Supplementary Material

Design of bis-NHC Ru-complexes featuring diarylmethylene N-substituents for olefin metathesis

Idriss Curbet, Jennifer Morvan, Sophie Colombel-Rouen, Thierry Roisnel, Christophe Crévisy, and Marc Mauduit

Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.
Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.
Email: marc.mauduit@ensc-rennes.fr

Table of Contents

I-General Information S2
II-Synthesis of Imidazolinium Salts S3
III-Synthesis of bis-carbene complexes S5
IV-General procedure stability studies of synthesised Ru-complexes S8
V-General Procedure for kinetic studies S9
VI-Metathesis Reactions S10
VII-NMR spectra of synthesised compounds S14
NHC Precursors S14
Ruthenium Complexes S20
Metathesis products S23
VIII-X-ray crystallographic data S32
General Information

General. All reactions were carried out under an atmosphere of argon using standard Schlenk techniques. Toluene, diethyl ether, dichloromethane and tetrahydrofuran were purified using MBraun Solvent Purification Systems. All commercial chemicals were used as received unless otherwise noted. The 1 M solution of hydrogen chloride in ethanol and 0.5 M solution of potassium bis(trimethylsilyl)amid in toluene were purchased from Acros Organics with AcroSeal packaging. NMR spectra were recorded on a Bruker ARX400 spectrometer (1H (400 MHz), 13C (101 MHz), 19F (376 MHz) and 11B (128 MHz)) with complete proton decoupling for 13C. Chemical shifts are reported in parts per million with the solvent resonance as the internal standard (CDCl$_3$, 1H: δ 7.26 ppm, 13C: δ 77.16 ppm; DMSO, 1H: δ 2.50 ppm, 13C: δ 39.52 ppm). Coupling constants are reported in Hertz (Hz). Abbreviations are used as follows: s = singlet, d = doublet, t = triplet, dd = double doublet, td = triple doublet, q = quartet, m = multiplet. High Resolution Mass Spectrometry (HRMS) were recorded on a Waters QTof-I spectrometer using electrospray ionization at the Centre Régional de Mesures Physiques de l’Ouest (CRMPO), Université de Rennes 1. Melting points were measured on a Stuart Melting Point Apparatus SMP3 and are uncorrected.
Synthesis of Imidazolinium Salts

General procedure for synthesis of imidazolinium salts: Ethylene diamine (1 equiv), diarylketone (2 or 3 equiv), sodium cyanoborohydride (3 equiv) and ethanol (3 mL/mmol) were added in a round-bottom flask. The pH of the solution was adjusted at 5-6 with a 1 M solution of HCl.EtOH and the mixture was refluxed overnight. After cooling to room temperature, the solvent was evaporated and the crude mixture was dissolved in DCM and washed with a saturated solution of NaHCO₃. The crude product was purified by flash chromatography (DCM/acetone as eluent) and used for the next step. Then, the diamine (1 equiv), NH₄BF₄ (1 equiv) and triethylorthoformate (1 mL/mmol of diamine) were heated at 120 °C during 2 h under an argon atmosphere. The volatiles were removed under vacuum and the corresponding imidazolinium salt was purified by precipitation with diethyl ether or by flash chromatography on silica gel (DCM/acetone).

1H-1,3-dibenzhydryl-4,5-dihydroimidazolinium tetrafluoroborate (3a)
Following the general procedure for the synthesis of symmetric imidazolinium salts, with benzophenone (3.681 g, 20.2 mmol) and ethylenediamine (680 µL, 10.2 mmol), the desired product was isolated as a white solid (2.2983 g, 46% yield) after purification by chromatography on silica gel (DCM/acetone 98/2).

mp = 205 °C

1H NMR (400 MHz, DMSO-d₆): δ ppm) 8.22 (s, 1H), 7.45-7.34 (m, 20H), 6.25 (s, 2H), 3.85 (s, 4H)

13C NMR (101 MHz, DMSO-d₆): δ ppm) 158.1, 136.7, 129.0, 128.6, 128.2, 64.8, 48.0

19F NMR (376 MHz, DMSO-d₆): δ ppm) -148.2, -148.3

11B NMR (128 MHz, DMSO-d₆): δ ppm) 1.2

HRMS (ESI) : m/z : M⁺ (C₂₉H₂₇N₂) calc.: 403.21742; found: 403.2173 (1 ppm).
1H-1,3-bis[di-(4-fluorophenyl)methyl]-4,5-dihydroimidazolinium tetrafluoroborate (3b)

Following the general procedure for the synthesis of symmetric imidazolinium salts with 4,4' difluorobenzophenone (3.298 g, 15.1 mmol) and ethylenediamine (350 µL, 5.2 mmol), the desired product was isolated as a white solid (1.259 g, 45% yield) after precipitation.

mp = 194 °C

1H NMR (400 MHz, DMSO-d$_6$): δ ppm) 8.17 (s, 1H), 7.40-7.36 (m, 8H), 7.29-7.24 (m, 8H), 6.22 (s, 2H), 3.80 (s, 4H)

13C NMR (101 MHz, DMSO-d$_6$): δ ppm) 162.1 (d, J = 246.6 Hz), 158.2, 132.8 (d, J = 3.1 Hz), 130.5 (d, J = 8.5 Hz), 115.9 (d, J = 21.7 Hz), 63.4, 47.8

19F NMR (376 MHz, DMSO-d$_6$): δ ppm) -148.3, -148.2, -113.3

11B NMR (128 MHz, DMSO-d$_6$): δ ppm) -1.3

HRMS (ESI) : m/z : M$^+$ (C$_{29}$H$_{23}$F$_8$N$_2$) calc.: 475.17974; found: 475.1794 (1 ppm).

1H-1,3-bis[di(4-methoxyphenyl)methyl]-4,5-dihydroimidazolinium tetrafluoroborate (3c)

Following the general procedure for the synthesis of symmetric imidazolinium salts with 4,4'-dimethoxybenzophenone (3.677 g, 15.2 mmol) and ethylenediamine (330 µL, 4.9 mmol), the desired product was isolated as a white solid (0.570 g, 19% yield) after purification by chromatography on silica gel (DCM/acetone 100/0 to 95/5).

mp = 57 °C

1H NMR (400 MHz, DMSO-d$_6$): δ ppm) 8.04 (s, 1H), 7.23-7.20 (m, 8H), 6.97-6.94 (m, 8H), 6.07 (s, 2H), 3.77 (s, 4H), 3.73 (s, 12H)

13C NMR (101 MHz, DMSO-d$_6$): δ ppm) 159.2, 157.5, 129.5, 128.8, 114.4, 63.9, 55.2, 47.7

19F NMR (376 MHz, DMSO-d$_6$): δ ppm) -148.3, -148.2

11B NMR (128 MHz, DMSO-d$_6$): δ ppm) -1.3

HRMS (ESI) : m/z : M$^+$ (C$_{33}$H$_{35}$F$_4$N$_2$O$_4$) calc.: 523.25913; found: 523.2595 (1 ppm).
Synthesis of bis-carbene complexes:

General procedure for synthesis of bis-carbene complexes:
In the glovebox, to a suspension of imidazoliunum salt (4 equiv) in toluene (1 mL/mmole of Ru) was added a 0.5 M solution of potassium bis(trimethylsilyl)amide in toluene (4 equiv). After 5 minutes of stirring, dichloro-(3-phenyl-1H-inden-1-ylidene)bis(tricyclohexylphosphine)ruthenium(II) or M1 (1 equiv) was added and the mixture was stirred at 60 °C outside of the glovebox during 3 h. The crude mixture was purified by flash chromatography using a mixture of Pentane/Et2O solvent (9/1 to 7/3).

Dichloro-bis(1,3-dibenzhydryl-4,5-dihydroimidazol-2-ylidene)-(3-phenyl-1H-inden-1-ylidene) ruthenium(II) (Ru-11a)

Following the general procedure for the synthesis of bis-carbene complexes with 3a (301.7 mg, 0.61 mmol), KHMD solution (1.23 mL, 0.61 mmol) and M1 (141.3 mg, 0.15 mmol), the desired product was obtained as a red solid (132 mg, 73% yield).

\[^1H \text{ NMR (400 MHz, CDCl}_3\]: \delta ppm) 8.66 (dd, J = 7.5, 1.2 Hz, 1H), 7.77 (s, 2H), 7.41-7.32 (m, 3H), 7.31-7.18 (m, 22H), 7.17-7.12 (m, 2H), 7.09-6.93 (m, 16H), 6.91-6.83 (m, 1H), 6.84-6.77 (m, 4H), 6.77-6.72 (m, 1H), 5.85 (s, 2H), 3.51-3.34 (m, 4H), 3.28-3.17 (m, 4H)

\[^13C \text{ NMR (101 MHz, CDCl}_3\]: \delta ppm) 296.5, 214.4, 142.3, 140.8, 140.2, 140.0, 139.4, 138.6, 138.5, 138.2, 135.9, 130.3, 130.2, 129.3, 129.2, 128.8, 128.2, 127.9, 127.8, 127.6, 127.5, 127.3, 126.9, 126.7, 117.2, 65.5, 64.4, 46.3, 45.6

HRMS (ESI): m/z: M+ (C_{73}H_{62}N_{4}Cl_{2}Ru) calcd.: 1166.33895; found: 1166.3400 (1 ppm).
Dichloro-bis[1,3-[di-(4-fluorophenyl)methyl]-4,5-dihydroimidazol-2-ylidene)-(3-phenyl-1H-inden-1-ylidene) ruthenium(II) (Ru-11b)

Following the general procedure for the synthesis of bis-carbene complexes with 3b (104.3 mg, 0.18 mmol), KHMDS solution (0.36 mL, 1.18 mmol) and M1 (39.1 mg, 0.04 mmol), the desired product was obtained as a red solid (48.5 mg, 88% yield).

1H NMR (400 MHz, CDCl$_3$): δ ppm) 8.54 (dd, $J = 7.5, 1.1$ Hz, 1H), 7.58 (s, 2H), 7.46-7.41 (m, 1H), 7.32-7.28 (m, 2H), 7.25-7.12 (m, 12H), 7.07 (td, $J = 7.4, 1.2$ Hz, 1H), 6.98-6.90 (m, 12H), 6.80 (dd, $J = 7.4, 1.0$ Hz, 1H), 6.73-6.63 (m, 12H), 5.72 (s, 2H), 3.40-3.35 (m, 4H), 3.20-3.15 (m, 4H)

13C NMR (101 MHz, CDCl$_3$): δ ppm) 297.1, 214.6, 163.1, 163.0, 161.4 (d, $J = 248.3$ Hz), 160.7, 160.6, 142.3, 141.3, 140.0, 138.1, 135.2, 135.1, 135.1, 134.5 (d, $J = 3.0$ Hz), 133.7 (d, $J = 3.4$ Hz), 133.6 (d, $J = 3.2$ Hz), 131.8 (d, $J = 7.1$ Hz), 131.7 (d, $J = 7.2$ Hz), 130.7 (d, $J = 2.8$ Hz), 130.6 (d, $J = 2.6$ Hz), 129.5, 129.2, 129.0, 128.7, 128.4, 126.9, 117.6, 115.1, 115.0, 114.9, 114.8, 114.7, 114.6, 64.4, 63.3, 46.0, 45.3

19F NMR (376 MHz, CDCl$_3$): δ ppm) -114.3, -114.3, -115.1, -115.7

HRMS (ESI): m/z: M$^+$ (C$_{73}$H$_{54}$F$_8$N$_4$Cl$_2$Ru102) calc.: 1310.26358; found: 1310.2648 (1 ppm)
Dichloro-bis[1,3-[di-(4-methoxyphenyl)methyl]-4,5-dihydroimidazol-2-ylidene)-(3-phenyl-1H-inden-1-ylidene) ruthenium(II) (Ru-11c)

Following the general procedure for the synthesis of bis-carbene complexes with 3c (349.3 mg, 0.57 mmol), KHMDS solution (1.15 mL, 0.57 mmol) and M1 (132 mg, 0.14 mmol), the desired product was obtained as a red solid (50.4 mg, 25% yield).

1H NMR (400 MHz, CDCl$_3$): 8.66 (d, $J = 7.6$ Hz, 1H), 7.50 (s, 2H), 7.38-7.27 (m, 4H), 7.19-7.07 (m, 10H), 6.99-6.93 (m, 1H), 6.92-6.81 (m, 6H), 6.79-6.69 (m, 12H), 6.55-6.48 (m, 8H), 5.70 (s, 2H), 3.79-3.77 (m, 12H), 3.71 (s, 6H), 3.57 (s, 6H), 3.43-3.37 (m, 4H), 3.23-3.10 (m, 4H)

13C NMR (101 MHz, CDCl$_3$): 294.9, 214.1, 158.8, 158.3, 158.2, 142.8, 140.3, 139.6, 138.3, 136.1, 132.1, 131.8, 131.5, 130.8, 130.3, 129.1, 128.3, 128.2, 127.4, 127.1, 117.0, 113.2, 113.1, 113.0, 64.5, 63.4, 55.3, 55.2, 55.1, 55.0, 45.9, 45.2

HRMS (ESI): m/z: M^+ (C$_{81}$H$_{75}$Cl$_2$N$_4$O$_8$Ru35Cl102) calc.: 1406.42347; found: 1406.4244 (1 ppm).
General procedure stability studies of synthesised Ru-complexes

In a glovebox, a NMR tube was charged with Ru complex (0.005 mmol), anthracene (0.005 mmol) as the internal standard, and toluene-d_8 (0.5 mL). The tube was sealed and shaken vigorously. A 1H NMR spectrum was recorded for reference at time = 0. The tube was then placed in an oil bath set at 60 °C. Degradation was monitored by observing the disappearance of the most downfield signal ($\delta = 8.66$ ppm for Ru-$11a$, $\delta = 8.54$ ppm for Ru-$11b$, $\delta = 8.66$ ppm for Ru-$11c$) by 1H NMR.
General Procedure for kinetic studies

Diethyl allyl(methallyl)-malonate (51 mg, 0.2 mmol), mesitylene (9.2 µL, 0.066 mmol) as the internal standard and toluene (1.8 mL) were added in a Schlenk tube under argon. The solution was equilibrated at 80 °C before the catalyst addition (0.2 mL of a 0.01 M solution of catalyst, 1 mol%). Aliquots were taken and the conversion was calculated from 1H NMR spectra by comparing the characteristic signal for allylic proton to the internal standard.
Metathesis Reactions

General Procedure for Metathesis Reactions: To a Schlenk apparatus was filled the substrate (0.3 mmol) and toluene (3 mL, c = 0.1 M) under argon, the precatalyst (0.003 mmol) was added. The media was heated at 80 °C and the progress of the reaction was monitored by TLC until complete conversion or until the catalyst death was observed. The solvent was removed under vacuum and trimethoxybenzene (0.1 mmol) was added in the mixture as internal standard to determine the conversion by 1H NMR. Then the crude residue was purified by column chromatography to yield the pure product.

Diethyl cyclopent-3-ene-1,1-dicarboxylate (7)

Following the general procedure for metathesis reactions with the desired precatalyst (0.003 mmol) and diethyl 2,2-diallylmalonate (72.1 mg, 0.3 mmol), the desired product was obtained after purification on silica gel (Pentane/Et$_2$O: 9/1) as a colorless oil (49.2 mg, 77% yield with Ru-11a after 5 h reaction and 53.2 mg, 83% yield with Ru-11b after 5 h reaction).

1H NMR (400 MHz, CDCl$_3$): δ ppm) 5.63-5.57 (m, 2H), 4.19 (q, $J = 7.1$ Hz, 4H), 3.01 (s, 4H), 1.24 (t, $J = 7.1$ Hz, 6H).

13C NMR (101 MHz, CDCl$_3$): δ ppm) 172.4, 127.9, 61.7, 59.0, 41.0, 14.2.

Analytical data for this compound were consistent with the previously reported data.

Diethyl cyclohex-3-ene-1,1-dicarboxylate (9)

Following the general procedure for metathesis reactions with the desired precatalyst (0.003 mmol) and diethyl 2-allyl-2-(but-3-en-1-yl)malonate (76.3 mg, 0.3 mmol), the desired product was obtained after purification on silica gel (Pentane/Et$_2$O: 9/1) as a colorless oil (60.3 mg, 89% yield with Ru-11a after 3 h reaction and 62.1 mg, 97% yield with Ru-11b after 3 h reaction).

1H NMR (400 MHz, CDCl$_3$): δ ppm) 5.70-5.62 (m, 2H), 4.24-4.12 (m, 4H), 2.57-2.52 (m, 2H), 2.16-2.05 (m, 4H), 1.23 (t, $J = 7.1$ Hz, 6H).

13C NMR (101 MHz, CDCl$_3$): δ ppm) 171.6, 126.1, 124.0, 61.3, 52.9, 30.4, 27.3, 22.3, 14.1.

Analytical data for this compound were consistent with the previously reported data.

1-tosyl-1,2,3,6-tetrahydropyridine (11)

Following the general procedure for metathesis reactions with the desired precatalyst (0.003 mmol) and N-allyl-N-(but-3-en-1-yl)-4-methylbenzenesulfonamide (79.6 mg, 0.3 mmol), the desired product was obtained after purification on silica gel (Pentane/Et$_2$O: 8/2) as a white solid (58.2 mg, 82% yield with Ru-11a after 5 h reaction and 55.0 mg, 77% yield with Ru-11b after 5 h reaction).

1H NMR (400 MHz, CDCl$_3$): δ ppm) 7.71-7.64 (m, 2H), 7.35-7.29 (m, 2H), 5.79-5.72 (m, 1H), 5.66-5.57 (m, 1H), 3.57 (dt, $J = 5.2$, 2.8 Hz, 2H), 3.17 (t, $J = 5.7$ Hz, 2H), 2.43 (s, 3H), 2.26-2.17 (m, 2H).

13C NMR (101 MHz, CDCl$_3$): δ ppm) 143.5, 133.4, 129.6, 127.7, 125.1, 122.8, 44.8, 42.6, 25.3, 21.5.

Analytical data for this compound were consistent with the previously reported data.
1-tosyl-2,3,4,7-tetrahydro-1H-azepine (13)

Following the general procedure for metathesis reactions with the desired precatalyst (0.003 mmol) and N-allyl-4-methyl-N-(pent-4-en-1-yl)benzenesulfonamide (83.8 mg, 0.3 mmol), the desired product was obtained after purification on silica gel (Pentane/Et₂O: 8/2) as a white solid (61.0 mg, 86% yield with Ru-11a after 5 h reaction and 65.3 mg, 92% yield with Ru-11b after 4 h reaction).

1H NMR (400 MHz, CDCl₃): δ ppm) 7.72-7.62 (m, 2H), 7.35-7.26 (m, 2H), 5.82-5.71 (m, 1H), 5.69-5.59 (m, 1H), 3.84-3.80 (m, 2H), 3.38-3.34 (m, 2H), 2.41 (s, 3H), 2.22-2.13 (m, 2H), 1.83-1.74 (m, 2H).

13C NMR (101 MHz, CDCl₃): δ ppm) 143.0, 136.3, 132.9, 129.5, 127.2, 126.6, 49.6, 46.4, 26.8, 21.5.

Analytical data for this compound were consistent with the previously reported data.

3-methyl-1-tosyl-2,5-dihydro-1H-pyrole (15)

Following the general procedure for metathesis reactions with the desired precatalyst (0.003 mmol) and N-allyl-4-methyl-N-(2-methylallyl)benzenesulfonamide (79.6 mg, 0.3 mmol), the desired product was obtained after purification on silica gel (Pentane/Et₂O: 9/1) as a colorless oil (59.1 mg, 83% yield with Ru-11a after 5 h reaction and 61.2 mg, 86% yield with Ru-11b after 5 h reaction).

1H NMR (400 MHz, CDCl₃): δ ppm) 7.74-7.69 (m, 2H), 7.36-7.29 (m, 2H), 5.27-5.23 (m, 1H), 4.09-4.05 (m, 2H), 3.99-3.94 (m, 2H), 2.43 (s, 3H), 1.68-1.64 (m, 3H).

13C NMR (101 MHz, CDCl₃): δ ppm) 143.5, 136.3, 132.9, 129.5, 127.2, 126.6, 49.6, 46.4, 26.8, 21.5.

Analytical data for this compound were consistent with the previously reported data.

3-methyl-1-tosyl-2,5-dihydro-1H-pyrole (17)

Following the general procedure for metathesis reactions with the desired precatalyst (0.003 mmol) and 4-methyl-N,N-bis(2-methylallyl)benzenesulfonamide (83.8 mg, 0.3 mmol), the desired product was obtained as a after purification on silica gel (Pentane/Et₂O: 9/1) colorless oil (55.1 mg, 72% yield with Ru-11a after 5 h reaction and 52.3 mg, 69% yield with Ru-11b after 5 h reaction).

1H NMR (400 MHz, CDCl₃): δ ppm) 7.74-7.69 (m, 2H), 7.34-7.29 (m, 2H), 3.97 (s, 4H), 2.42 (s, 3H), 1.54 (s, 6H).

13C NMR (101 MHz, CDCl₃): δ ppm) 143.4, 134.4, 129.8, 127.6, 126.3, 59.0, 21.7, 11.3.

Analytical data for this compound were consistent with the previously reported data.
3-methyl-1-tosyl-2,5-dihydro-1H-pyrrole (19)

Following the general procedure for the metathesis reactions with the desired precatalyst (0.003 mmol) and 1-allyl-2-(allyloxy)benzene (52.2 mg, 0.3 mmol), the desired product was obtained after purification on silica gel (Pentane/Et₂O: 9/1) as a colorless oil (38.0 mg, 87% yield with Ru-11a after 5 h reaction and 39.0 mg, 88% yield with Ru-11b after 5 h reaction).

¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.20 (ddd, J = 7.9, 7.3, 1.8 Hz, 1H), 7.13-7.00 (m, 3H), 5.86 (m, 1H), 5.51-5.45 (m, 1H), 4.62-4.58 (m, 2H), 3.52-3.48 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) 158.9, 136.3, 128.9, 128.0, 127.5, 125.9, 124.2, 121.6, 71.4, 31.9.

Analytical data for this compound were consistent with the previously reported data¹.

Cyclohexene (21)

Following the general procedure at 60 °C instead of 80 °C for the metathesis reactions with the desired precatalyst (0.003 mmol) and 1,7-octadiene (52.3 mg, 0.3 mmol) in Toluene-d₈, conversion was determined by ¹H-NMR comparing internal standard peak with internal olefin peak on the starting material. (>98% with Ru-11a and with Ru-11b after 5 h reaction)

Example of ¹H-NMR spectra at 49% conversion:
1,4-diphenylbut-2-ene (23)

Following the general procedure for the metathesis reactions with the desired precatalyst (0.003 mmol) and allylbenzene (70.9 mg, 0.6 mmol), the desired product was obtained after purification on silica gel (Pentane) as a white solid (33.7 mg, 55% yield with Ru-11a after 5 h reaction and 44.5 mg, 71% yield with Ru-11b after 5 h reaction).

\[
\text{C}_{16}\text{H}_{16} \\
\text{Formula weight: 208.30 g.mol}^{-1}
\]

\text{E/Z ratio: 9/1}

Analytical data for this compound were consistent with the previously reported data²

References:

NMR spectra of synthesised compounds

NHC Precursors

Figure S1: 1H NMR (400 MHz, DMSO-d_6) of 3a

Figure S2: 13C NMR (101 MHz, DMSO-d_6) of 3a
Figure S3: 19F NMR (376 MHz, DMSO-d_6) of 3a

Figure S4: 11B NMR (128 MHz, DMSO-d_6) of 3a
Figure S5: 1H NMR (400 MHz, DMSO-d_6) of 3b

Figure S6: 13C NMR (101 MHz, DMSO-d_6) of 3b
Figure S7: 19F NMR (376 MHz, DMSO-d_6) of 3b

Figure S8: 11B NMR (128 MHz, DMSO-d_6) of 3b
Figure S9: 1H NMR (400 MHz, DMSO-d_6) of 3c

Figure S10: 13C NMR (101 MHz, DMSO-d_6) of 3c
Figure S11: 19F NMR (376 MHz, DMSO-d_6) of 3c

Figure S12: 11B NMR (128 MHz, DMSO-d_6) of 3c
Ruthenium Complexes

Figure S13: 1H NMR (400 MHz, CDCl$_3$) of Ru-11a

Figure S14: 13C NMR (101 MHz, CDCl$_3$) of Ru-11a
Figure S15: 1H NMR (400 MHz, CDCl$_3$) of Ru-11b

Figure S16: 13C NMR (101 MHz, CDCl$_3$) of Ru-11b
Figure S17: 19F NMR (376 MHz, CDCl$_3$) of Ru-11b

Figure S18: 1H NMR (400 MHz, CDCl$_3$) of Ru-11c
Figure S19: 13C NMR (101 MHz, CDCl$_3$) of Ru-11c

Metathesis products

Figure S20: 1H NMR (400 MHz, CDCl$_3$) of 7
Figure S21: 13C NMR (101 MHz, CDCl$_3$) of 7

Figure S22: 1H NMR (400 MHz, CDCl$_3$) of 9
Figure S23: 13C NMR (101 MHz, CDCl$_3$) of 9

Figure S24: 1H NMR (400 MHz, CDCl$_3$) of 11
Figure S25: 13C NMR (101 MHz, CDCl$_3$) of 11

Figure S26: 1H NMR (400 MHz, CDCl$_3$) of 13
Figure S27: 13C NMR (101 MHz, CDCl$_3$) of 13
Figure S28: 1H NMR (400 MHz, CDCl$_3$) of 15

Figure S29: 13C NMR (101 MHz, CDCl$_3$) of 15
Figure S30: 1H NMR (400 MHz, CDCl$_3$) of 17

Figure S31: 13C NMR (101 MHz, CDCl$_3$) of 17
Figure S32: 1H NMR (400 MHz, CDCl_3) of 17

Figure S33: 13C NMR (101 MHz, CDCl_3) of 17
Figure S34: 1H NMR (400 MHz, CDCl$_3$) of 23

Figure S35: 13C NMR (101 MHz, CDCl$_3$) of 23
X-ray crystallographic data

X-ray for Ru-11b

- ORTEP for 3a; CCDC n°1891522

Structural data

- **Empirical formula**: C29 H27 B4 F4 N2
- **Formula weight**: 490.33 g/mol
- **Temperature**: 150 K
- **Wavelength**: 0.71073 Å
- **Crystal system, space group**: monoclinic, P 21/n
- **Unit cell dimensions**:
 - $a = 8.8913(9)$ Å,
 - $b = 11.1221(13)$ Å,
 - $c = 24.600(3)$ Å,
 - $\alpha = 90^\circ$, $\beta = 95.261(4)^\circ$, $\gamma = 90^\circ$
- **Volume**: 2422.5(5) Å³
- **Z, Calculated density**: 4, 1.344 g.cm⁻³
- **Absorption coefficient**: 0.099 mm⁻¹
- **F(000)**: 1024
- **Crystal size**: 0.280 x 0.190 x 0.120 mm
- **Crystal color**: colourless
- **Theta range for data collection**: 2.998 to 27.479 °
- **h_min, h_max**: -10, 11
- **k_min, k_max**: -12, 14
- **l_min, l_max**: -31, 31
Reflections collected / unique 23143 / 5542 [R(int) = 0.0318]
Reflections [I>2sigma(I)] 4737
Completeness to theta_max 0.996
Absorption correction type multi-scan
Max. and min. transmission 0.988, 0.772
Refinement method Full-matrix least-squares on F^2
Data / restraints / parameters 5542 / 0 / 332
Goodness-of-fit 1.027
Final R indices [I>2sigma(I)] R1 = 0.0609, wR2 = 0.1514
R indices (all data) R1 = 0.0705, wR2 = 0.1602
Largest diff. peak and hole 0.734 and -0.626 e.Å^-3
Fractional coordinates, site occupancy (%) and equivalent isotropic displacement parameters (Å²).
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>occ.</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.5392(2)</td>
<td>0.4192(3)</td>
<td>0.70232(8)</td>
<td>1</td>
<td>0.0420(6)</td>
</tr>
<tr>
<td>H1A</td>
<td>0.609033</td>
<td>0.354273</td>
<td>0.712404</td>
<td>1</td>
<td>0.050</td>
</tr>
<tr>
<td>H1B</td>
<td>0.585818</td>
<td>0.495123</td>
<td>0.713666</td>
<td>1</td>
<td>0.050</td>
</tr>
<tr>
<td>N2</td>
<td>0.39409(17)</td>
<td>0.40204(15)</td>
<td>0.72645(6)</td>
<td>1</td>
<td>0.0278(3)</td>
</tr>
<tr>
<td>C3</td>
<td>0.3915(2)</td>
<td>0.39463(16)</td>
<td>0.78630(6)</td>
<td>1</td>
<td>0.0250(4)</td>
</tr>
<tr>
<td>H3</td>
<td>0.446313</td>
<td>0.465043</td>
<td>0.801684</td>
<td>1</td>
<td>0.030</td>
</tr>
<tr>
<td>C4</td>
<td>0.1266(2)</td>
<td>0.31016(17)</td>
<td>0.79396(7)</td>
<td>1</td>
<td>0.0268(4)</td>
</tr>
<tr>
<td>H5</td>
<td>0.151873</td>
<td>0.241826</td>
<td>0.775002</td>
<td>1</td>
<td>0.032</td>
</tr>
<tr>
<td>C6</td>
<td>-0.0167(2)</td>
<td>0.32056(19)</td>
<td>0.81192(8)</td>
<td>1</td>
<td>0.0336(4)</td>
</tr>
<tr>
<td>H6</td>
<td>-0.087739</td>
<td>0.260083</td>
<td>0.804236</td>
<td>1</td>
<td>0.040</td>
</tr>
<tr>
<td>C7</td>
<td>-0.0538(2)</td>
<td>0.4212(2)</td>
<td>0.84131(8)</td>
<td>1</td>
<td>0.0381(5)</td>
</tr>
<tr>
<td>H7</td>
<td>-0.149572</td>
<td>0.428172</td>
<td>0.853326</td>
<td>1</td>
<td>0.046</td>
</tr>
<tr>
<td>C8</td>
<td>0.0519(3)</td>
<td>0.5112(2)</td>
<td>0.85272(8)</td>
<td>1</td>
<td>0.0380(5)</td>
</tr>
<tr>
<td>H8</td>
<td>0.027690</td>
<td>0.577929</td>
<td>0.872956</td>
<td>1</td>
<td>0.046</td>
</tr>
<tr>
<td>C9</td>
<td>0.1940(2)</td>
<td>0.50189(17)</td>
<td>0.83398(7)</td>
<td>1</td>
<td>0.0301(4)</td>
</tr>
<tr>
<td>H9</td>
<td>0.264061</td>
<td>0.563161</td>
<td>0.841359</td>
<td>1</td>
<td>0.036</td>
</tr>
<tr>
<td>C10</td>
<td>0.47809(19)</td>
<td>0.28454(17)</td>
<td>0.80839(7)</td>
<td>1</td>
<td>0.0251(4)</td>
</tr>
<tr>
<td>C11</td>
<td>0.5621(2)</td>
<td>0.29350(19)</td>
<td>0.85872(7)</td>
<td>1</td>
<td>0.0316(4)</td>
</tr>
<tr>
<td>C12</td>
<td>0.565708</td>
<td>0.365991</td>
<td>0.877634</td>
<td>1</td>
<td>0.038</td>
</tr>
<tr>
<td>C13</td>
<td>0.6406(2)</td>
<td>0.1946(2)</td>
<td>0.88078(9)</td>
<td>1</td>
<td>0.0418(5)</td>
</tr>
<tr>
<td>H15</td>
<td>0.419425</td>
<td>0.169515</td>
<td>0.746633</td>
<td>1</td>
<td>0.040</td>
</tr>
<tr>
<td>C14</td>
<td>0.5543(2)</td>
<td>0.0771(2)</td>
<td>0.80243(9)</td>
<td>1</td>
<td>0.0393(5)</td>
</tr>
<tr>
<td>H14</td>
<td>0.552146</td>
<td>0.004829</td>
<td>0.783375</td>
<td>1</td>
<td>0.047</td>
</tr>
<tr>
<td>C15</td>
<td>0.4750(2)</td>
<td>0.17605(19)</td>
<td>0.78041(8)</td>
<td>1</td>
<td>0.0334(4)</td>
</tr>
<tr>
<td>H15</td>
<td>0.32688(17)</td>
<td>0.39820(15)</td>
<td>0.63839(6)</td>
<td>1</td>
<td>0.0283(3)</td>
</tr>
<tr>
<td>C21</td>
<td>0.22495(19)</td>
<td>0.39402(17)</td>
<td>0.58739(6)</td>
<td>1</td>
<td>0.0249(4)</td>
</tr>
<tr>
<td>H23</td>
<td>0.122732</td>
<td>0.381803</td>
<td>0.598251</td>
<td>1</td>
<td>0.030</td>
</tr>
<tr>
<td>C24</td>
<td>0.22375(19)</td>
<td>0.51503(17)</td>
<td>0.55808(7)</td>
<td>1</td>
<td>0.0247(4)</td>
</tr>
<tr>
<td>C25</td>
<td>0.1919(2)</td>
<td>0.52139(17)</td>
<td>0.50164(7)</td>
<td>1</td>
<td>0.0308(4)</td>
</tr>
<tr>
<td>H25</td>
<td>0.176499</td>
<td>0.451084</td>
<td>0.481436</td>
<td>1</td>
<td>0.037</td>
</tr>
</tbody>
</table>
Anisotropic displacement parameters (Å^2) The anisotropic displacement factor exponent takes the form: -2π^2 [h^2 a^*^2 U11 + ... + 2 h k a^* b^* U12].

<table>
<thead>
<tr>
<th>Atom</th>
<th>U11</th>
<th>U22</th>
<th>U33</th>
<th>U23</th>
<th>U13</th>
<th>U12</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.0273(9)</td>
<td>0.0799(17)</td>
<td>0.0188(8)</td>
<td>0.0004(9)</td>
<td>0.0020(7)</td>
<td>-0.0170(10)</td>
</tr>
<tr>
<td>N2</td>
<td>0.0236(7)</td>
<td>0.0435(9)</td>
<td>0.0160(7)</td>
<td>0.0022(6)</td>
<td>0.0008(5)</td>
<td>-0.0070(6)</td>
</tr>
<tr>
<td>C3</td>
<td>0.0277(9)</td>
<td>0.0318(9)</td>
<td>0.0149(7)</td>
<td>-0.0001(6)</td>
<td>-0.0010(6)</td>
<td>-0.0073(7)</td>
</tr>
<tr>
<td>C4</td>
<td>0.0286(9)</td>
<td>0.0289(9)</td>
<td>0.0143(7)</td>
<td>0.0044(6)</td>
<td>0.0003(6)</td>
<td>-0.0018(7)</td>
</tr>
<tr>
<td>C5</td>
<td>0.0299(9)</td>
<td>0.0289(9)</td>
<td>0.0215(8)</td>
<td>0.0032(7)</td>
<td>0.0018(6)</td>
<td>-0.0024(7)</td>
</tr>
<tr>
<td>C6</td>
<td>0.0306(10)</td>
<td>0.0423(11)</td>
<td>0.0278(9)</td>
<td>0.0070(8)</td>
<td>0.0023(7)</td>
<td>-0.0046(8)</td>
</tr>
<tr>
<td>C7</td>
<td>0.0337(10)</td>
<td>0.0511(13)</td>
<td>0.0306(10)</td>
<td>0.0079(9)</td>
<td>0.0090(8)</td>
<td>0.0071(9)</td>
</tr>
<tr>
<td>C8</td>
<td>0.0485(12)</td>
<td>0.0395(11)</td>
<td>0.0272(9)</td>
<td>0.0014(8)</td>
<td>0.0092(8)</td>
<td>0.0090(9)</td>
</tr>
<tr>
<td>C9</td>
<td>0.0391(10)</td>
<td>0.0305(9)</td>
<td>0.0206(8)</td>
<td>0.0016(7)</td>
<td>0.0016(7)</td>
<td>-0.0016(8)</td>
</tr>
<tr>
<td>Bond</td>
<td>Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1 - N2</td>
<td>1.481(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1 - C21</td>
<td>1.538(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1 - H1A</td>
<td>0.9700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1 - H1B</td>
<td>0.9700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2 - C41</td>
<td>1.310(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2 - C3</td>
<td>1.477(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3 - C10</td>
<td>1.520(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3 - C4</td>
<td>1.520(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3 - H3</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4 - C9</td>
<td>1.391(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4 - C5</td>
<td>1.397(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5 - C6</td>
<td>1.391(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bond lengths [Å]
C5 - H5 = 0.9300
C6 - C7 = 1.389(3)
C6 - H6 = 0.9300
C7 - C8 = 1.383(3)
C7 - H7 = 0.9300
C8 - C9 = 1.388(3)
C8 - H8 = 0.9300
C9 - H9 = 0.9300
C10 - C15 = 1.388(3)
C10 - C11 = 1.390(2)
C11 - C12 = 1.386(3)
C11 - H11 = 0.9300
C12 - C13 = 1.384(4)
C12 - H12 = 0.9300
C13 - C14 = 1.384(3)
C13 - H13 = 0.9300
C14 - C15 = 1.390(3)
C14 - H14 = 0.9300
C15 - H15 = 0.9300
C21 - N22 = 1.472(2)
C21 - H21A = 0.9700
C21 - H21B = 0.9700
N22 - C41 = 1.312(2)
N22 - C23 = 1.479(2)
C23 - C30 = 1.523(3)
C23 - C24 = 1.527(3)
C23 - H23 = 0.9800
C24 - C29 = 1.391(3)
C24 - C25 = 1.393(2)
C25 - C26 = 1.388(3)
C25 - H25 = 0.9300
C26 - C27 = 1.382(3)
C26 - H26 = 0.9300
C27 - C28 = 1.384(3)
C27 - H27 = 0.9300
C28 - C29 = 1.389(3)
C28 - H28 = 0.9300
C29 - H29 = 0.9300
C30 - C35 = 1.392(3)
C30 - C31 = 1.401(2)
C31 - C32 = 1.387(3)
C31 - H31 = 0.9300
C32 - C33 = 1.390(3)
C32 - H32 = 0.9300
C33 - C34 = 1.379(3)
C33 - H33 = 0.9300
C34 - C35 = 1.390(3)
C34 - H34 = 0.9300
C35 - H35 = 0.9300
C41 - H41 = 0.9300
B51 - F55A = 1.336(4)
B51 - F53 = 1.340(2)
B51 - F52 = 1.369(3)
B51 - F54B = 1.374(4)
B51 - F54A = 1.431(4)
B51 - F55B = 1.450(4)
F54A - F54B = 1.099(5)
F54A - F55A = 1.469(5)
F55A - F55B = 0.880(4)

Angles [deg]
N2 - C1 - C21 = 102.72(15)
N2 - C1 - H1A = 111.20
C21 - C1 - H1A = 111.20
N2 - C1 - H1B = 111.20
C21 - C1 - H1B = 111.20
H1A - C1 - H1B = 109.10
C41 - N2 - C3 = 129.65(15)
C41 - N2 - C1 = 110.25(14)
C3 - N2 - C1 = 120.04(14)
N2 - C3 - C10 = 110.34(14)
N2 - C3 - C4 = 112.78(14)
C10 - C3 - C4 = 113.09(14)
N2 - C3 - H3 = 106.70
C10 - C3 - H3 = 106.70
C4 - C3 - H3 = 106.70
C9 - C4 - C5 = 118.94(17)
C9 - C4 - C3 = 118.44(16)
C5 - C4 - C3 = 122.57(16)
C6 - C5 - C4 = 120.30(18)
C6 - C5 - H5 = 119.80
C4 - C5 - H5 = 119.80
C7 - C6 - C5 = 120.02(19)
C7 - C6 - H6 = 120.00
C5 - C6 - H6 = 120.00
C8 - C7 - C6 = 119.97(19)
C8 - C7 - H7 = 120.00
C6 - C7 - H7 = 120.00
C7 - C8 - C9 = 120.05(19)
C7 - C8 - H8 = 120.00
C9 - C8 - H8 = 120.00
C8 - C9 - C4 = 120.70(19)
C8 - C9 - H9 = 119.70
C4 - C9 - H9 = 119.70
C15 - C10 - C11 = 119.24(18)
C15 - C10 - C3 = 122.46(15)
C11 - C10 - C3 = 118.30(17)
C12 - C11 - C10 = 120.14(19)
C12 - C11 - H11 = 119.90
C10 - C11 - H11 = 119.90
C13 - C12 - C11 = 120.35(19)
C13 - C12 - H12 = 119.80
C11 - C12 - H12 = 119.80
C14 - C13 - C12 = 119.90(2)
C14 - C13 - H13 = 120.10
C12 - C13 - H13 = 120.10
C13 - C14 - C15 = 119.80(2)
C13 - C14 - H14 = 120.10
C15 - C14 - H14 = 120.10
C10 - C15 - C14 = 120.59(18)
C10 - C15 - H15 = 119.70
C14 - C15 - H15 = 119.70
N22 - C21 - C1 = 102.95(15)
N22 - C21 - H21A = 111.20
C1 - C21 - H21A = 111.20
N22 - C21 - H21B = 111.20
C1 - C21 - H21B = 111.20
H21A - C21 - H21B = 109.10
C41 - N22 - C21 = 110.46(15)
C41 - N22 - C23 = 125.06(15)
C21 - N22 - C23 = 124.40(14)
N22 - C23 - C30 = 110.51(15)
N22 - C23 - C24 = 110.49(14)
C30 - C23 - C24 = 115.68(14)
N22 - C23 - H23 = 106.50
C30 - C23 - H23 = 106.50
C24 - C23 - H23 = 106.50
C29 - C24 - C25 = 118.29(17)
C29 - C24 - C23 = 120.99(15)
C25 - C24 - C23 = 120.50(16)
C26 - C25 - C24 = 120.46(17)
C26 - C25 - H25 = 119.80
C24 - C25 - H25 = 119.80
C27 - C26 - C25 = 120.66(17)
C27 - C26 - H26 = 119.70
C25 - C26 - H26 = 119.70
C26 - C27 - C28 = 119.46(18)
C26 - C27 - H27 = 120.30
C28 - C27 - H27 = 120.30
C27 - C28 - C29 = 119.92(18)
C27 - C28 - H28 = 120.00
C29 - C28 - H28 = 120.00
C28 - C29 - C24 = 121.19(17)
C28 - C29 - H29 = 119.40
C24 - C29 - H29 = 119.40
C35 - C30 - C31 = 118.44(17)
C35 - C30 - C23 = 119.11(16)
C31 - C30 - C23 = 122.45(16)
C32 - C31 - C30 = 120.36(18)
C32 - C31 - H31 = 119.80
C30 - C31 - H31 = 119.80
C31 - C32 - C33 = 120.47(18)
C31 - C32 - H32 = 119.80
C33 - C32 - H32 = 119.80
C34 - C33 - C32 = 119.52(19)
C34 - C33 - H33 = 120.20
C32 - C33 - H33 = 120.20
C33 - C34 - C35 = 120.29(19)
C33 - C34 - H34 = 119.90
C35 - C34 - H34 = 119.90
C34 - C35 - C30 = 120.91(17)
C34 - C35 - H35 = 119.50
C30 - C35 - H35 = 119.50
N2 - C41 - N22 = 113.61(16)
N2 - C41 - H41 = 123.20
N22 - C41 - H41 = 123.20
F55A - B51 - F53 = 121.80(3)
F55A - B51 - F52 = 111.20(2)
F53 - B51 - F52 = 112.69(19)
F55A - B51 - F54B = 109.00(3)
F53 - B51 - F54B = 100.90(2)
F52 - B51 - F54B = 97.80(3)
F55A - B51 - F54A = 64.00(3)
F53 - B51 - F54A = 116.50(2)
F52 - B51 - F54A = 122.60(2)
F54B - B51 - F54A = 46.10(2)
F55A - B51 - F55B = 36.56(19)
F53 - B51 - F55B = 97.80(2)
F52 - B51 - F55B = 101.90(2)
F54B - B51 - F55B = 145.00(3)
F54A - B51 - F55B = 99.00(3)
F54B - F54A - B51 = 64.20(3)
F54B - F54A - F55A = 117.80(4)
B51 - F54A - F55A = 54.90(2)
F54A - F54B - B51 = 69.70(3)
F55B - F55A - B51 = 78.80(4)
F55B - F55A - F54A = 136.20(5)
B51 - F55A - F54A = 61.10(2)
F55A - F55B - B51 = 64.70(4)
<table>
<thead>
<tr>
<th>Torsion angles [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C21 - C1 - N2 - C41 = 1.20(3)</td>
</tr>
<tr>
<td>C21 - C1 - N2 - C3 = 178.57(18)</td>
</tr>
<tr>
<td>C41 - N2 - C3 - C10 = 113.00(2)</td>
</tr>
<tr>
<td>C1 - N2 - C3 - C10 = -63.80(2)</td>
</tr>
<tr>
<td>C41 - N2 - C3 - C4 = -14.60(3)</td>
</tr>
<tr>
<td>C1 - N2 - C3 - C4 = 168.63(18)</td>
</tr>
<tr>
<td>N2 - C3 - C4 - C9 = -113.38(17)</td>
</tr>
<tr>
<td>C10 - C3 - C4 - C9 = -56.90(2)</td>
</tr>
<tr>
<td>C41 - N2 - C3 - C4 = -14.60(3)</td>
</tr>
<tr>
<td>C1 - N2 - C3 - C4 = 168.63(18)</td>
</tr>
<tr>
<td>N2 - C3 - C4 - C9 = -113.38(17)</td>
</tr>
<tr>
<td>C10 - C3 - C4 - C9 = -56.90(2)</td>
</tr>
<tr>
<td>C41 - N2 - C3 - C4 = -14.60(3)</td>
</tr>
<tr>
<td>C1 - N2 - C3 - C4 = 168.63(18)</td>
</tr>
<tr>
<td>N2 - C3 - C4 - C9 = -113.38(17)</td>
</tr>
<tr>
<td>C10 - C3 - C4 - C9 = -56.90(2)</td>
</tr>
<tr>
<td>C41 - N2 - C3 - C4 = -14.60(3)</td>
</tr>
<tr>
<td>C1 - N2 - C3 - C4 = 168.63(18)</td>
</tr>
<tr>
<td>N2 - C3 - C4 - C9 = -113.38(17)</td>
</tr>
<tr>
<td>C10 - C3 - C4 - C9 = -56.90(2)</td>
</tr>
</tbody>
</table>
C24 - C25 - C26 - C27 = -0.90(3)
C25 - C26 - C27 - C28 = -0.20(3)
C26 - C27 - C28 - C29 = 0.40(3)
C27 - C28 - C29 - C24 = 0.50(3)
C25 - C24 - C29 - C28 = -1.60(3)
C23 - C24 - C29 - C28 = -176.34(18)
N22 - C23 - C30 - C35 = 103.72(18)
C24 - C23 - C30 - C35 = -129.78(17)
N22 - C23 - C30 - C31 = -76.50(2)
C24 - C23 - C30 - C31 = 49.90(2)
C35 - C30 - C31 - C32 = 0.60(3)
C23 - C30 - C31 - C32 = -179.11(16)
C23 - C30 - C31 - C32 = -179.11(16)
C30 - C31 - C32 - C33 = 0.10(3)
C31 - C32 - C33 - C34 = -0.70(3)
C32 - C33 - C34 - C35 = 1.10(3)
C33 - C34 - C35 - C30 = 0.60(3)
C31 - C30 - C35 - C34 = 0.20(3)
C23 - C30 - C35 - C34 = 179.51(16)
C3 - N2 - C41 - N22 = -177.65(18)
C1 - N2 - C41 - N22 = -0.60(2)
C21 - N22 - C41 - N2 = -0.30(2)
C23 - N22 - C41 - N2 = -177.10(17)
F55A - B51 - F54A - F54B = 166.40(4)
F53 - B51 - F54A - F54B = -79.30(4)
F52 - B51 - F54A - F54B = 66.90(4)
F55B - B51 - F54A - F54B = 177.30(3)
F53 - B51 - F54A - F55A = 114.30(3)
F52 - B51 - F54A - F55A = -99.60(3)
F54B - B51 - F54A - F55A = -166.40(4)
F55B - B51 - F54A - F55A = 10.90(3)
F55A - F54A - F54B - B51 = 12.50(4)
F55A - B51 - F54B - F54A = -12.90(4)
F53 - B51 - F54B - F54A = 116.40(3)
F52 - B51 - F54B - F54A = -128.60(3)
F55B - B51 - F54B - F54A = -4.70(6)
F53 - B51 - F55A - F55B = 55.40(5)
F52 - B51 - F55A - F55B = -81.20(4)
F54B - B51 - F55A - F55B = 172.10(4)
F54A - B51 - F55A - F55B = 161.80(5)
F53 - B51 - F55A - F54A = -106.40(3)
F52 - B51 - F55A - F54A = 117.00(3)
F54B - B51 - F55A - F54A = 10.30(3)
F55B - B51 - F55A - F54A = -161.80(5)
F54B - F54A - F55A - F55B = -40.10(9)
B51 - F54A - F55A - F55B = -26.30(7)
F54B - F54A - F55A - B51 = -13.80(4)
F54A - F55A - F55B - B51 = 23.30(6)
F53 - B51 - F55B - F55A = -135.00(4)
F52 - B51 - F55B - F55A = 109.70(4)
F54B - B51 - F55B - F55A = -13.10(7)
F54A - B51 - F55B - F55A = -16.50(4)