Supplementary Material

Synthesis and insecticidal activity of novel benzothiazole derivatives containing the coumarin moiety

Wei-Jie Si, Min Chen, Xue-Lun Wang, Meng-Qi Wang, Jian Jiao, Xin-Can Fu, and Chun-Long Yang

a Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210 095, China
b Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210 095, China
c Key Laboratory of Monitoring and Management of Crop Diseases and Insect Pests, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210 095, China

Email: ycl@njau.edu.cn

Table of contents

I. Data of key intermediates ...S2
II. Crystallographic data of compound 6v ...S3
III. Spectrograms of key intermediates and all title compoundsS4
I. Data of key intermediates

7-Hydroxy-2H-chromen-2-one(2a)

White power; yield 74.2%; mp 233–235 °C; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\): 10.59 (s, 1H,OH), 7.94 (d, J 9.5 Hz, 1H, Coumarin-4-H), 7.53 (d, J 8.5 Hz, 1H, Coumarin-5-H), 6.80 (dd, J 8.5, 2.3 Hz, 1H, Coumarin-6-H), 6.72 (d, J 2.2 Hz, 1H, Coumarin-8-H), 6.21 (d, J 9.5 Hz, 1H, Coumarin-3-H); EI-MS, \(m/z\): 162 [M]+; Anal Calcd. for C\(_9\)H\(_8\)O\(_3\) (162.03).

7-Hydroxy-4-methyl-2H-chromen-2-one(2b)

Light yellow powder; yield 87.6%; mp 187–188 °C; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\): 10.54 (s, 1H,OH), 7.59 (t, J 8.4 Hz, 1H, Coumarin-4-H), 6.81 (dd, J 8.7, 2.3 Hz, 1H, Coumarin-6-H), 6.71 (d, J 2.3 Hz, 1H, Coumarin-8-H), 6.13 (s, 1H, Coumarin-3-H), 2.37 (s, 3H,CH\(_3\)); EI-MS, \(m/z\): 176 [M]+; Anal Calcd. for C\(_{10}\)H\(_{12}\)O\(_2\) (176.05).

4-(Benzothiazole-2-yl)phenol(4a)

White power; yield 67.1%; mp 223–225 °C; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\): 10.24 (s, 1H,OH), 8.12–8.06 (m, 1H, Benzothiazole-4-H), 8.01–7.91 (m, 3H, Benzothiazole-5,6,7-3H), 7.54–7.48 (m, 1H, Benzothiazol-2-phenyl-2-H), 7.44–7.37 (m, 1H, Benzothiazol-2-phenyl-6-H), 6.97–6.90 (m, 2H, Benzothiazol-2-phenyl-3,5-2H); EI-MS, \(m/z\): 227 [M]+; Anal Calcd. for C\(_{13}\)H\(_{15}\)O (227.04).

4-(Benzothiazol-2-yl)-2-methoxyphenol(4b)

White power; yield 73.4%; mp 172–174 °C; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\): 9.87 (s, 1H,OH), 8.09 (d, J 7.8 Hz, 1H, Benzothiazole-4-H), 8.00 (d, J 8.0 Hz, 1H, Benzothiazole-7-H), 7.64 (d, J 2.0 Hz, 1H, Benzothiazole-5-H), 7.55–7.47 (m, 2H, Benzothiazole-6-H, Benzothiazol-2-phenyl-6-H), 7.45–7.37 (m, 1H, Benzothiazol-2-phenyl-2-H), 6.95 (d, J 8.2 Hz, 1H, Benzothiazol-2-phenyl-5-H), 3.91 (s, 3H,CH\(_3\)); EI-MS, \(m/z\): 257 [M]+; Anal Calcd. for C\(_{14}\)H\(_{11}\)NO\(_2\)S (257.05).

3-(Benzothiazol-2-yl)phenol(4c)

White power; yield 60.2%; mp 165–167 °C; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\): 9.92 (s, 1H,OH), 8.14 (d, J 7.8 Hz, 1H, Benzothiazole-4-H), 8.06 (d, J 8.0 Hz, 1H, Benzothiazole-7-H), 7.51 (dq, J 15.1, 7.2 Hz, 4H, Benzothiazole-5,6-2H, Benzothiazol-2-phenyl-5,6-2H), 7.38 (dd, J 10.6, 5.6 Hz, 1H, Benzothiazol-2-phenyl-2-H), 7.01–6.94 (m, 1H, Benzothiazol-2-phenyl-4-H); EI-MS, \(m/z\): 227 [M]+; Anal Calcd. for C\(_{13}\)H\(_{9}\)NOS (227.04).

2-(4-(2-Bromoethoxy)phenyl)benzothiazole(5a)

White powder; yield 71.5%; mp 131–133 °C; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\): 8.12 (d, J 7.9 Hz, 1H, Benzothiazole-4-H), 8.09–8.00 (m, 3H, Benzothiazole-7-H, Benzothiazol-2-phenyl-2,6-2H), 7.53 (t, J 7.6 Hz, 1H, Benzothiazole-5-H), 7.44 (t, J 7.5 Hz, 1H, Benzothiazole-6-H), 7.16 (d, J 8.7 Hz, 2H, Benzothiazol-2-phenyl-3,5-2H), 4.44 (t, J 10.4 Hz, 2H,CH\(_2\)), 3.86 (t, J 10.4 Hz, 2H,CH\(_2\)-Br).

2-(4-(3-Bromopropoxy)phenyl)benzothiazole(5b)

White powder; yield 74.2%; mp 115–116 °C; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\): 8.12 (d, J 7.8 Hz, 1H, Benzothiazole-4-H), 8.03 (dd, J 11.2, 8.4 Hz, 3H, Benzothiazole-7-H, Benzothiazol-2-phenyl-2,6-2H), 7.53 (t, J 7.2 Hz, 1H, Benzothiazole-5-H), 7.44 (t, J 7.2 Hz, 1H, Benzothiazole-6-H), 7.15 (d, J 8.8 Hz, 2H, Benzothiazol-2-phenyl-3,5-2H), 4.20 (t, J 6.0 Hz, 2H,CH\(_2\)), 3.70 (t, J 6.5 Hz, 2H,CH\(_2\)-Br), 2.33–2.27 (m, 2H, CH\(_2\)).

2-(4-(4-Bromobutoxy)phenyl)benzothiazole(5c)

Yellow-white powder; yield 78.3%; mp 112–114 °C; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\): 8.15–8.08 (m, 1H, Benzothiazole-4-H), 8.03 (t, J 8.3 Hz, 3H, Benzothiazole-7-H, Benzothiazol-2-phenyl-2,6-2H), 7.57–7.49 (m, 1H, Benzothiazole-5-H), 7.46–7.39 (m, 1H, Benzothiazole-6-H), 7.13 (d, J 8.9 Hz, 2H, Benzothiazol-2-phenyl-3,5-2H), 4.12 (t, J 6.2 Hz, 2H, CH\(_2\)), 3.64 (t, J 6.6 Hz, 2H,CH\(_2\)-Br), 2.04–1.94 (m, 2H, CH\(_2\)), 1.95–1.83 (m, 2H, CH\(_2\)).

2-(4-(5-Bromopentyl)oxy)phenyl)benzothiazole(5d)

Off-white powder; yield 80.8%; mp 109–111 °C; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\): 8.10 (t, J 6.6 Hz, 1H, Benzothiazole-4-H), 8.02 (dd, J 8.2, 6.3 Hz, 3H, Benzothiazole-7-H, Benzothiazol-2-phenyl-2,6-2H), 7.52 (dd, J
11.3, 4.1 Hz, 1H, Benzothiazole-5-H), 7.42 (dd, J 11.1, 4.0 Hz, 1H, Benzothiazole-6-H), 7.14–7.07 (m, 2H, Benzothiazol-2-phenyl-3,5-2H), 4.09 (dd, J 13.1, 6.7 Hz, 2H, CH₂), 3.57 (q, J 7.0 Hz, 2H, CH₂-Br), 1.94–1.83 (m, 2H, CH₂), 1.83–1.72 (m, 2H, CH₂), 1.55 (dq, J 14.7, 7.8 Hz, 2H, CH₂), 1.94–1.83 (m, 2H, CH₂), 1.83–1.72 (m, 2H, CH₂), 1.55 (dq, J 14.7, 7.8 Hz, 2H, CH₂).

2-(4-((6-Bromohexyl)oxy)phenyl)benzothiazole(5e)

Grey Powder; yield 85.2%; mp 95–96 °C; ¹H NMR (400 MHz, DMSO-d₆) δ: 8.11 (d, J 7.9 Hz, 1H, Benzothiazole-4-H), 8.02 (dd, J 8.3, 6.5 Hz, 3H, Benzothiazole-7-H, Benzothiazol-2-phenyl-2,6-2H), 7.56–7.49 (m, 1H, Benzothiazole-5-H), 7.46–7.40 (m, 1H, Benzothiazole-6-H), 7.11 (d, J 8.8 Hz, 2H, Benzothiazol-2-phenyl-3,5-2H), 4.07 (t, J 6.4 Hz, 2H, CH₂), 3.55 (t, J 6.7 Hz, 2H, CH₂-Br), 1.90–1.66 (m, 4H, 2xCH₂), 1.53–1.30 (m, 4H, 2xCH₂).

II. Crystallographic data of compound 6v

Table 1. Crystallographic data of compound 6v

<table>
<thead>
<tr>
<th>Chemical formula</th>
<th>C₂₅H₁₉NO₄S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula weight</td>
<td>429.47</td>
</tr>
<tr>
<td>Temperature[K]</td>
<td>100.00(10)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P1</td>
</tr>
<tr>
<td>a [Å]</td>
<td>6.5984(9)</td>
</tr>
<tr>
<td>b [Å]</td>
<td>7.2742(12)</td>
</tr>
<tr>
<td>c [Å]</td>
<td>22.5363(19)</td>
</tr>
<tr>
<td>α [°]</td>
<td>90.238(10)</td>
</tr>
<tr>
<td>β [°]</td>
<td>91.143(9)</td>
</tr>
<tr>
<td>γ [°]</td>
<td>115.337(15)</td>
</tr>
<tr>
<td>V[Å³]</td>
<td>977.4(3)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>ρ (calculated)[g/cm³]</td>
<td>1.459</td>
</tr>
<tr>
<td>μ [mm⁻¹]</td>
<td>0.201</td>
</tr>
<tr>
<td>F(000)</td>
<td>448</td>
</tr>
<tr>
<td>Crystal size [mm³]</td>
<td>0.11 × 0.12 × 0.13</td>
</tr>
<tr>
<td>Colour,shape</td>
<td>Colourless, block</td>
</tr>
<tr>
<td>Radiation [Å]</td>
<td>MoKα (λ = 0.71073)</td>
</tr>
<tr>
<td>Theta Min-Max [°]</td>
<td>2.7, 26.4</td>
</tr>
<tr>
<td>h,k,l</td>
<td>-8 ≤ h ≤ 6, -8 ≤ k ≤ 9, -23 ≤ l ≤ 28</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>7766</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>4000</td>
</tr>
<tr>
<td>Data/restraints/parameters</td>
<td>2947/12/293</td>
</tr>
<tr>
<td>Goodness-of-fit</td>
<td>1.097</td>
</tr>
<tr>
<td>Final R indexes [I>2σ(I)]</td>
<td>R₁ = 0.0806, wR₂ = 0.1916</td>
</tr>
<tr>
<td>Final R indexes [all data]</td>
<td>R₁ = 0.1078, wR₂ = 0.2119</td>
</tr>
<tr>
<td>Min. and Max. Resd. Dens [e Å⁻³]</td>
<td>-0.49, 0.51</td>
</tr>
</tbody>
</table>
Spectrograms of key intermediates and all title compounds
1H NMR, and MS spectra of the compound 2a

1H NMR, and MS spectra of the compound 2b
1H NMR, and MS spectra of the compound 4a
1H NMR, and MS spectra of the compound 4b
1H NMR, and MS spectra of the compound 4c
1H NMR, 13C NMR and HRMS spectra of the compound 6a
1H NMR, 13C NMR and HRMS spectra of the compound 6b
1H NMR, 13C NMR and HRMS spectra of the compound 6c
1H NMR, 13C NMR and HRMS spectra of the compound 6d
1H NMR, 13C NMR and HRMS spectra of the compound 6e
1H NMR, 13C NMR and HRMS spectra of the compound 6f
1H NMR, 13C NMR and HRMS spectra of the compound 6g
\(^1\)H NMR, \(^{13}\)C NMR and HRMS spectra of the compound 6h
1H NMR, 13C NMR and HRMS spectra of the compound 6i
1H NMR, 13C NMR and HRMS spectra of the compound 6j
H NMR, C NMR and HRMS spectra of the compound 6k
1H NMR, 13C NMR and HRMS spectra of the compound 6l
1H NMR, 13C NMR and HRMS spectra of the compound 6m
1H NMR, 13C NMR and HRMS spectra of the compound 6n
1H NMR, 13C NMR and HRMS spectra of the compound 6o
1H NMR, 13C NMR and HRMS spectra of the compound 6p
1H NMR, 13C NMR and HRMS spectra of the compound 6q
1H NMR, 13C NMR and HRMS spectra of the compound 6r
1H NMR, 13C NMR and HRMS spectra of the compound $6s$
1H NMR, 13C NMR and HRMS spectra of the compound 6t
^{1}H NMR, ^{13}C NMR and HRMS spectra of the compound 6u
1H NMR, 13C NMR and HRMS spectra of the compound 6v
1H NMR, 13C NMR and HRMS spectra of the compound 6w
1H NMR, 13C NMR and HRMS spectra of the compound 6x
1H NMR, 13C NMR and HRMS spectra of the compound 6y
1H NMR, 13C NMR and HRMS spectra of the compound 6z
1H NMR, 13C NMR and HRMS spectra of the compound 6aa
1H NMR, 13C NMR and HRMS spectra of the compound 6bb
1H NMR, 13C NMR and HRMS spectra of the compound 6cc
1H NMR, 13C NMR and HRMS spectra of the compound 6dd