Supplementary Material

Selective synthesis of methyl dithienyl-glycolates

Francesca Foschi, a Elisa Bonandi, a Andrea Mereu, b Barbara Pacchetti, b Davide Gozzini, b and Daniele Passarella* a
d

a Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, Milano 20133, Italy
b LINNEA SA, Via Cantonale, 6595 Riazzino (TI), Switzerland

Email: daniele.passarella@unimi.it

Table of Contents

1. Materials and methods S2
2. 1H and 13C NMR Spectra of methyl dithienyl glycolates 1a,b and oxo-acetate 4a–c S3
Materials and methods. All available chemicals and solvents were purchased from commercial sources and were used without any further purification. Thin layer chromatography (TLC) was performed using 0.25 mm silica gel precoated plates Si 60-F254 (Merck) visualized by UV-254 light and CAM staining. Purification by flash column chromatography (FCC) was conducted by using silica gel Si 60, 230-400 mesh, 0.040-0.063 mm (Merck). Melting points were determined on a Büchi B450 apparatus and are corrected. 1H and 13C NMR spectra were recorded on a Bruker Fourier 300 (recorded at: 300.13 MHz for 1H; 75.00 MHz for 13C) or Bruker Avance Spectrometer (recorded at: 400.13 MHz for 1H; 100.62 MHz for 13C); chemical shifts are indicated in ppm downfield from TMS, using the residual proton (CHCl$_3$ = 7.28 ppm; acetone = 2.05 ppm; DMSO = 2.45 ppm) and carbon (CDCl$_3$ = 77.0 ppm; acetone = 207.1 and 30.9 ppm) solvent resonances as internal reference. Coupling constants values J are given in Hz.
400 MHz, CDCl$_3$
General Papers

CO_2Me

400 MHz, CDCl$_3$

OH

400 MHz, CDCl$_3$

CO_2Me
400 MHz, Acetone- d_6
400 MHz, Acetone- d_6
400 MHz, Acetone- d_6
1b

400 MHz, Acetone- d_6
300 MHz, CDCl₃
300 MHz, CDCl$_3$
300 MHz, CDCl₃
300 MHz, CDCl₃
400 MHz, CDCl$_3$
400 MHz, CDCl$_3$
400 MHz, CDCl$_3$
400 MHz, CDCl₃

![Chemical Structure](image)
400 MHz, CDCl₃
400 MHz, Acetone$_d$$_6$
400 MHz, Acetone$_{d_6}$
400 MHz, Acetone$_{d-6}$
4b

400 MHz, Acetone$_d$-6
300 MHz, CDCl$_3$
300 MHz, CDCl₃
300 MHz, CDCl₃
300 MHz, CDCl$_3$