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Abstract 

Aminocyclitols are of interest as glucosidase inhibitors, as probes for the study of pseudoglycosyltransferases, 

and as potential therapeutics for the treatment of Gaucher’s disease.  The synthesis of these targets was 

reviewed in early 2008, and the aim of this review is to cover material relevant to the synthesis of 

aminocyclitols since that time.  While not a focus of this review, biological evaluation of compounds will be 

presented where it is recorded in the literature.   
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1.  Introduction 

 

As defined by Delgado,1 aminocyclitols are “cycloalkanes containing at least one free or one substituted amino 

group and three additional hydroxyl groups on ring atoms”. Examples of naturally occurring C7N 

aminocyclitols include validamine, valienamine, and valiolamine (1, 2, and 3 respectively, Fig. 1) which exhibit 

-glucosidase inhibitory activity.  Validamine and valienamine both appear as subunits within the anti-fungal 

antibiotic N-linked pseudo saccharide validamycin A (5). Likewise, aminocyclitols lacking the 

hydroxymethylene sidechain, such as 2-deoxy-scyllo-inosamine (DOIA, 6), are known biosynthetic 

intermediates in the production of 2-deoxystreptamine (2-DOS, 7), a subunit of streptamine antibiotics such as 

kanamycin A (8). 

 

 
 

Figure 1. Structures of naturally occurring C7 and C6 aminocyclitols (CAS atom numbering). 
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New aminocyclitols continue to be isolated, including kirkamide (9),2 a positional isomer of valienamine, and 

nabscessins A and B (10 and 11).3  

There are several excellent reviews1,4-7 concerning aminocyclitols covering the literature through 2007 and 

a recent review reports on polyhydroxylated medium-ring carbocycles including larger ring aminocyclitols;8,9 

the reader is directed to these for literature prior to 2008. The present review will cover synthetic efforts 

toward six-membered aminocyclitols, excluding dihydroconduramines (4-amino-1,2,3-cyclohexanetriols), from 

2008 to present.  While not a focus of this review, biological evaluation of compounds will be presented where 

it is recorded in the literature. 

 

 

2.  Preparation from 6-Membered Carbocycles 

  

2.1  Degradation/semi-synthesis 

As part of studies on validamycin A biosynthesis, Mahmud’s group required validamine 7-phosphate (12, 

Scheme 1) as a substrate for pseudoglycosyltransferases.10 To this end, they utilized the Ogawa NBS oxidative 

cleavage reaction11 on perbenzylated validoxylamine A (13) to afford a mixture of ketones 14/15 and amines 

16/17, where the mixture of amines was separable from the ketones. Generation of the benzyloxycarbonyl 

protected amines allowed for their chromatographic separation. The minor product (19) could be further 

elaborated to (+)-1 or to the desired 7-phosphonate (+)-12.  
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Scheme 1. Preparation of validamine 7-phosphate by degradation of validoxylamine A. 

 

 
 

Scheme 2. High yielding conversion of valienamine into valiolamine. 
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Chen and co-workers reported a semi-synthesis of valiolamine from more abundant valienamine (Scheme 

2).12 Epoxidation of the tetraacetate amide (+)-20 with mCPBA gave (–)-21. The yield of this reaction was 

nearly doubled with 2% of radical inhibitor [4,4’-thiobis(6-t-butyl-m-cresol)]. The authors propose that the 

stereoselectivity for this epoxidation is directed by hydrogen bonding between the acetamido substituent and 

mCPBA.  While attempted reduction of the epoxide was not productive, ring opening with potassium halides 

proceeded regioselectively to give the chloride, bromide or iodide 22a, b, or c respectively. Reductive 

dehalogenation afforded protected valiolamine, which upon hydrolysis with Ba(OH)2 afforded (+)-3 (5 steps, 

80.6% overall yield). 

 

2.1  Chiral pool precursors 

(+)-proto-Quercitol (23, Scheme 3) is a cyclohexanepentaol isolated from the stems of Arfeuillea arborescens 

(ca. 0.6 weight %). A racemic synthesis of (±)-23 from the simple hydrocarbon 1,4-cyclohexadiene was 

reported in 1997.13 Phuwapraisirisan and co-workers accomplished the synthesis of aminocyclitols from 

naturally occurring material (+)-23.14  Selective bis-ketalization of 23 gave 24, which also allowed for 

determination of its absolute configuration by NMR analysis of the R- and S-Mosher’s esters. Generation of 

28a relies on SN2 displacement of mesylate 25 by azide, followed by reduction and hydrolysis. Oxidation of 24 

followed by stereocontrolled reduction gave the diastereomeric alcohol 30, which was transformed into the 

diastereomeric aminocyclitol 34a by a similar sequence of reactions. This group also prepared 2o and 3o amine 

derivatives 28b/c and 34b/c from the stereoisomeric protected aminocyclitols 27 and 33, using standard 

reductive amination methodology.15 The aminocyclitols 28a and 34a exhibit dramatically different inhibitory 

activity against -glucosidase from Baker’s yeast (28a, IC50 = 2890 M; 34a, IC50 = 12.5 M), suggesting that 

the orientation of the amino functionality was essential for mimicking the oxocarbenium ion intermediate 

involved in the enzyme active site. The most potent 2o and 3o amines are 34b, R = n-pentyl (IC50 = 0.24 M) 

and 34c, R = methyl (IC50 = 5.0 M) and these were identified as competitive inhibitors. 

 

 
 

Scheme 3. Phuwapraisirisan synthesis of aminocyclitols. 
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Kuno, et al., also utilized the bis-acetonide ketone 29, derived from proto-quercitol, for the preparation of 

an N-octyl valienamine stereoisomer (35, Scheme 4).16,17 Partial deprotection of the trans-acetonide, followed 

by treatment with benzyl chloride gave the enol benzoate (–)-36. Treatment of 36 with excess methylene ylide 

afforded the exocyclic diene (+)-37. The authors propose17 that this proceeds via addition–elimination at the 

enol benzoate carbonyl to generate the enolate anion 38 (see insert), which undergoes -elimination to 

generate the enone 39. 1,4-Addition of bromine to 37, followed by displacement of the 1o bromide gave a 

separable mixture of allyl bromide epimers -40 and -40; each epimer was separately transformed into the 

-N-octylamine (+)-35 by varying the equivalents of sodium methoxide. A similar strategy was used for the 

synthesis of N-octyl--valienamine (42) from (–)-vibo-quercitol (41) (Scheme 5).16 Biooxidation of 41 with 

Glactonobacter sp. AB10277 was previously reported by Ogawa’s group to afford (–)-43.18 Acetylation of 43 

proceeded with -elimination to give the cyclohexenone 44. While reaction of 44 with Wittig ylide lead to 

further elimination, reaction with the Nysted reagent gave the exocyclic diene 45, albeit in attenuated yield. 

Transformation of 45 into 42 followed in a fashion similar to the preparation of 35-HCl from 37. The 

hydrochloride salt (+)-35-HCl exhibited inhibitory activity against bovine liver -galactosidase, green coffee 

bean -galactosidase, and almond -glucosidase (IC50 = 4.5 M, 4.5 M and 8.1 M respectively) but was 

relatively inactive toward - and -mannosidase and -fucosidase (IC50 > 1 mM). In comparison, (+)-42 was a 

more potent inhibitor of -galactosidase (IC50 = 2.9 M) than for -glucosidase (IC50 = 47 M).16 
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Scheme 4. Kuno synthesis of NOEV (N-octyl-epi--valienamine). 

 

 
 

Scheme 5. Kuno synthesis of NOV (N-octyl--valienamine). 

 

Shikimic acid (46), isolated from Illicium verum (Chinese star anise, 3-7%) or Liquidambar styraciflua 

(sweetgum fruit, 1.5%), has been used as a chiral pool precursor for the synthesis of a variety of targets, most 

notably the antiviral agent oseltamivir (tamiflu). Xiao-Xin Shi and co-workers utilized 46 for the synthesis of 

(+)-valiolamine (3, Scheme 6).19 This sequence requires two inversions, at the C3 and C5 hydroxyl groups. The 
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first inversion is achieved by hydrolysis of the epoxide 47 under acidic conditions to generate 48. 

Regioselective nucleophilic attack of water occurs at the C3 position of the protonated epoxide due to allylic 

stabilization of the partial positive charge. The second inversion proceeds via SN2 displacement by azide ion of 

the C5 mesylate present in 48. After reduction of the ethyl ester and hydroxyl group protection, the C1 and C2 

hydroxyl groups were introduced by Ru catalyzed oxidation. This occurred stereoselectively on the olefin face 

opposite to the sterically bulky TBDPS ether group. Further functional group manipulation and deprotection 

afforded (+)-3. 
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Scheme 6. Shi synthesis of (+)-valiolamine from shikimic acid. 

 

Shi’s group also utilized shikimic acid as a precursor for the preparation of (+)-valienamine (Scheme 7).20  

In a fashion similar to their synthesis of valiolamine, hydrolysis of the epoxide 47 and SN2 displacement by 

azide generate the required C3 and C1 stereocenters respectively (valienamine numbering). Furthermore, 

asymmetric Ru-catalyzed dihydroxylation establishes the C-4 alcohol functionality. Finally, dehydration of the 

tertiary alcohol of 52 was achieved using thionyl chloride to give 53. 
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Scheme 7. Shi synthesis of (+)-valienamine from shikimic acid. 

 

2.2  Achiral/meso precursors 

The van Delft group reported the synthesis of an optically active, orthogonally protected 2-deoxystreptamine 

synthon which utilized an enzymic desymmetrization (Scheme 8).21  The meso diacetate 55 was obtained by 

degradation of kanamycin A (8).  This involved diazotransfer using triflyl azide, exhaustive allylation of the free 

hydroxyl groups, and acidic methanolysis of the glucoside linkages.  Chromatographic separation of the 

desired 1,3-diazido-1,3-dideamino-5-O-allyl-2-deoxyptreptamine (54) and the resultant methyl glucosides was 

challenging. However reaction with TMS and HMDS afforded the bis-TMS derivative of 54, the 

chromatographic separation of which from the methyl glucosides was considerably easier.  Acidic hydrolysis of 

the bis-TMS derivative regenerated pure 54 in 36% overall yield from kanamycin A.  Desymmetrization of the 

meso diacetate (55) proved elusive using commercially available esterases, however use of Verenium esterase 

5 (Venerium Corporation), an esterase specifically engineered for sterically hindered substrates, in acetonitrile 
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and pH 7.5 phosphate buffer, gave the mono acetate 56 in high yield and with excellent enantioselectivity.  

Staudinger mono-reduction and Boc protection gave 57. 
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Scheme 8. Enzymatic desymmetrization of meso-diacetate 55. 

 

More recently, Trost and Molhotra reported a synthesis of the optically active mono-protected 2-DOS 

derivative 58 (Scheme 9).22  Their route relied on a desymmetrization of meso-dibenzoate 59 with 1.2 

equivalents of trimethylsilyl azide, using Pd-catalysis with the chiral bis-phosphine ligand S,S-60.  Staudinger 

reduction of the resultant allylic azide, followed by Boc protection gave 61 with excellent enantioselectivity.  

Methanolysis of the optically active benzoate, followed by hydroxyl directed stereoselective epoxidation, and 

Ley oxidation gave the epoxyketone 62.  Generation of the enolate from 62 and reaction with iso-amyl nitrite 

gave the oxime 63, which was stereoselectively reduced and benzoylated at both the 2o alcohol and the 

oxime.  Nickel-boride reduction of the benzoyl oxime was followed by migration of the O-benzoyl group to 

nitrogen to afford 64. Acidic hydrolysis of the epoxide was accompanied by cleavage of the Boc carbamate to 

afford the optically active benzoylated 2-DOS derivative 58. 

 

 
 

Scheme 9. Pd-catalyzed desymmetrization of meso dibenzoate 59.  

 

Shashidhar’s group reported a formal synthesis of racemic valiolamine from relatively abundant myo-

inositol 65 (Scheme 10).22 Several steps transform the precursor into axial tosylate 66. Reduction of meso 66 

with lithium triethylborohydride gave diol (±)-67. The authors propose a hydride migration from the bis-boryl 

ether 68 which displaces the axial tosylate group (see insert, Scheme 10). The ketone 69 thus formed then 

undergoes reduction with LiBHEt3 to generate racemic 2,3,4-tribenzyl vibo-quercitol 67. The hydroxymethyl 

substituent is introduced by reaction of dichloromethyl lithium with ketone 70 to give 71. Hydrolysis of the 

dichloromethyl group, reduction of the resultant aldehyde, benzyl protection and oxidation of the remaining 
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2o hydroxyl affords (±)-72. Preparation of (±)-72 constitutes a formal synthesis of rac-valiolamine, since this 

intermediate has previously been transformed into 3.24 
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Scheme 10. Shashidhar synthesis of rac-valiolamine. 

 

More recently, this group utilized myo-inositol (65) in the synthesis of the aminocyclitol portion of 

hygromycin A, a peptidyl transferase inhibitor and broad-spectrum antibiotic (Scheme 11).25  Regioselective 

reduction of the tetracyclic orthoester 74 gave alcohol 75.  The authors rationalized this regioselectivity on the 

basis of complexation of DIBAL with the OPMB ether.  Triflation and azide substitution gave 76 in excellent 

yield (94%) from 73. Methanolysis of the methylidene acetal and the p-methoxybenzyl groups was 

accomplished with concentrated HCl to afford the meso triol 77.  Reaction of 77 with 

dimethoxymethane/TMSOTf, followed by hydrolysis of the methoxymethyl ether generated a racemic mono-

alcohol. Coupling with the racemate with (R)-O-acetylmandelic acid gave a mixture of diastereomeric esters (–

)-78 and (+)-79, which could be separated by flash chromatography on a >1 g scale.  Methanolysis of the 

individual diastereomers and subsequent azide reduction gave the enantiomeric aminocyclitols (–)-80 and (+)-

80.   
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Scheme 11. Shashidhar preparation of hygromycin A aminocyclitol segment via diasteremeric separation.  
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Sureshan’s group also utilized myo-inositol in the synthesis of a variety of racemic cyclitol natural products, 

including valienamine (±)-2 (Scheme 12).26 A series of protection and oxidation steps afforded the meso-

ketone 81,27 which underwent Wittig olefination to give the methyl vinyl ether 82. Treatment with 0.1N HCl, 

led to hydrolysis of both the cyclic ortho ester and the enol ether and -elimination to yield the enal (±)-83. 

The allylic alcohol 84, derived from 83, underwent Mitsunobu inversion in the presence of diphenyl-

phosphoryl azide and sodium azide. Treatment with BCl3 afforded (±)-2. 
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Scheme 12. Sureshan synthesis of rac-valienamine. 

 

Sar and Donaldson prepared a library of eight protected stereoisomeric aminocyclitols 85-92 from racemic 

(2,4-cyclohexadien-1-yl)phthalimide (93, Scheme 13).28 The precursor could be prepared in two steps from 

(cyclohexadienyl)Fe(CO)3
+ cation. Cycloaddition of 93 with singlet oxygen gave a separable mixture of 

endoperoxides 94 and 95; the stereochemistry of each was confirmed by X-ray crystallography.  Further 

transformation by endoperoxide cleavage, Kornblum-DeLaMare rearrangement, dihydroxylation or 

epoxidation/hydrolysis generated the hydroxyl substituents in a stereocontrolled fashion. The relative 

stereochemistries of these products was tentatively assigned on the basis of 3JH-H coupling constants; the 

assignments for 85, 88, 91 and 92 were eventually corroborated by X-ray crystal structures. 
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Scheme 13. Sar and Donaldson synthesis of stereochemical diverse library of aminocyclitols. 
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Sengul and co-workers reported the synthesis of a unique trio of bicyclic aminocyclitols 96-98 from methyl 

1,3,5-cycloheptatriene-7-carboxylate (99, Scheme 14).29 Photooxygenation of 99 is known to proceed via the 

norcaradiene to generate meso tricyclic endoperoxide 100.30 Reduction of 100 with triethylphosphite yields 

the racemic epoxide (±)-101 in good yield. Ring opening of 101 with sodium azide proceeds selectively at the 

allylic epoxide carbon. Epoxidation/hydrolysis and azide reduction led to (±)-96 while osmium catalyzed 

dihydroxylation and azide reduction led to (±)-97. Alternatively, methanolysis of epoxide 101 followed by 

acetylation gave a separable mixture of acetates 103-105. Reaction of 105 with mCPBA gave a single epoxide 

106, which underwent regioselective opening with azide ion. Reduction gave aminocyclitol (±)-98.  

 

 
 

Scheme 14. Sengul synthesis of bicyclic aminocyclitols. 

 

 

3.  Intramolecular Cyclizations 

 

3.1 Intramolecular aldol condensation 

Two syntheses reported during this period feature generation of the cyclohexyl ring of aminocyclitols via 

intramolecular aldol condensation. This reaction results in the desirable -hydroxycarbonyl functionality 

present within the carbocyclic ring. The Li group began their synthesis with addition of the alkenyl zirconium 

reagent derived from alkyne 107 to Garner’s aldehyde 108, in the presence of zinc bromide, to afford the 

allylic alcohol 109 with excellent diastereoselectivity thus establishing the required C5 stereocenter (Scheme 

15).31 A sequence of dihydroxylation, protection, deprotection and primary alcohol oxidation gave the 1,7-dial 

111.  Intramolecular aldol condensation with piperidine followed by mesylation–elimination afforded 112.  

Reduction of 112 under Luche conditions, and global deprotection gave (+)-2. 
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Scheme 15. The Li group synthesis of peracetylated valienamine (EOM = ethoxymethyl). 

 

Shing’s group at the University of Hong Kong utilized an intramolecular aldol condensation for the 

synthesis of valiolamine (Scheme 16).32,33 D-Glucose was transformed into the differentially protected lactol 

113 via a 4 step procedure.28 Methyl Grignard addition followed by oxidation afforded the diketone 114. 

Extensive experimentation revealed that aldol condensation using potassium hexamethyldisilazane led to the 

formation of the -hydroxyketone 115. Imine formation, catalytic reduction and global deprotection 

completed the synthesis of (+)-3. 
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Scheme 16. The Shing group synthesis of valiolamine via intramolecular aldol condensation. 

 

3.2  Ring-closing metathesis 

Ring-closing metathesis (RCM) has played a prominent role in the synthesis of aminocyclitols, and the reader is 

directed to earlier reviews for prior examples.1,6 RCM is particularly attractive since the product possesses an 

olefin that can serve as a handle for the introduction of further hydroxyl groups.   

Two groups utilized D-glucose as a precursor since the C2, C3, and C4 stereocenters present in D-glucose 

match those in (+)-valienamine. Cumpstey’s group reported34 a variety of routes to protected 1,7-octadienes 

(Scheme 17). Addition of vinyl Grignard to 2,3,4,6-tetra-O-benzyl glucose gave a separable mixture of allylic 

alcohols 116 and 117. Selective protection of diol 116 proved challenging, however benzylation with 3,4-

dimethoxybenzyl chloride (DMBCl) proceeded predominantly at the non-allylic alcohol.  

Protection/deprotection and subsequent Swern oxidation gave a separable mixture of the C6 ketone 120 and 

the regioisomeric enone. In order to avoid the problems of selective protection of diol 116 Cumpstey also 

reported a route from L-sorbose. Ring-closing metathesis of allylic pivalate 121, or its derived allylic alcohol 

122a, proceed in good yield using Grubbs’ 2nd generation catalyst. Cumpstey’s group eventually completed a 

synthesis of -valienamine 126 by displacement of the cyclic allylic alcohol 124a with phthalimide under 

Mitsunobu conditions. 
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About 5 years later, Jung’s group reported a selective route to valienamine from D-glucose.35 Olefin (+)-128 

was generated via a sequence of standard transformations (Scheme 17).34 Addition of vinyl Grignard to the 

aldehyde generated from 128 gave an inseparable mixture of diastereomeric allylic alcohols 122a/b.  Ring- 

closing metathesis of 122a/b gave a separable mixture of 124a (25%) and 124b (60%), which could be 

converted into the perbenzyl pentaol 129 via oxidation/stereoselective reduction/benzylation. Treatment of 

129 with chlorosulfonyl isocyanate led to the Cbz protected amine 130, via an SNi substitution with retention 

of configuration.  Debenzylation gave valienamine (±)-2. 
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Scheme 17. Synthesis of -valienamine 126 and valienamine 2 via RCM from D-glucose. 

 

Krishna and Reddy utilized an enyne ring-closing metathesis for preparation of (+)-valienamine (Scheme 

18).36 The C6 stereocenter (CAS numbering) was derived from Garner’s aldehyde, while the C1-C3 

stereocenters were respectively introduced by Sharpless asymmetric dihydroxylation of 131, and Carreira 

asymmetric alkynylation of aldehyde 132 in the presence of (–)-N-methylephedrine. Ring-closing metathesis of 

enyne 134 was accomplished using Grubbs’ 2nd generation catalyst, under an atmosphere of ethylene, to 

afford the vinylcyclohexene 135 in high yield. Oxidative excision of the terminal methylene carbon afforded a 

cyclohexenecarboxaldehyde, which after reduction and global deprotection gave (+)-2. This was characterized 
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as its peracetylated derivative (+)-20. Use of (+)-N-methylephedrine in the Carreira alkynylation gave the 

diastereomer of 133, which gave peracetylated 3-epi-valienamine (CAS numbering) in a similar fashion.  

Tu-Hsin Yan’s group reported the synthesis of valienamine (Scheme 19).37 The precursor, L-tartaric acid, 

was converted into the C2 symmetric 1,7-octadiene (–)-136 which underwent RCM with Grubbs’ 2nd 

generation catalyst to afford the C2 symmetric cyclohexene (+)-137, according to the procedure of Madsen, et 

al.38 Activation of 137 with phenyl-bis(trifluoromethanesulfonimide) and reaction with sodium azide gave 138.  

This reaction is believed to proceed via generation of the epoxide 139, regioselective ring opening and a [3,3]-

sigmatropic rearrangement to yield 138 with apparent retention of configuration. The required hydroxymethyl 

substituent was introduced by oxidation of the allylic alcohol and Baylis-Hillman condensation with aqueous 

formaldehyde to yield 140. Luche reduction of the resultant enone, azide reduction and acetonide hydrolysis 

completed the synthesis of (+)-2.  

 

 
 

Scheme 18. Krishna and Reddy enyne ring-closing metathesis route to valienamine. 

 

 
 

Scheme 19. The Yan group synthesis of valienamine. 

 



Arkivoc 2018, iv, 231-256   Donaldson, W. A. 

 

 Page 244  ©
ARKAT USA, Inc 

More recently, this group completed a synthesis of (+)-valiolamine (Scheme 20).39 In this case, D-tartaric 

acid was transformed into (–)-141; double oxidation and semi-reduction gave acetonide protected 4,5,6-

trihydroxycyclohexenone 143 along with the diastereomer (13:1 dr). Methenylation of 143 required 

considerable experimentation. Peterson olefination or reaction with the ylide generated from methyltriphenyl 

phosphonium bromide proceed with partial epimerization at the -carbon. Successful olefination without 

epimerization was achieved by using the phosphonium iodide to afford exclusively 144, which was converted 

into carbonimidothioate 145. Sharpless asymmetric dihydroxylation of the exocyclic olefin of 145 proved to be 

the next challenging step. While the standard 1,3-phthalazinediyl (PHAL) or pyrimidine (PYR) linked bis-

cinchona ligands gave low to modest diastereoselectivity, Yan’s group found that 1% of the anthraquinone 

linked ligand (DHQD)2AQN afforded the desired 146 with >18:1 dr. Cyclization of the carbonimidothioate with 

iodine generated the required amine stereocenter, which was eventually transformed into (+)-3. 

 

 
 

Scheme 20. The Yan group synthesis of valiolamine.  

 

Very recently, Banwell’s group reported the first synthesis of nabscessin B (Scheme 21).40  Their route uses 

L-tartaric acid as starting material to produce (–)-147,41 the enantiomeric 1,2-diacetal protected analog of (+)-

142.  Stereoselective mono-carbonyl reduction, protection, reduction of the remaining carbonyl and 

stereoselective hydroxyl directed epoxidation affords the epoxy alcohol (–)-148.  Lewis acid activated 

reduction of 148 gave a mixture of diols (–)-149 and (–)-150, which were separable on a >1 g scale.  The major 

product arises via a diaxial epoxide ring opening (Furst-Plattner rule).  Selective protection of the equatorial 

hydroxyl at C2 of 150, followed by activation, azide displacement and Staudinger reduction yielded the amine 

151. 

Amidation of 151 with 3-(methoxymethoxy)benzoic acid and HATU, and removal of the PMB and TBDPS 

ethers generated the diol (–)-152.  Esterification with 6-methylsalicylic acid, formation of the carbamate and 

acidic cleavage of the cyclic 1,2-diacetal and the methoxymethyl ether finally led to (+)-11. 
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Scheme 21. The Banwell group synthesis of nabcessin B. 

 

Venkateswara Rao’s group prepared peracetylated ent-1,2-bis-epi-validamine (–)-153 and peracetylated ent-

4,5-bis-epi-valiolamine (+)-154 from D-ribose (Scheme 22).42 Stereoselective introduction of the secondary 

amine utilized addition of allyl zinc bromide to the imine derived from 155 to afford (+)-156. This olefin was 

transformed to 1,7-octadiene 157 over several steps. Ring-closing metathesis of 157 with Grubbs’ 2nd 

generation catalyst gave the cyclohexene (–)-158 in good yield. The remaining stereocenters in ent-1,2-epi-

validamine and ent-4,5-epi-valiolamine were generated by diastereoselective hydroboration-oxidation and 

osmium catalyzed dihydroxylation respectively. More recently, this group prepared the enantiomeric 

compounds (+)-153 and (–)-154 from D-mannose (Scheme 23).43 Treatment of the iodide 159 with Mn/CrCl3, 

followed by transmetallation with NiCl2 and methyl 2-bromomethyl)acrylate 160 effected a Nozaki-Hiyama-

Kishi coupling to afford a mixture of diastereomeric alcohols 161. Ring-closing metathesis of the 1-substituted 

acrylate 161 required the use of the Grubbs-Hoveyda 2nd generation catalyst to prepare acetonide protected 

ent-methyl shikimate (162a) and its C5 epimer (162b). The amine stereocenter was introduced by oxidation, 

reaction of the resultant unstable ketone with hydroxylamine, and stereoselective reduction of the resultant 

oxime 163 to afford (–)-164. After reduction of the ester, the allylic alcohol was processed in a fashion similar 

to that in Scheme 18 to give (+)-153 or (–)-154. 

Ring-closing metathesis also played a prominent role in the preparation of an aminocyclitol mimic 165 of 

-galactosylceramide (Scheme 24).44 Precursor aldehyde 166 was prepared from D-xylose which was subjected 

to an Evans’ chiral oxazolidinone directed anti-aldol for introduction of the C4-C5 bond. Reductive removal of 

the auxiliary afforded 1,7-octadiene 167. Ring closing metathesis with Grubbs’ 2nd generation catalyst and 

benzylation of the 1o alcohol yielded the cyclohexene 168. Installation of the required C1 alcohol proved 

challenging. Unlike the Banwell synthesis of nabcessin B, epoxidation of cyclohexene 168 (or various 

derivatives) either failed to proceed or gave unstable products.  Eventually the authors found that 

hydroboration-oxidation, followed by oxidation to the ketone and stereoselective reduction gave a separable 

mixture of 169 and the desired (+)-170. Mesylation of 170, SN2 displacement with azide and reduction gave 

tetrabenzyl 4-epi-validamine 171. Conversion of 171 to the phytoceramide yielded 165 (HS161). This 
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compound proved to be a invarient Natural Killer T cell (iNKT) agonist, inducing Interferon- production in 

spleen cell culture, as well as by intraperitoneal administration in mice (1 g dose).  

 

 
 

Scheme 22. Venkateswara Rao synthesis of ent-1,2-bis-epi-validamine and ent-4,5-bis-epi-valiolamine. 

 

 
 

Scheme 23. Venkateswara Rao synthesis of 1,2-bis-epi-validamine and 4,5-bis-epi-valiolamine. 

 

 
 

Scheme 24. Institut de Quimica Avancada de Catalunya synthesis of -galactosylceramide aminocyclitol 

mimic. 
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Vankar’s group reported the known 5-amino-5-deoxy-D-vibo-quercitol pentaacetate (+)-172 and two new 

positional isomers, (+)-173a and (–)-174 (Scheme 25).45,46 D-mannitol was transformed into the chiral 

aldehydes 175 and 176 respectively. The addition of allyl magnesium chloride or allylzinc to 175 gave an 

inseparable mixture of diastereomers 177/178 (~ 1:4 dr); conversion of the mixture via tosylate displacement, 

reduction and acetylation gave a separable mixture of 1,7-octadienes 179 and 180.  After adjusting the 

protecting groups, ring-closing metathesis was accomplished with Grubbs’ 1st generation catalyst; 

stereocontrolled dihydroxylation of 181 and acetylation yielded (+)-172. In contrast, addition of allyl 

magnesium chloride or allylzinc to 176 proceeded with low diastereoselectivity, however in this case the 

derived acetates 182 and 183 were separable by chromatography. Ring closing metathesis and dihydroxylation 

of the individual diastereomeric cyclohexenes occurred in a stereoselective fashion rendering (+)-173a and (–)-

174 respectively, after global deprotection. 
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Scheme 25. Vankar synthesis of aminocyclitols. 

 

Chattopadhyay’s group reported a route to (–)-173b (Scheme 26),47 the N-Boc protected analog, which 

shares some similarity to the methodology outlined in the previous Scheme. Beginning with Garner’s 

aldehyde, addition of vinyl magnesium bromide gave a separable mixture of allylic alcohols 184 and 185.48  

The major diastereomer (184) was converted into 186 (the TBDPS protected analog of 176). Barbier reaction 

of 186, followed by ring-closing metathesis with Grubbs’ 1st generation catalyst gave a separable mixture of 

187 and 188. While dihydroxylation of 187 proceeded in a stereoselective fashion yielding exclusively (–)-173b 

after desilylation, applying the same sequence to 188 gave an inseparable mixture of epimeric products. The 

minor aldehyde 185 was processed to diastereomeric aminocyclitols (–)-190 and (–)-191. 
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Scheme 26. Chattophadhyay synthesis of aminocyclitols. 

 

Venkateswara Rao’s group reported the synthesis of two novel aminocyclohexitols from D-glucose 

(Scheme 27).49 The amino chiral center was generated by addition of allyl Grignard to the imine derived from 

192. Ring-closing metathesis of (+)-193 with Grubbs’ 2nd generation catalyst gave modest yields of (+)-194.  

Reduction or dihydroxylation, followed by cleavage of the oxazolidinone gave (+)-195 or (+)-196 respectively.  

The novel triol 195 inhibited yeast -glucosidase (IC50 = 1.02 mM), while the pentaol 196 inhibited both yeast 

-glucosidase (IC50 = 0.82 mM) and green coffee bean -galactosidase (IC50 = 1. 2 mM). Neither compound 

inhibited -glucosidase or -galactosidase.  

 

 
 

Scheme 27. Venkateswara Rao synthesis of novel aminocyclitols. 

 

3.3  Radical cyclization 

A group under the direction of Ana Gomez and Cristobal Lopez explored radical addition-cyclization for the 

preparation of a variety of carbahexopyranones.50 D-Glucose was converted into the ynone 197; Peterson 

olefination gave the cyclization precursor 198 (Scheme 28). Reaction of a mixture of 198 and tributyltin 

hydride under standard conditions gave only addition product 199. However when the tin-hydride was added 

slowly via syringe pump a separable mixture of desired 200 (56%) and its C6 epimer 201 (5%), created via a 6-

endo-trig radical cyclization, along with minor amounts of acyclic addition product 199 (18%) was produced.  

The diastereomers 200 and 201 are formed by hydrogen atom abstraction from either the - or -face 
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respectively of the 3o radical intermediate 202 (see insert). The cyclic constraints inherent in the 

bis(acetonide) protected intermediate were crucial for this level of diastereoselectivity (>10:1 dr); attempted 

cyclization of either the tetrabenzyl- or tetraacetyl- analogues of 198 gave only modest : selectivity (ca. 

1.5:1 dr). Treatment of 200 with acetic acid resulted in acetonide hydrolysis and protodestannylation; the 

resulting tetraol was peracetylated to afford 203. The olefin was converted into azide 204 by ozonolysis, 

stereoselective ketone reduction, mesylation and SN2 displacement by azide. This constituted a formal 

synthesis of validamine pentaacetate, as Ogawa’s group51 had previously demonstrated this transformation. 

 

 
 

Scheme 28. The Gomez/Lopez formal synthesis of validamine pentaacetate. 

 

3.4  Carbo-Ferrier rearrangement 

The biosynthetic pathway for 2-deoxy-scyllo-inosamine (DIOA, 6) and 2-deoxystreptamine (DOS, 7) involves 

transformation of glucose-6-phosphate into 2S,3R,4S,5R-tetrahydroxycyclohexanone (2-deoxy-scyllo-inosose, 

DOI) catalysed by 2-deoxy-scyllo-inosose synthase, via a carbo-Ferrier-type reaction.52 In 2008, Bauder 

reported a bioinspired synthesis of an orthogonally protected 2-deoxystreptamine precursor (–)-206 (Scheme 

29).53  The exocyclic enol ether 207 was prepared from methyl -D-glucopyranoside.  Treatment of 207 with 

mercuric acetate led to a carbo-Ferrier rearrangement to afford the cyclohexanone 208, in which the C5 

hydroxyl occupies an axial orientation.  The O-benzyl oxime 209, derived from 208, underwent stereoselective 

reduction with triacetoxyborohydride in trifluoroacetic acid/acetonitrile to afford (+)-210. The axial addition of 

hydride was rationalized on the coordination of the acetoxyborohydride reagent to the axial C5 hydroxyl 

substituent.  Mitsunobu substitution of 210 with diphenylphosphoryl azide afforded the orthogonally 

protected 2-deoxystreptamine derivative (–)-206. 

The Ye group reported a similar approach to the synthesis of the 2-DOS subunit of neamine (Scheme 30).54 

Methyl -D-glucopyranoside was transformed into the 1o iodide 211 by literature procedures.55 Treatment of 

211 with sodium hydride and allyl iodide effected both O-allylation as well as dehydrohalogenation to afford 

the exocyclic enol ether 212. Carbo-Ferrier rearrangement of 212, using mercuric trifluoroacetate, gave a 

mixture of diastereomeric 5-hydroxycyclohexanones (5:1 ratio) with 213 as the major product.  

Stereoselective reduction of 213 gave the differentially protected cyclohexanediol 214. Activation with triflic 

anhydride, followed by double displacement with azide and Pd-catalyzed cleavage of the allyl ether generated 

the alcohol 215.  N-Iodosuccinimide mediated coupling of thioglucoside donor 216 with 215 gave the 

tetraazide 217, which upon azide reduction and benzyl deprotection afforded (+)-neamine (218). 
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Scheme 29. Bauder synthesis of orthogonally protected 2-deoxystreptamine derivative. 

 

 
 

Scheme 30. Ye synthesis of (+)-neamine (218).  

 

The Gademann group used an NMR-guided fractionation approach to identify a new C7N aminocyclitol (9, 

Scheme 31) from the obligate leaf nodule symbiont bacterium Burkholderia kirkii.2 After isolation by reverse 

phase HPLC and prep TLC, the structure of 9 was assigned on the basis of its on NMR and MS spectral data and 

eventually confirmed by single crystal X-ray diffraction. Total synthesis of 9 commenced with methyl-N-acetyl-

D-glucosamine 219. Iodination, acetylation and elimination with silver fluoride gave the enol ether 220.  

Protecting group reorganization gave 221 which underwent a carbo-Ferrier rearrangement upon treatment 

with HgSO4 and sulfuric acid to afford the cyclohexanone 222. The hydroxymethyl substituent was introduced 

by generation of the enol triflate 223 and Pd-catalyzed coupling with hydroxymethylstannane.  Deprotection 

generated the natural product 9. This compound, which the authors termed kirkamide, was found to be toxic 

to aquatic arthropods and insects with an LD50 = 0.48 mg/mL. 
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Scheme 31. Gademann synthesis of kirkamide (9). 

 
 
4.  Nitroso Diels-Alder Cycloadditions 

 

Jana and Studer studied Cu-catalyzed regiodivergent [2+2]-cycloadditions of 2-nitrosopyridine with racemic 5-

substituted-1,3-cyclohexadienes (Scheme 32).56 For example, the reaction of (±)-224 with 2-nitrosopyridine 

can, in principle, result in 8 different regio- and stereoisomers. In the presence of walphos ligand (S)-225, 

cycloaddition resulted in (–)-226 (89% ee), which was separable from the other stereoisomers.  Reduction of 

the oxazine N–O bond, desilylation and acetylation gave the cyclohexene (–)-227. Dihydroxylation and 

reductive removal of the 2-pyridyl group afforded peracetylated 2-epi-validamine (+)-228. 

 

 
 

Scheme 32. Jana and Studer synthesis of 2-epi-validamine via regiodivergent nitroso cycloaddition. 

 

Lewis and co-workers prepared novel aminocyclitol analogs (+)-229 and (–)-230 beginning with 

inexpensive achiral starting material benzoic acid (Scheme 33).57 Dihydroxylation of benzoic acid with P. putida 

U103 is known to afford the ipso,ortho-diol (–)-231,58 which is transformed into the acetonide (–)-232 after 

four steps. Cycloaddition of 232 with the acylnitroso generated from N-(benzyloxycarbonyl)hydroxyl-amine 

gave a separable mixture of two bicyclooxazines (+)-233 and (+)-234 respectively. Formation of the 

heterocycle on the face opposite to the bulky acetonide functionality was confirmed by NOESY correlations, 

while the regiochemistry of the cycloaddition was established by X-ray crystal structure of a derivative of 234.  

Facial selective dihydroxylation, reductive cleavage of the oxazine N–O bond, and deprotection gave the 

regioisomeric aminocyclitols hydrochloride salts (+)-229 and (–)-230. These novel aminocyclitols exhibited no 

inhibitory activity against -glucosidase, -glucosidease, -galactosidase or -glucuronidase at 100 M. 
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Scheme 33. Lewis synthesis of optically active novel aminocyclitols via acylnitroso cycloaddition.  

 

 

5.  Conclusions 

 

While aminocyclitols have been known and prepared numerous times, synthesis of these targets is still 

attractive, as evidenced by these examples from 2008 to present. Certain of these targets have been prepared 

by numerous routes during this period.  For example valienamine, (+)-2, was prepared from cyclic chiral pool 

precursors (Scheme 7), from amino acid precursors via aldol condensation (Scheme 15) or via RCM (Scheme 

18), or from sugar or tartaric acid precursors via RCM (Schemes 17, 19) while (±)-2 was prepared from achiral 

myo-inositol (Scheme 12).  The routes from cyclic chiral pool starting materials are particularly attractive, since 

no ring forming reactions are required and the multiple stereocenters inherent in these precursors can be 

translated into stereocenters in the target molecule.  In contrast, those syntheses involving ring formation, 

such as RCM, aldol condensations or radical cyclizations may require significant experimentation with reaction 

conditions or conformational contraints in order to optimize the yields and or stereochemical outcome. 

Alternatively, synthetic routes proceeding via cyclohexene or cyclohexadiene intermediates provide an 

advantage for the generation of stereochemical diversity, since complementary oxidative functionalization 

reactions allow for variations in hydroxyl stereochemistry. Finally, the on-going efforts in natural product 

isolation should continue to provide new aminocyclitol targets. 
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