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Abstract 

Efforts to discover novel antibacterial drugs over the past decades have been characterized by high attrition 

rates, driven mainly by technical challenges, high dose and safety requirements, regulatory difficulties and 

low-cost generic competition, resulting in a broken financial model. Consequently, most pharmaceutical and 

biotech companies have exited their research efforts in this field, leaving the required rejuvenation of 

antibacterial drugs under-resourced. This article sheds light on some of the technical difficulties and offers 

thoughts and suggestions on how to address and overcome these. 
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1. Introduction 
 

Antibiotics are arguably one of the greatest achievements in modern medicine and have become an integral 

part of our lives. Serious, life-threatening infections have generally been successfully treated when using the 

appropriate drug. Antibiotics are a rather recent invention,1 mainly driven by screening of natural product 

extracts for their inhibitory effect on bacterial growth. During the so-called golden era of antibacterial drug 

discovery, most antibacterial scaffolds still in use today were identified, including β-lactams (penicillins, 

cephalosporins, cephems, monobactams, carbapenems, etc.), lipopeptides, macrolides, tetracyclines, and 

aminoglycosides.2  

Antibacterial drugs are unique and quite different from other drugs, mainly reflected by the difficulty to 

discover and optimize novel scaffolds and their limited lifespan to treat infections. Firstly, bacterial pathogens 

rapidly reproduce – roughly one hundred thousand times faster than humans – and therefore their 

populations readily adapt to a changing environment, including exposure to antibiotics. Therefore resistance 

to antibiotics will generally emerge following their clinical introduction which will ultimately limit their use 

throughout hospitals, hospices, and the community. This necessitates the continued development of new 

antibiotics to treat the same infections caused by organisms with increasing resistance levels to standard of 

care agents. Secondly, since antibiotics target hard-to-kill bacteria rather than human targets, there is often a 

high free drug exposure required to treat patients successfully. For β-lactams this can easily exceed ten grams 

per day, which also increases pressure on cost of goods, formulation, and especially safety requirements. 

Luckily, in the case of antibacterials, animal models are clinically validated and especially the murine thigh 

model usually allows an accurate prediction of drug exposure required in patients.3 Finally, the financial model 

for antibiotics is broken not only due to the competition from a multitude of now low priced generics that 

were launched in the 80’s and 90’s (Ceftazidime, Piperacillin, Tazobactam, Meropenem, Cefepime and others) 

that society has become accustomed to, but also the fact that novel drugs with expanded spectrum will often 

be kept in emergency reserve even though resistance against generic antibiotics is rising, hampering sales 

after launch.  

One successful approach to the discovery of new antibiotics, probably best exemplified with β-lactams, 

builds on originally identified scaffolds by using chemical modifications to improve not only resistance 

patterns and antibacterial spectrum, but also pharmacokinetics and safety profile. This exploits the well 

understood desirable properties of the scaffold itself which reduces risk, and this approach still yields good 

antibiotics.4 Another approach is the identification of inhibitors for entirely novel target such as LpxC.5-8 
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Increased appreciation of technical issues specific to target based antibacterial discovery came with the 

advent of the genomic era. The pharmaceutical industry placed large bets on target-driven discovery, using 

corporate archives and compound collections to biochemically screen targets of interest. This approach turned 

out to be successful in many therapeutic areas, but attrition was much higher for antibacterial targets. This 

phenomenon was noted by experts in the field for some time, but was ultimately brought to general attention 

by Payne and co-authors in 2007. They described their genomic-driven, large-scale experience at Glaxo Smith-

Kline on roughly 70 essential bacterial targets by screening the GSK corporate archive.9 This immense effort 

only resulted in hits for 16 targets and further optimization yielded lead compounds for five programs, all with 

activity only against Gram-positive bacteria. To the best of our knowledge, none of these leads has progressed 

to a successful clinical candidate. This was likely to be due in part to the issues described above, but also 

driven by other factors specific to the early identification of target inhibitors.  

In early 2005 Achaogen began to build a project portfolio dedicated to finding new therapeutics to fight 

multi-drug resistant Gram-negative bacteria. We believed, based on the experience at other companies as 

exemplified by the publication of Payne and co-authors,9 that high-throughput screening (HTS) of corporate 

archives would not identify the required hits or chemical starting points and that we would fail in our attempt 

to convert them to clinical candidates. Inspired by the work of Christopher Lipinski at Pfizer,10 who brought the 

attention to physico-chemical properties of drug candidates and their importance for progression of preclinical 

and clinical candidates, we initiated a thorough analysis of existing antibacterial drugs and drug candidates.11 

Our goal was to better understand which chemical matter would possess a higher chance of success as 

starting point for hit/lead optimization. Even Lipinski mentioned in his work that anti-infective drugs would 

often violate his rules of five and he considered them as special and outside the norm.  

We reviewed the literature in 2005 and found that no satisfactory analysis of antibiotic chemical property 

space was available. Some data sets were analysed and published but lacked the insights we were seeking 

since the compound sets were too small and to the best of our understanding at the time, did not encompass 

an appropriate range of compounds leading to biases [see references in ref. 11]. Therefore, we assembled a 

collection of data and used it to conduct our first analysis,11 relying on susceptible strains to avoid resistance 

biases.  

It was of critical importance to take into account the differences in the architecture of bacterial cell 

envelopes, particularly between Gram-positive and Gram-negative bacteria. Gram-positive bacteria contain a 

phospholipid bilayer membrane (cytoplasmic membrane) that is covered with a peptido-glycan layer (cell wall) 

that can vary in thickness. The cell wall is not considered a permeability barrier to small molecules. Gram-

negative bacteria also possess a cytoplasmic (inner) membrane and cell wall, although the latter is thinner and 

varies less in thickness. Importantly, Gram-negative bacteria are defined by the presence of a second, 

asymmetric bilayer on the outer side of the cell wall (the outer membrane, OM). The outer leaflet of the OM is 

comprised of a carbohydrate conjugated lipid A or lipopolysaccharide, which is unique to Gram-negative 

bacteria, while the inner leaflet is phospholipid. The asymmetric lipid bilayer of the outer membrane has low 

fluidity and provides for low passive permeability of lipophilic probes.12 Nikaido and others have 

demonstrated that many compounds traverse the OM predominantly by three mechanisms: active uptake, 

membrane disruption, or entry through membrane-embedded porins. The latter are β-barrel proteins that 

form trimeric channels with a polar inner surface, restricting the entry of lipophilic and/or large compounds 

with a molecular cut-off at around 600 Dalton.12 Therefore the OM can be thought of as a molecular sieve that 

reduces the rate of influx of many compounds. In conjunction with slow influx, bacteria also employ efflux 

pump machinery that actively extrudes compounds as they enter cells. This is particularly problematic in 

Gram-negative bacteria such as P. aeruginosa that contain a large complement of efflux pumps of the RND 
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(Resistance-Nodulation-Division) and other families. RND family pumps in particular can exhibit exceptionally 

broad and overlapping substrate profiles, and experience has taught us that avoidance of such pumps is one of 

the biggest challenges in antibacterial drug discovery.13  

Therefore we derived our original analysis using S. aureus and E. coli as representative Gram-positive and 

Gram-negative bacteria, respectively. To avoid biases resulting from various resistance mechanisms, we 

selected data for minimal inhibitory concentrations (MICs) against susceptible ATCC strains or, if data was not 

available, using existing MIC50 (minimal inhibitory concentration preventing growth of 50% strains evaluated), 

with an MIC value of 8 μg/mL as a cut-off for defining susceptibility.11 Compilation of data for both values, 

MIC50 and ATCC strains, revealed a difference of less than two-fold for most compounds. In addition, we 

assembled information on compound class, target location, mode of action, active transport mechanism, and 

a number of calculated properties and additional data to guide our analysis. In this report, we have refined the 

dataset by adding more compounds that have entered clinical trials, and used an internally trained model for 

pKa prediction to calculate logD values (parameter for polarity),14 giving a more accurate reflection of 

properties than discussed in our previous study. Finally, we present the results of three large discovery efforts 

at Novartis, two with target location in the cytoplasm (CP) and one in the periplasm (PP). The internally 

generated data allowed us to compare the property space for three different antibacterial scaffold series with 

the results from known antibiotics.  

 

 

2. Discussion 
 

2.1  Property space of known antibiotics 

The analysis of the antibacterial drug property space is limited by data availability and, especially for Gram-

negative organisms, largely driven by the five major classes of antibiotics. As fosfomycin and aminoglycosides 

possess active or self-promoted uptake mechanisms,15,16 and the target for β-lactams resides outside the inner 

membrane, mainly sulfa drugs, tetracyclines and fluoroquinolones contribute to the Gram-negative property 

space for compounds interacting with targets in the cytoplasm. Consequently, this analysis has to be taken 

with a grain of salt and is not meant to provide rules but rather suggest a preferred property space for 

antibacterial compounds. We therefore present this data analysis of selected unpublished internal efforts in 

that context, to complement the publicly available data of known antibiotics.  

Larger molecular weight (MW) and higher polarity (lower calculated logD at pH 7.4) characterize the 

property space of antibiotics as compared to the general drug space (adjusted Comprehensive Medicinal 

Chemistry, CMC, database), as described in our first analysis.11 The difference between compounds active only 

against Gram-positive or active against Gram-negative bacteria (most of the latter are active against Gram-

positive organisms as well) is striking: the former contain roughly 25% compounds with MW above 850 Dalton 

whereas the latter group has less large molecules and is more polar, roughly four orders of magnitude on 

average as compared to the CMC dataset. The visualization of these differences is captured in Figure 1 with 

the CMC set omitted for clarity reasons. The Gram-negative compounds populate mainly the mid- and left 

lower part of the graph with only a few compounds above the 650 Dalton line. Exceptions are indicated on the 

graph, including membrane-interacting polymyxins, siderophore-carrying β-lactams (active transport), and 

finally azithromycin and LTX-109, two compounds with borderline E. coli activity at 8 μg/mL. 
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Figure 1.  Property space of known antibiotics as visualized by molecular weight (MW) and calculated logD at 

pH 7.4 (see Supplementary Materials for calculation details). Antibiotics are colored by Gram-positive only 

(red) and Gram-negative (blue) activity, respectively. 

 

In order to limit our analysis to property space correlating with passive uptake across the cell envelope, 

we had to further bin Gram-negative antibiotics: First, we eliminated compounds with self-promoted uptake 

(aminoglycosides and membrane disruptors) and the actively transported fosfomycin. Then we split 

compounds according to their target location; either in the CP with the requirement for molecules to 

permeate both membranes, or in the PP with the requirement to only permeate the outer membrane.  

Table 1 captures some of the essential value ranges for some of the key properties and comparing them to 

the ‘drug space’ of the CMC database. The separation based on target location reveals the difference of is 

captured in the CP column. The MW is below 460 Dalton with a relatively narrow range of polarity. Experience 

demonstrates that these values are connected: for compounds on the more polar range, the MW has to be on 

the lower side as well to allow permeation through the inner membrane. In contrast, the size limitation for 

compounds targeting the PP space is less restricted with an average MW of roughly 100 Dalton higher as 

compared to targeting the CP. In addition, polarity of compounds is higher with little to no polarity restriction 

as seen by clogD and clogP values as well as by the polar surface area. The ranges listed in Table 1 should serve 

as guidelines only and especially for screening purposes, we recommend to populate the corresponding 

property space of compounds within libraries or archives of compounds.  
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Table 1.  Property space ranges for individual parameters comparing Gram-negative antibiotics with a 

filtered CMC database. The ranges were determined from the datasets (supplementary materials) by 

cutting 10% on either end. Numbers of compounds are indicated in brackets. CP: Target within cytoplasm, 

PP: Target within periplasm 

 CP (73) a PP (60) b CMC (4675) 

MW 254-465 347-558 210-470 

clogD (pH 7.4) -1.4 to 1.1 -5.1 to –1.0 -1.3 to 4.7 

clogp -0.9 to 1.9 -3.4 to 0.9 -0.2 to 5.4 

PSA [Å2] 75 - 181 112 - 215 25 - 124 

FRB 2 - 6 4 - 10 1 - 10 

H-Donor 1 - 7 2 - 6 2 - 4 

AROM 1 - 3 0 - 2 0 - 3 

 a Excluding aminoglycosides and Fosfomycin. b β-Lactams 

and β-lactamase inhibitors including DBOs (diazabi-

cyclooctanes; avibactam scaffold) 

 

2.2.  Analysis of lead optimization programs 

As an illustration of property space in antibacterial drug discovery, we decided to share data on multiple 

programs using scatter plot representation for size (MW), polarity (clogD) and adding an additional parameter 

for potency through coloring schemes for the dots (see Figure 2).  

Figure 2a represents the property space for Gram-negative antibiotics (omitting aminoglycosides and 

Fosfomycin) as purple (CP) and blue (PP) circles with the CMC compounds as small grey dots. The purple 

square highlights the preferred space for Gram-negative antibiotics with targets in CP; this space is shifted to 

higher polarity and slightly larger MW as compared to the CMC compounds. The green ellipse depicts the 

most populated space within a typical corporate archive of compounds, which is shifted to higher MW and 

lipophilicity, largely driven by past synthetic efforts and chemical convenience in the past (vide infra). Based 

on this dataset of existing antibiotics it is clear how important the target location is and how this has to be 

taken into account both for hit finding and hit/lead optimization. Data published by other organizations active 

in this field are consistent with these findings as experimentally determined on a multitude of programs.17,18  

Figure 2b contains compounds from an internal program with the target located intracellularly (CP). Only 

compounds are shown that were active on P. aeruginosa (MIC ≤ 8 μg/mL) and were not cytotoxic in two 

different cell lines (K562, HepG2) up to 100 μg/mL. The graph reveals the narrow range of property space for 

these lead compounds with the most promising compounds falling within a clogD space between minus one 

and one. Some compounds fall outside this illustrated preferred property space and remind us that this data 

analysis is based on a relative small data set of 151 Gram-negative antibiotics and as such can only provide us 

with some guidelines but not firm rules. In addition, calculation of polarity relies on accurate pKa prediction 

and this is – while improving over time – still inaccurate and will affect logD calculations especially with 

predicted pKa values close to the physiological pH. The supplementary material includes comparisons of the 

correlation between experimental and calculated logD values when using a pKa predictor trained with either a 

commercial training set or the commercial training set expanded with data from our in-house 
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knowledgebase.14 The analysis shows that expansion of the training set for pKa prediction improves the 

performance of the subsequent logD prediction for the projects in this paper.  
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Figure 2.  Representation of Gram-negative antibiotics in the MW/clogD property space. 2a: Known antibiotics 

are colored according to target location for CP (purple) and PP (blue).  Spaces occupied by typical archive 

(green) and Gram-negative antibiotics with CP target location (purple) are indicated. 2b: First internal program 

with CP target location filtered by activity (P. aeruginosa) and cytotoxicity from over 2376 compounds made 

(816 compounds with MIC ≤8 μg/mL, 137 compounds without detected cytotoxicity). 2c: Second internal 

program with CP target location filtered by activity (E. coli) and cytotoxicity from 1406 compounds made (803 

compounds with MIC ≤ 8 μg/mL, 124 compounds without detected cytotoxicity). 2d: Internal program with PP 

target location filtered by E. coli activity (MIC ≤ 2 μg/mL); 258 compounds from 541 made, including 26 

reference compounds. 

 

Compounds for a second intracellular target (CP) are visualized in Figure 2c. In this particular case, we 

used E. coli as activity cut-off (MIC ≤ 8 μg/mL) and colored the dots according to activity. Compounds with 

cytotoxicity at or below 100 μg/mL in three different cell lines (K562, MT4, and HepG2) were omitted from this 

analysis. Again, this data reveals a narrow distribution of active compounds in a similar property space range 

as compared to the first target. For both examples, lead compounds are positioned outside the most 

populated archive space, indicating these historic collections of compounds underrepresent the most 

desirable space.  

Further support for the preferred property space defined here for cytoplasmic targets can be gleaned by 

contrasting it with the preferred property space for monobactam compounds that target PBPs in the 
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periplasm. Since these compounds do not need to permeate the inner membrane they are predicted to be 

much less constrained in terms of increased polarity than would be the case for inhibitors of cytoplasmic 

targets (see blue dots in Figure 2a). Figure 2d contains all non-cytotoxic compounds of our past monobactam 

program with E. coli activity of ≤8 μg/mL, and indeed these are concentrated to the left portion of Figure 2d, 

well outside of the box indicating preferred property space for cytoplasmic targets. This clear contrast based 

on one parameter provides support for both property spaces (that indicated in purple and one for periplasmic 

targets). However, it remains to be seen if relaxed polarity criteria would hold true for inhibitors of other 

periplasmic targets besides PBPs. If addition of more polarity is possible and supported by the target, we 

believe this to be beneficial as it typically adds to higher solubility of compounds (key importance for IV 

administration) and prevents them from entering mammalian cells; a clear benefit to the safety profile of such 

compounds. 

 

0.25 µg/mL                                 2 µg/mLMW

MIC

clogD (pH 7.4)
 

 

Figure 3. Second internal program with CP target localization. All compounds are displayed, irrespective of 

activity or cytotoxicity (1406 compounds without the reference standards). 

 

The representations of compounds in Figure 2 are biased due to choosing non-toxic compounds with a 

minimal level of antibacterial activity. We therefore provide a visualization of all compounds made for the 

program shown in Figure 2c (CP target), irrespective of antimicrobial activity or cytotoxicity (Figure 3). This 

Figure nicely visualizes the activity hotspot around a MW of 360 Dalton and a calculated logD value between 

zero and one. Active compounds were prepared that deviated from these values, with potency rapidly 

decreasing above 400 Dalton whereas polarity is ranging from minus one to two (calculated logD). It is worth 

noting that compounds with lower polarity (log D ≥1) and good antibacterial activity do not show up in Figure 

2c due to detected cytotoxicity (vide infra for discussion). 

 

2.3 General safety considerations 

Attrition of drug candidates at the candidate selection stage and in early clinical development is primarily due 

to safety concerns.19 Waring and coauthors also found a link between physicochemical properties and failure 

due to safety issues; an observation which builds on Lipinski’s in-depth analysis at Pfizer and the creation of 

rules of five.10  
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The importance of safety considerations for antibacterial drug candidates is further reinforced by the fact 

that safe and effective treatment options are generally available, except where eroded by resistance. The 

relative high doses needed for efficacy, especially for treatment of infections caused by Gram-negative 

organisms, results in high safety requirements for antibiotics.  

This is in contrast to the success rate in late stage clinical trials, which is higher for infectious diseases20 than 

for other disease areas, likely due to the availability of highly predictive animal efficacy models for key 

antibacterial indications3.  

An illustration of the safety challenges faced in development of novel antibacterial agents may be given by 

the struggle to avoid QTc prolongations due to inhibition of the human Ether-a-go-go-Related Gene product 

hERG. QTc prolongation is a class effect of the fluoroquinolones and has recently stalled the development of 

several non-fluoroquinolone inhibitors of bacterial topoisomerases as well.21-23 Applying the conservative 

margin of 100-fold between the hERG IC50 and free Cmax in the clinic, as recommended by Redfern,24 the target 

hERG IC50 value for an optimized analog with a predicted free Cmax in the clinic of 10 μM (a typcial value for a 

Gram-negative drug) would be 1 mM. Optimizing compounds for millimolar hERG IC50 values is a huge 

challenge, requiring sufficient solubility for in vitro hERG assays, a non-trivial challenge for most scaffold 

classes.  

Off-target activity against ion channels like hERG, as well as against biogenic amine receptors like GPCRs, 

which have historically been important to avoid for safety reasons, is being driven to a large extent by 

physicochemical properties, namely lipophilicity, charge status and aromaticity, which will be discussed in 

more detail below. 

2.3.1. Lipophilicity. Lipophilic interactions are structurally more forgiving and less ligand-protein 

complementarity is needed.25 As a result, increased lipophilicity leads to a higher degree of pharmacological 

promiscuity.26 Increased lipophilicity and pharmacological promiscuity correlates with worse toxicological 

outcomes.27-29 Hansch has observed for approved drugs in the CNS space, that increased lipophilicity 

correlates with lethality, and has formulated the principle of minimal hydrophobicity: “Without convincing 

evidence to the contrary, drugs should be made as hydrophilic as possible without loss of efficacy”.30  

Gram-negative drugs are more polar than drugs of the CMC comparator set (Figure 2a), and the higher bar 

for safety is likely one of the key drivers in addition to better permeability of polar compounds through the 

porins of the outer membrane as discussed above.  

Lipophilicity does not only affect the quality of drug candidates and drugs, but it also impacts the quality 

of hits from phenotypic screening. Figure 4 shows the hit-rates for Pseudomonas aeruginosa, as well as 

cytotoxicity against mammalian and yeast cells in high-throughput screening campaigns at Novartis that read 

out cell-death.  

Hit rates for P. aeruginosa are relatively constant over a range for clogD of -1 to >6, while hit rates for 

mammalian and yeast cytotoxicity increase till reaching a plateau at around a clogD of >4. This difference is 

likely due to the relative impermeability of the outer membrane of P. aeruginosa to lipophilic probes.31 

Further analysis of the relationship between clogD and cytotoxicity includes a dataset of validated inhibitors of 

the growth of Gram-negative bacteria from the Novartis knowledge base. The analysis shows that at clogD of 3 

and higher, 83% of these validated inhibitors of the growth of Gram-negative bacteria are also cytotoxic 

against mammalian cells (Figure 5), likely reflecting unspecific membrane action and higher degree of 

promiscuity for such lipophilic hits. The consequence of this is that compounds with a clogD > 3 are unlikely to 

specifically inhibit the growth of Gram-negative bacteria, and we tend to bias away from these lipophilic 

compounds when designing screening sets.47 
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Figure 4. Primary hit-rate data for sets of compounds binned by clogD from three high-throughput 

screens (roughly 800k compounds each). Compounds were screened at 40 µM for activity against 

P.aeruginosa (efflux mutant; green), and at 20 µM and 24 µM for cytotoxicity against yeast and a human 

HaCat cell line respectively (blue); hits were called at >50% inhibition in all cases (see supplementary 

materials for further details). 

 

 
 

Figure 5. Fraction of cytotoxic compounds for sets of validated inhibitors of the growth of wild-type Gram-

negative bacteria binned by calculated logD. There are a total of 292 compounds in the bins with clogD > 3 

(blue box) and 241 of these (83%) are cytotoxic. Details of the analysis are shared in the supplementary 

materials. 
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2.3.2. Charge status. Pharmacological promiscuity with regard to target classes that have historically been 

implicated with safety issues, such as GPCRs and ion channels, is also driven by charge status.26,32 Positively 

charged compounds tend to be most promiscuous, acids least and zwitterions and neutral molecules fall in-

between. Basic compounds (positively charged at physiological pH) are frequent hits in phenotypic screens. 

The positive charge allows for interactions with negatively charged phospholipid head groups of the 

cytoplasmic membranes of bacteria,33 as well as with negatively charged groups within lipopolysaccharides of 

the outer membrane of Gram-negative organisms to affect disruptions of bacterial membranes leading to 

compound entry.16 The permeability advantage with primary amines has recently again been emphasized,34 

but the dilemma remains that such compounds are more difficult to optimize towards safe drugs. 

We analyzed our database with regard to charge status for Gram-negative drugs (actively transported 

drugs excluded) (Table 1). For compounds targeting the cytoplasm, the majority are zwitterionic or weakly 

acidic, with only 10% (7 compounds) being bases. These 7 compounds (Scheme 1) are GSK2251052, AZD9742, 

ACHN-975, Gepotidacin, Azithromycin, Iclaprim and Trimethoprim. GSK2251052 showed QTc prolongation in 

man,22 AZD9742 and ACHN-975 were discontinued in phase 1. Azithromycin, Iclaprim and trimethoprim are 

administered at a relative low dose (daily doses of 500, 160 and 240 mg respectively), indicating that if a low 

efficacious dose can be utilized, a basic compound may produce an acceptable safety profile. GSK2251052 is a 

small and polar (clogD -3.7) base dosed in phase 2 at 1.5g q12h. The compound failed due to rapid 

development of resistance in phase 2, but appears to have been well tolerated. It may thus be possible to 

develop a basic compound that is not actively transported at a relative high dose as long as it is small and 

sufficiently polar.  

 

 
 

Scheme 1.  Antibiotics carrying a positive charge. 

 

Compounds targeting the periplasm are zwitterionic or strongly acidic. This also reflects the requirement 

of the targets penicillin binding proteins and β-lactamases for a negative charge. The charge status and low 

logD (see also Figure 2d) of these compounds explain the excellent safety profile of many members of the β-

lactam class.  

Basic compounds that have to permeate passively into the cytoplasm of Gram-negative organisms and 

require a high dose (>500 mg) are thus to our knowledge not precedented within the currently approved drug 
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space, even though basic compounds are frequently obtained as phenotypic sceening hits. However, if one 

could identify novel targets in the PP that can be inhibited with very polar amines, such molecules might show 

an acceptable safety profile. There are also no Gram-negative drugs targeting the CP that are strong acids, 

likely due to challenges for polar acids to effectively permeate through the inner membrane. Zwitterions and 

neutral compounds may provide a good balance between permeability and safety requirements, especially 

with pKa values close to physiological pH, allowing the coexistence of multiple species.  

2.3.3. Aromaticity. Ritchie and Macdonald have shown that aromatic ring count (AROM) correlated with 

compound developability at GSK.35 The mean AROM from candidate selection to phase 1 to Proof of Concept 

in phase 2 dropped from 3.3 to 2.5 to 2.3 respectively, reflecting challenges in areas of safety and ADME 

properties for compounds with high AROM. Increased AROM leads to higher plasma protein binding, hERG 

activity and cytochrome P450 (CYP450) inhibition, and lower aqueous solubility. These observed effects are not 

only a function of higher lipophilicity for compounds with high AROM, but also reflect the higher content of 

aromatic rings. For example, receptor promiscuity increases with AROM independent of logD.  

Higher aromatic ring count will make development of high-dose iv antibiotics especially difficult, due to 

formulation challenges for compounds with low solubility. The analysis of the iv subset of all antibacterial 

compounds in our database shows that the average AROM is 1.6 (113 compounds; AROM = 1.26 for the Gram-

negative subset of 85 compounds), which is identical to the value for the CMC set, whereas the Novartis 

solution screening Archive shows an average AROM of 2.4. The typical screening decks in large pharma are too 

aromatic relative to existing drugs in general.36,37 For Gram-negative antibiotics, especially iv agents, the low 

solubility of compounds with high aromaticity presents a challenge. 

 

 

Conclusions 
 

Antibacterial drug discovery is undoubtedly challenging, especially if targeting Gram-negative pathogens. 

Decades of intensive effort at biotech and large pharmaceutical companies as well as in academia have yielded 

only a few novel discoveries and the majority of new antibiotics with expanded spectrum originated from fine-

tuning of existing scaffolds. A lesson learned from these past efforts is that screening of large company 

compound archives in vitro against essential targets will yield hits but their conversion into real drug 

candidates active against Gram-negative pathogens has a low probability of success. 

One reason for this may relate to observations by Walters, who pointed out that compounds made by 

medicinal chemists have started to diverge from the chemical property space defined by drugs (clogP and 

fraction sp3) over time.36 This trend began in the early 80’s, coinciding with the second wave of palladium-

catalyzed cross couplings which were discovered in the late 70’s.38 Other “workhorse” reactions used in 

medicinal chemistry include reductive aminations,39 which appear to have enriched archives with basic 

compounds. The tendency to favor easy-to-synthesize compounds (presumably to increase output) is likely 

counterproductive, as many of these will reside outside the optimal property space for drug development in 

general. Table 1 and Figure 2A illustrate the notion that corporate compound archives also lack sufficient 

diversity of compounds within the preferred target property space associated with Gram-negative cellular 

activity. These issues manifest acutely in the case of antibacterial discovery, where compounds must be 

optimized for cellular potency, and therapeutics are usually dosed at comparatively high levels necessitating 

ever safer compounds with better solubility. Against this backdrop, less optimal chemical starting points can 

prohibitively widen the distance to the design of solid leads or therapeutic agents. 



Arkivoc 2019, iv, 227-244  Reck, F. et al. 

 Page 239  ©
ARKAT USA, Inc 

Given the hard-won knowledge outlined in this article and elsewhere, how can we improve the important 

process of antibacterial discovery and increase chances for success? We do not claim to have a patent 

solution, but provide suggestions we expect may go some way towards improving the odds. Target inhibitors 

are fairly easy to identify, either by in vitro biochemical or biophysical screens or by phenotypic screens and 

subsequent target identification.  

The first challenge is therefore the conversion of the hit into an on-target, whole-cell active hit or lead 

compound, which usually boils down to improving permeability through two opposite membranes while 

avoiding a battery of efflux pumps. As we have illustrated, chemical starting points tend to reflect the 

suboptimal nature of compound archives. An obvious next step is therefore to improve the archives. One way 

to do this would be by purchasing diverse sets of compounds covering a favorable property space (Table 1) 

from commercial suppliers who realized the need for more polar, and therefore more functionalized, 

compounds and who are increasingly covering this need.  

Another way to address the nature of chemical property space available to a particular target program is 

via fragment-based approaches that enable medicinal chemists to more specifically build and optimize 

program molecules. This also requires careful consideration when constructing fragment libraries for use in 

screens to provide useful starting points. Murray and Rees have proposed that for growing fragments in 

fragment-based drug design, new methodologies are still needed for more efficient transformation towards 

diverse and polar compounds.40 There have been some notable recent advances in new methodologies 

suitable for generating compounds with higher sp3 character (less flat). These include photoredox catalysis 

developed by David MacMillan’s group,41,42 bicycloalkyl bioisosteres of phenyl groups,43 and a novel route to 

substituted piperidines with tunable regiochemistry.44 

Along with augmenting traditional compound libraries with better starting points, an alternative is vastly 

increasing the size and correspondingly, the diversity of libraries. DNA-encoded libraries (DEL) offer an 

attractive way to interrogate very large libraries of compounds that directly interact with a given target, then 

enrich for binding library members and decode them through amplification and DNA sequencing.45 Currently, 

DEL cannot be used for phenotypic screening due to the covalently attached DNA tag but technology 

advancements might eventually allow us to encode / decode large libraries in the context of phenotypic 

screening. 

Natural products have been a main source for the antibiotics in use currently, and are still an attractive 

potential source of antibiotics, as it has been proposed that the vast chemical diversity encompassed by 

natural products remains unexplored. Future natural products efforts may benefit from broadening the range 

of novel producing organisms, including acquisition of producing strains from environments where evolution 

may have driven the generation of metabolites active against resistant bacteria (e.g. hospital sewage from 

geographic locations with high prevalence of antibiotic resistant organisms). Genomic and genetic approaches 

may provide insights into silent gene clusters, particularly if these lie in proximity to resistance genes that 

could hint at potential targets.46 Lastly, exploring different product screening and isolation methods may 

enrich for previously unexploited compounds with attractive chemical properties or ease of creating synthetic 

analogs.  

Historically, phenotypic or whole-cell screening has been used with success in antibacterial discovery, and 

indeed is responsible for identifying most antibacterial classes we know today. Since libraries have been 

extensively and repeatedly screened this way, the output from this approach has however dwindled. Indeed, 

many phenotypic screens employ highly compromised hypersusceptible bacteria which increases sensitivity 

but yields inhibitors that, like those identified by in vitro biochemical screens, possess little or no activity 

against wild type bacterial pathogens. With or without improved compound archives, screening conditions 
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that mirror a more physiologically relevant environment as compared to Mueller-Hinton broth might yield 

previously unidentified inhibitors from the portion of the archive with desirable properties and/or with activity 

against wild type cells. 

Although there are several potentially promising avenues of antibacterial discovery it also needs to be 

appreciated that continued discovery of new antibiotics will require commitment and resourcing. Given the 

overall perception of a lack of financial incentive to continue discovery and especially development of novel 

antibiotics, this commitment, especially among large or medium sized pharmaceutical companies, has largely 

evaporated. The few products introduced to the market during the past two years (delafloxacin, 

meropenem/vaborbactam, ceftazidime/avibactam, plazomicin) had disappointing sales with a grim outlook for 

the companies promoting these products. This has placed a huge downward pressure on their stock price 

(Melinta traded at $0.83 and Achaogen at $1.30 as of December 21, 2018, 4 pm) which does little to improve 

the outlook. Unless substantial funding becomes available for novel antibacterial drug discovery and 

development, there is a worrying risk of fewer or even no treatment options against multi-drug resistant 

bacteria coming in the future. Furthermore, the resulting exodus from antibacterial research and development 

constitutes a substantial and possibly irretrievable loss of expertise in this area as many scientists have moved 

on to support other therapeutic areas or technology platforms. 
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