Supplementary Material

Mild alkaline hydrolysis of hindered esters in non-aqueous solution

Vassiliki Theodorou,^{*a} Michalis Alagiannis, Nikoleta Ntemou, Alexios Brentas, Pinelopi Voulgari, Vasiliki Polychronidou, Marina Gogou, Marios Giannelos, and Konstantinos Skobridis

> ^aDepartment of Chemistry, University of Ioannina, GR-451 10 Ioannina, Greece Email: <u>vtheodor@cc.uoi.qr</u>

Table of Contents

1.	HPLC chromatograms	S2
2.	Copies of ¹ H NMR spectra: comparison of starting and final products	S4

General Papers

HPLC chromatograms

(i). L-Glu and L-Asp (Entries 6 and 7): Chirobiotic T column Eluent: water/methanol/formic acid (30:70:0.02) Flow: 1 mL/min, detection: 205 nm Detector: Photodiode-array

Figure S1. B. HPLC of D,L-Asp (mixture)

Figure S2. B. HPLC of D,L-Glu (mixture)

 ⁽ii). N-methacryloyl-L-prolinate (Entry 8)
Ultron ES-OVM column (chiral), 50x4.6 mm, 5μm
Eluent (1): methanol: 0.02 mol/L NaH₂PO₄/water (30:70), flow rate=1 mL/min, and 1.5 mL/min

Eluent (2): methanol: 0.02 mol/L NaH₂PO₄/water (50:50), flow rate=1 mL/min, and 1.5 mL/min Detector: Photodiode-array (PDA), 254 nm.

Figure S3. A. HPLC of *N*-methacryloyl-L-proline, Eluent (1): methanol: 0.02 mol/L NaH₂PO₄/water (30:70), flow rate=1 mL/min: t= 4.99 min

Figure S3. B. HPLC of *N*-methacryloyl-L-proline, Eluent (1): methanol: 0.02 mol/L NaH₂PO₄/water (30:70), flow rate=1.5 mL/min: t= 3.19 min

Figure S4. A. HPLC of *N*-methacryloyl-L-proline, Eluent (2): methanol: 0.02 mol/L NaH₂PO₄/water (50:50): flow rate=1 mL/min: t= 4.43 min

Figure S4. B. HPLC of *N*-methacryloyl-L-proline, Eluent (2): methanol: 0.02 mol/L NaH₂PO₄/water (50:50): flow rate=1.5 mL/min: t= 2.75 min.

Copies of ¹H NMR spectra: comparison of starting compounds and products.

(The asterisk denotes the peaks that disappear after the hydrolysis)

Figure S5. ¹H NMR (500 MHz, CDCl₃) spectra of *t*-butyl p-nitrobenzoate and p-nitrobenzoic acid (1)

Figure S6. ¹H NMR (500 MHz, CDCl₃) spectra of di-t-butyl 2-methylmalonate and 2-methylmalonic acid (2)

Figure S7. ¹H NMR (500 MHz, CDCl₃) spectra of *t*-butyl palmitate and palmitic acid (3)

Figure S8. ¹H NMR (500 MHz, CDCl₃) spectra of **diphenylmethyl palmitate** and **diphenylmethanol (4)**

Figure S9. ¹H NMR (500 MHz, CDCl₃) spectra of **dimethylbenzylcarbinyl acetate** and **dimethylbenzylcarbinol** (5)

Figure S10. ¹H NMR (500 MHz, CDCl₃) spectra of **t-butyl** *N*-methacryloyl-L-prolinate and *N*-methacryloyl-Lproline (8)

Figure S11. ¹H NMR (500 MHz, CDCl₃) spectra of isobornyl acetate and isoborneol (9)

Figure S12. ¹H NMR (500 MHz, CDCl₃) spectra of **linalyl benzoate** and **linalool** (10)

Figure S13. ¹H NMR (500 MHz, CDCl₃) spectra of (-)-menthyl acetate and (-)-menthol (11)

Figure S14. ¹H NMR (500 MHz, DMSO-d₆) spectra of **α-D(+)-glucose pentaacetate** and **D-glucose (12)**

Figure S15. ¹H NMR (500 MHz, CDCl₃) spectra of **phenyl tosylate** and **phenol (13)**

Figure S16. ¹H NMR (500 MHz, CDCl₃) spectra of *N***-tosyl indole** and **indole** (16)