Supplementary Material

Mild alkaline hydrolysis of hindered esters in non-aqueous solution

Vassiliki Theodorou, a Michalis Alagiannis, Nikoleta Ntemou, Alexios Brentas, Pinelopi Voulgari, Vasiliki Polychronidou, Marina Gogou, Marios Giannelos, and Konstantinos Skobridis

Department of Chemistry, University of Ioannina, GR-451 10 Ioannina, Greece
Email: vtheodor@cc.uoi.gr

Table of Contents

1. HPLC chromatograms ...S2
2. Copies of 1H NMR spectra: comparison of starting and final products.................................S4
HPLC chromatograms

(i). L-Glu and L-Asp (Entries 6 and 7):
Chirobiotic T column
Eluent: water/methanol/formic acid (30:70:0.02)
Flow: 1 mL/min, detection: 205 nm
Detector: Photodiode-array

![Figure S1. A. HPLC of L-Asp](image)
![Figure S1. B. HPLC of D,L-Asp (mixture)](image)

(ii). N-methacryloyl-L-prolinate (Entry 8)
Ultron ES-OVM column (chiral), 50x4.6 mm, 5μm
Eluent (1): methanol: 0.02 mol/L NaH₂PO₄/water (30:70), flow rate=1 mL/min, and 1.5 mL/min

![Figure S2. A. HPLC of L-Glu](image)
![Figure S2. B. HPLC of D,L-Glu (mixture)](image)
Eluent (2): methanol: 0.02 mol/L NaH₂PO₄/water (50:50), flow rate=1 mL/min, and 1.5 mL/min
Detector: Photodiode-array (PDA), 254 nm.

Figure S3. A. HPLC of N-methacryloyl-L-proline, Eluent (1): methanol: 0.02 mol/L NaH₂PO₄/water (30:70), flow rate=1 mL/min: t= 4.99 min

Figure S3. B. HPLC of N-methacryloyl-L-proline, Eluent (1): methanol: 0.02 mol/L NaH₂PO₄/water (30:70), flow rate=1.5 mL/min: t= 3.19 min

Figure S4. A. HPLC of N-methacryloyl-L-proline, Eluent (2): methanol: 0.02 mol/L NaH₂PO₄/water (50:50): flow rate=1 mL/min: t= 4.43 min

Figure S4. B. HPLC of N-methacryloyl-L-proline, Eluent (2): methanol: 0.02 mol/L NaH₂PO₄/water (50:50): flow rate=1.5 mL/min: t= 2.75 min.
Copies of 1H NMR spectra: comparison of starting compounds and products. (The asterisk denotes the peaks that disappear after the hydrolysis)

Figure S5. 1H NMR (500 MHz, CDCl$_3$) spectra of t-butyl p-nitrobenzoate and p-nitrobenzoic acid (1)
Figure S6. 1H NMR (500 MHz, CDCl$_3$) spectra of **di-t-butyl 2-methylmalonate** and **2-methylmalonic acid (2)**
Figure S7. 1H NMR (500 MHz, CDCl$_3$) spectra of t-butyl palmitate and palmitic acid (3)
Figure S8. 1H NMR (500 MHz, CDCl$_3$) spectra of diphenylmethyl palmitate and diphenylmethanol (4)
Figure S9. 1H NMR (500 MHz, CDCl$_3$) spectra of *dimethylbenzylcarbinyl acetate* and *dimethylbenzylcarbinol* (S)
Figure S10. 1H NMR (500 MHz, CDCl$_3$) spectra of t-butyl N-methacryloyl-L-prolinate and N-methacryloyl-L-proline (8)
Figure S11. 1H NMR (500 MHz, CDCl$_3$) spectra of isobornyl acetate and isoborneol (9)
Figure S12. 1H NMR (500 MHz, CDCl$_3$) spectra of linalyl benzoate and linalool (10)
Figure S13. 1H NMR (500 MHz, CDCl$_3$) spectra of (-)-menthyl acetate and (-)-menthol (11)
Figure S14. 1H NMR (500 MHz, DMSO-d_6) spectra of α-D(+)−glucose pentaacetate and D-glucose (12)
Figure S15. 1H NMR (500 MHz, CDCl$_3$) spectra of phenyl tosylate and phenol (13)
Figure S16. 1H NMR (500 MHz, CDCl$_3$) spectra of N-tosyl indole and indole (16)