substrate in human liver 

microsomes (which may include several CYP isoforms) in the presence and absence of known CYP3A4 

inhibitors and could also be measured in lysosomes containing a single CYP isoform. The condition of these 

assays may also differ from one laboratory to another and, as we discussed previously, would lead to non-

uniform data. Unfortunately, a predictive method can rarely be better than the data used to train it. The size 

and diversity of the dataset are also critical for optimal applicability domain. For example, a model trained 

only of a set of chemical series (e.g., benzodiazepines, sulfamides,…) should not be expected to be predictive 

with very different chemical series (e.g., aminoglycosides and peptides). Too small of a dataset may lead to 

overtraining of the model and poor predictivity. To address these issues, training is carried out on atom 

environment rather than entire molecules, hence covering the space more efficiently and on carefully curated 

datasets such as the one reported by Zaretzki et al.59 

3.5.3  Available tools. Among the tools developed using machine learning techniques is MetScore. Designed 

as an improved version of CYPScore, MetScore can accurately predict both phase 1 and 2 metabolism of 

xenobiotics. Relying on molecular representations built on quantum chemical partial charges that were used 

to build RF models, MetScore showed an excellent performance in predicting diverse phase 1 and 2 reactions 

(Matthews correlation coefficient of 0.61 for phase 1 and 0.76 for phase 2). Its versatility makes it an 

interesting SoM tool, however it is only available as an in-house tool for Bayer’s research platform Plx. 

Another important tool is Fast Metabolizer (FAME) developed by Glen and co-workers with version 2 reported 

in 2017.14, 60 FAME predicts the site of metabolism of drugs using random forest models trained on large 

dataset with an accuracy of 81% using the top-2 metrics and requiring only a 2D model of the substrate. FAME 

relies on a number of descriptors such as partial atomic charges, electronegativity, delocalizability (FAME2.0), 

topological descriptors (distance between atoms) and hybridization. Interestingly, FAME is not limited to CYP-
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mediated phase I metabolism but trained on various metabolism processes (e.g., oxidation, hydrolysis, 

reduction, acetylation, conjugation such as glucuronidation) and trained for species-dependent (human, dog 

or rat) metabolism. Applied to a CYP-mediated metabolism set, the performance of the first version on a CYP 

substrate set (73% with top-2 metrics) was below that of SmartCYP (79%). The second version showed 

enhanced accuracy (up to 94%). Other descriptors and classifiers were evaluated by Fu et al. and 

demonstrated the high level of accuracy that RF can provide.61 Another example is RS-Predictor from Zaretzki 

et al. reported in 2011.16 This program was trained using a combination of topological descriptors (motifs) and 

quantum descriptors (e.g., aromatic orbital electron density, electrophilicity index, interactions from Mulliken 

population analysis). RS-Predictor is an example of SVM-like program (it uses MIRank, a derivative of SVM). 

This program demonstrated an accuracy of 74.5% (top-2 metrics) outperforming SMARTCyp (72%) and 

StarDrop (59.2%) on an external set. A recently developed method by Finkelmann et al.62 uses RF models built 

upon atomic descriptors that describe the electronic (through quantum mechanics) and steric environment of 

an atom and its precise location within a molecular environment. These models were tested on the same set 

used for XenoSite,17 giving excellent results (top2 metric of 90.3% in leave-one-molecule-out cross-validation).  

An example of the use of neural network for site of metabolism prediction is XenoSite. XenoSite neural 

network was trained using quantum descriptors, atomic and molecular descriptors (e.g., logP, water accessible 

surface area). This program was found to outperform all of the other 5 programs tested including 

RS_Predictor, SMARTCyp and StarDrop. Interestingly, although XenoSite was trained on CYP substrates, it 

was trained on substrates of different isoform separately implicitly considering the CYP isoform when making 

predictions. 

Bayesian approaches have also been exploited for site of metabolism prediction as exemplified by SOMP63-64 

which was derived from PASS (prediction of activity spectra for substances). SOMP was trained to predict CYP-

mediated SoM (1A2, 2C9, 2C19, 2D6 and 3A4) and phase II glucuronidation with accuracy ranging from 61% 

(top-2 metrics on 2D6) to 95% (UGT). This program is available for free on a server at 

http://www.way2drug.com/SOMP. 

As most ligand-based methods, all of these machine learning models have a drawback. Although they can 

accurately predict the SoM, information provided to medicinal chemists is only about the SoM and not how 

the oxidation process occurs. While this information is useful to block given sites, knowing the binding in the 

P450s (e.g., through docking) may allow medicinal chemists to propose modifications away from the SoM 

which will disrupt the binding and modulate the metabolism.  

As an advantage, these methods are very fast and allow interactive design. 

 

 

4.  Conclusions and Prospect 

 

Several strategies have been envisioned to predict in silico drug properties, and cytochrome P450 enzyme 

metabolism prediction is no exception. As we discussed, docking-based methods, QM-based methods, 

machine learning and combination of these have been envisioned and led to several methods now available to 

the medicinal chemistry community. However, modeling this complex process remains of limited accuracy. On 

one side, the accuracy of ligand-based methods ignoring the binding process is limited. For example, the 

binding site specificities of some CYP isoforms may preclude reactions even at highly reactive substrate sites. 

On the other side, the docking-based methods are considering proximity to the heme to identify the site of 

metabolism. This approach assumes the binding is a static process. While a binding mode might be favored, it 

may present an unreactive site to the reactive heme. An alternative binding mode which may not be as 
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favored may present a highly reactive site and may be the most productive binding mode. This dynamics 

process led researchers to consider hybrid methods where enzyme binding and reactivity are considered. 

Although this approach is expected to improve accuracy, there are some remaining factors, such as enzyme 

flexibility, still poorly accounted for by the current methods and so is enzyme inhibition (programs assume 

small molecules are substrates). With this complexity in mind, machine learning was perceived as a promising 

alternative as training on isoform specific substrate sets should theoretically consider all the factors. However, 

the lack of sufficiently large and diverse substrate sets renders the development and testing difficult.  

Despites these various limitations, dozens of methods are available. Overall, these tools demonstrate 

reasonable accuracies and can certainly be used to guide the design of drug candidates at the preclinical stage. 
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