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Abstract 

Three new push-pull dyes consisting of a thieno[2,3-b]indole ring system as an electron donor, thiophene 

spacer as a π-bridge, and electron-withdrawing moieties such as 2-methylene malonitrile, 2-methylene-1H-

indene-1,3(2H)-dione, and 2-(2-methylene-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile, have been 

synthesized and studied for their application in organic electronics devices. Investigation of their optical and 

electrochemical properties reveal that these compounds possess narrow band gaps (1.7-2 eV) and an effective 

absorption in the visible spectral range (440-740 nm). Therefore, these chromophores can be regarded as 

promising light-harvesting materials.  
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Introduction 
 

Small π-conjugated organic molecules bearing pyrrole and thiophene rings are the focus of acute attention 

due to their promising applications as electro- and photo-luminescent, charge-transport and light-harvesting 

materials for high-performance electronic devices such as organic light-emitting diodes (OLEDs), organic field-

effect transistors (OFETs), and organic photovoltaic cells (OPVs).1-5 Nevertheless, literature data concerning the 

applications of π-conjugated compounds based on thieno[3,2-b]indole and thieno[2,3-b]indole (TI) subunits as 

active components for organic photovoltaic (OPV) devices are rather limited. For example, two series of push-

pull metal-free dyes containing the electron-rich carbazole (MK 1-8)6-7 and thieno[3,2-b]indole (MKZ 39-41)8 

moieties (Fig. 1) have been synthesized, studied and further used as effective sensitizers for high-performance 

dye-sensitized solar cells (DSSC). 

 

 
 

Figure 1.  Structures of carbazole- and thienoindole-based dyes for OPVs. 

 

Recently, we have reported a convenient two-step synthetic approach to construct 2-(hetero)aryl-

substituted thieno[2,3-b]indoles using the corresponding acetylated (hetero)arenes and 1H-indole-2,3-dione 

(isatin) derivatives as starting compounds.9 Furthermore, 2-thien-2-yl-substituted thieno[2,3-b]indoles were 

successfully applied for preparation of the IK 1-6 series of dyes (Fig. 1). The DSSCs based on these sensitizers 

have exhibited power-conversion efficiencies (PCE) up to 6.3%.10,11 It has also been reported that the planar 

and bulk heterojunction solar cells (HSC) based on a donor-acceptor couple, consisting of the NTU-2 dye 

(Fig.1) as an electron-donor, light-harvesting component, and C70-fullerene as an electron-acceptor 

component, also exhibited high PCE values of 5.2%.12 Therefore, the incorporation of the thieno[2,3-b]indole 

fragment as an electron-donating subunit into the π-conjugated systems for use as new photo- and electro-

active organic materials, and their further investigation, appear to be important issues for the field of organic 

photovoltaics. 

 

 

Results and Discussion 
 

Herein, we report convenient syntheses of three new thieno[2,3-b]indole-based D-π-A chromophores, and the 

investigation of their photophysical and electrochemical properties. The key stages of the reaction procedures 

are outlined in Figure 2. 5-{8-(2-Ethylhexyl)-8H-thieno[2,3-b]indole-2-yl}thiophene-2-carbaldehyde (1) was 

prepared in three steps from the synthetically available 1-(2-ethylhexyl)isatin and 2-acetylthiophene according 
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to the previously described procedures.9,11 Chromophores 2-4 were synthesized via Knoevenagel condensation 

of the thienaldehyde (1) with malononitrile, indan-2,3-dione and 2-(3-oxo-2,3-dihydroindene-1-

ylidene)malononitrile, respectively. It has been found that this aldehyde readily reacts with malononitrile in 

refluxing glacial acetic acid in the presence of pyrrolidine as a base to yield (2), while the reaction of indan-2,3-

dione with its respective derivatives proceeds smoothly by heating under reflux in ethanol to yield (4) and n-

butanol to yield (3), and does not require any basic catalyst.13,14 More detailed descriptions of the processes 

used to prepare aldehyde (1) and 3-(dicyanomethylidene)indan-1-one are presented in the Supplementary 

Material section. 

 
 

Figure 2.  Key stages in syntheses of TI-based dyes 2-4.  

 

UV-vis absorption and fluorescence spectra of compounds 2-4 were recorded for their CHCl3 solutions 

(2×10-5 mol L-1). The corresponding absorption and fluorescence spectra are presented in Figure 3 and the 

results are summarized in Table 1. The main absorption bands in the visible region of 440-740 nm, with high 

molecular-absorption coefficients, correspond to the intramolecular charge-transfer (ICT) transitions 

proceeding in a dye molecule, whereas the absorption bands in the 240-440 nm region can be attributed to 

the π-π* transitions.  

 

  

 

Figure 3.  UV-vis absorption (left) and fluorescence (right) spectra of the TI-dyes in CHCl3 solutions 2-4. 
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Absorption maxima (λmax) of the studied compounds are successively red-shifted going from dye (2) to dye 

(4), reflecting the increase in ICT in the subsequent structures. Thus, the acceptor moiety of dye (4) causes the 

most significant bathochromic shift of the absorption band due to its strong electron-withdrawing nature. At 

the same time, an electron-deficient fragment of dye (4) has the more π-extended structure when compared 

with the structures of acceptor moieties in dyes (2) and (3). This fact also favors a more efficient 

intramolecular charge-transfer processes. The optical band gaps (Eg
opt) of dyes 2-4 have been calculated on the 

basis of the absorption-edge values (λonset); these compounds possess a narrow band gap of 2.03 eV, 1.91 eV 

and 1.69 eV, respectively. The data obtained are also presented in Table 1.  

 

Table 1.  Optical data for dyes 2-6 

Dye 
λmax 

(nm) 

λonset 

(nm) 

λem 

(nm) 

Stokes shift 

nm (cm-1) 

Eg
opt 

(eV)* 

ε 

(M-1×cm-1) 

 

N
S

Me

CN

NC

 
5 (MTI-DCV) 14 

 

  2 

243, 

288, 

336, 537 

612 632 95 (2799) 2.03 

20448, 9810, 

6494, 37120 

3 

249, 

294, 

349, 570 

647 671 101 (2640) 1.91 

31128, 

10565, 8159, 

29100 

4 

242, 

321, 

369, 639 

732 766 127 (2594) 1.69 

27572, 

28486, 

10409, 21835 

 

N
SMe

O

CN
NC  

6 (MTI-DCI) 14 

5 452    2.38 62000 

6 566    1.86 71000 

* Eg
opt = 1240/ λonset 

 

Thiophene is one of the most commonly used π–spacers for push-pull molecules which are among the 

most important building blocks for organic electronics materials, since its planar structure allows extended 

π-conjugation in a system. Our investigation has confirmed that incorporation of a thiophene moiety between 

electron-excessive and electron-deficient parts of a corresponding chromophore, e.g., compounds (5) and (6) 

(Table 1), results in significant changes in the dye's absorption spectrum, including red shifts of the major 

absorbance peaks, and absorption-edge values. These changes can be clearly seen if one compares the 

spectral data of two pairs of dyes, i.e., (2) and (5)14 and (4) and (6).14 It is important to notice that, in our case, 

the absorption intensity falls. At the same time, the influence of an alkyl substituent at the thieno[2,3-b]indole 

nitrogen atom cannot be excluded. In the case of compounds (2) and (4), the +I inductive effect of a 2-

ethylhexyl chain enhances the basicity of the thieno[2,3-b]indole group to a greater extent than does a methyl 

group [compounds (5) and (6)]. 

The electrochemical behavior of all obtained compounds was estimated by cyclic voltammetry (CV) in the 

1:1 mixture of dry MeCN and CH2Cl2 containing Et4NClO4 (0.23 g, 10−3 mol) as the supporting electrolyte. (The 

concentration of the compounds was fixed at 1x10-3 M to avoid aggregation.) A more detailed description of 

the CV experiment is presented in the Experimental Section. Some examples of the obtained cyclic 

voltammograms are displayed in Figure 4. Each CV curve shows two irreversible oxidation waves with 

oxidation-peak potentials (Eox
1, Eox

2), the values of which depend on the nature of the electron-withdrawing 
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group. The values of oxidation potentials, as well as the values of the onset oxidation potentials (Eox onset), are 

summarized in Table 2. The presence of the strong electron-accepting group in a dye molecule leads to the 

expected positive shift in the values of oxidation potentials. Therefore, the string of anodic peak potentials 

(Eox
2) associated with formation of a radical cation, are as follows: 1.59 V (2), 1.62 V (3), 1.73 V (4).  

HOMO and LUMO energy-level values, determined from experimental cyclic voltammetry, theoretical 

calculations, and band gap energy values found from UV-vis measurements, are summarized in Table 2. 

 

 
Figure 4.  Comparison of CV curves of the dyes 2-4 (CH3CN/CH2Cl2, Et4NClO4, 10-3M, 50 mV/s, 1st cycle). 

 

The empirical HOMO and LUMO energy levels (EHOMO, cv; ELUMO, cv) of the dyes 2-4 were obtained using the 

equations15 presented in Supplementary Material Section. 

 

It should be noted that the optical and electrical characteristics of compounds 2-4 are comparable with 

those of known organic dyes such as NTU-2 dyes.12 Dyes 2-4 possess sufficiently high molar-absorption 

coefficients in the visible light region (Table 1), which is one of the most important and necessary 

characteristics of the light-harvesting materials for solar-cell applications. In addition, their HOMO levels 

(Table 2) are lower than the value of the indium-tin oxide function (WF) (-4.7 eV),16 which is a conductive layer 

in HSC photoanodes. This makes the regeneration of oxidized dye molecules, after injection of excited 

electrons into an acceptor layer, possible. The latter process is energetically permitted for [6,6]-phenyl-C61-

butyric acid methyl ester (PCBM-60), which is one of the most commonly used electron-acceptor materials for 

HSC, since LUMO energy levels of dyes 2-4 (Table 2) are higher than the LUMO level (-3.7eV) of PCBM-60.17 

 

Table 2.  Electrochemical data of dyes 2-4 

Dye 
Eox

1, 

V 

Eox
2 

(V) 

Eox
onset 

(V) 

EHOMO, cv 

(eV) 

ELUMO, 

cv, (eV) 

EHOMO, th 

(eV) 

ELUMO,th 

(eV) 

Egap, th  

(eV) 

Eg
opt 

(eV) 

2 1.07 1.59 0.94 -5.33 -3.28 -5.65 -3.01 2.64 2.03 

3 1.18 1.62 0.82 -5.21 -3.37 -5.36 -2.77 2.59 1.91 

4 1.26 1.73 0.87 -5.26 -3.59 -5.55 -3.24 2.30 1.69 

 

In order to obtain additional information on the electronic structure of compounds 2-4, quantum chemical 

calculations of the energy and geometry of their frontier molecular orbitals have been performed using the 
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FireFly package.18 Geometries of all compounds have been fully optimized without symmetry constraints at 

the density-functional theory (DFT) (B3LYP)19-22 level with the Def2-TZVP basis set.23 It becomes clear that 

electronic distribution of the HOMO of compounds 2-4 is delocalized over the entire molecule with the 

exception of a phenylene unit in compounds (3) and (4). The LUMO orbitals are delocalized substantially over 

the acceptor moieties and thiophene spacer of compounds, and partially over the thiophene unit of a 

thieno[2,3-b]indole moiety (Figures 5-7). 

 

  

 

Figure 5. Calculated HOMO and LUMO electron density of dye (2). 

 

  
 

Figure 6. Calculated HOMO and LUMO electron density of dye (3). 

 

  
 

Figure 7. Calculated HOMO and LUMO electron density of dye (4). 

 

The calculated energies of HOMO and LUMO (EHOMO, th; ELUMO, th) listed in Table 2 are rather close to the 

values obtained through the cyclic-voltammetry measurements. The calculated HOMO levels were 0.15-0.32 

eV lower than the experimentally obtained levels, whereas the calculated LUMO levels were 0.27-0.4 eV 

higher. Compound (4) shows the smallest energy gap (2.3 eV) while compound (2) shows the largest (2.64 eV) 

energy gap. The calculated values of energy gaps (Egap, th) are also in agreement with the Eg
opt values obtained 

from the UV-Vis data. 

 

 

Conclusions 
 

In summary, we have synthesized and characterized three new push-pull organic dyes bearing the thieno[2,3-

b]indole electron-excessive system and three different electron-withdrawing fragments. The main spectral and 
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electrochemical characteristics of these compounds have been elucidated, and these data have been used to 

estimate their HOMO / LUMO energy levels and energy-band gaps. It has been found that the dyes possess 

narrow band gaps of 2.03 eV, 1.91 eV and 1.69 eV, respectively, and an effective absorption in the visible 

spectral region. The absorption maxima of their UV-spectra are located in the range of 440-740 nm. Therefore, 

the obtained push-pull chromophores can be considered promising light-harvesting materials for planar as 

well as bulk heterojunction solar cells. Further studies are in progress. 

 

 

Experimental Section 
 

General. 1H and 13C NMR spectra were recorded on a Bruker Avance III HD 400 (400 MHz) spectrometer in 

CDCl3 with hexamethyldisiloxane (0.055 ppm) as an internal standard. Elemental analysis was carried out using 

a CHNS-932 LECO Corp analyzer. IR spectra were recorded on a Spectrum Two FTIR spectrometer (Perkin 

Elmer) for chloroform solutions of the samples. Reaction course and purity of both starting and resulting 

compounds were monitored by thin-layer chromatography on Sorbfil plates. The mixtures were separated and 

target products purified using column chromatography on silica gel (Lancaster, Silica Gel 60, 0.060–0.2 mm). 

Mass spectra of the starting compounds were recorded on an Agilent Technologies 6890N/5975B instrument 

(ionization electron energy 70 eV). UV-Vis absorption spectra were recorded for chloroform solutions of 

compounds in 10 mm cuvettes using a Shimadzu UV-2600 spectrophotometer. Fluorescence spectra were 

recorded using a Shimadzu RF-5301 PC spectrofluorophotometer (excitation wavelength 220 nm, cuvette 

dimensions 10×10 mm, solvent - dried CHCl3). Electrochemical measurements were carried out on a 

potentiostat/galvanostat (ZRA Interface 1000) using a three-electrode cell with carbon-pyroceramic working 

electrode, a Pt wire counter electrode, and a Ag/Ag+ reference electrode in a 0.1 M solution of Et4NClO4 in 

acetonitrile-dichloromethane mixture (1:1, v/v). Potential scan rate was 50 mV/s.  

Quantum chemical calculations of molecular orbital energies using B3LYP/6-31G(d) were performed using the 

Firefly software on a PGU Tesla supercomputer. 

 

2-(3-Oxo-2,3-dihydroindene-1-ylidene)malononitrile was synthesized according to the synthetic procedure 

described in [11]. 

{[(8-(2-Еthylhexyl)-8H-thieno[2,3-b]indol-2-yl)]thiophen-2-ylmethylidene}propanedinitrile (2). The mixture 

of aldehyde (1) (198 mg, 0.5 mmol), CH2(CN)2 (66 mg, 1 mmol) and pyrrolidine (0.02 ml) was heated under 

reflux in AcOH (5 ml) for 4 h, then cooled and diluted with MeOH (10 ml). The resulting solid was filtered off, 

washed with MeOH and dried, affording the dye (2) as a black powder. Yield: 156 mg (70%), mp 104-106 оС. IR, 

cm−1: 2222 (C≡N) (CHCl3). 1H NMR (CDCl3, 400 MHz) : 0.82 (3H, t, 3JHH 8 Hz), 0.89 (3H, t, 3JHH 7.5 Hz) 1.34 (8H, 

m), 2.08 (1H, m), 4.04 (2H, d, 3JHH 7.5 Hz), 7.16 (1H, d, 3JHH 4.2 Hz), 7.19 (1H, t, 3JHH 8.0 Hz), 7.27 (1H, d, 3JHH 8.3 

Hz), 7.31 (1H, t, 3JHH 8.0 Hz),  7.50 (1H, d, 3JHH 4.2 Hz), 7.74 (1H, s), 7.76 (1H, d, 3JHH 7.8 Hz). 13C NMR (CDCl3, 400 

MHz,) δ = 10.6, 13.9, 22.6, 24.2, 28.7, 31.9, 39.1, 50.7, 74.1, 109.7, 113.8, 114.7, 119.2, 122.4, 123.2, 125.9, 

129.8, 130.8, 131.8, 140.4, 141.0, 142.7, 146.3, 147.0, 149.5, 152.0. Anal. calcd. for C26H25N3S2 (443.63): C, 

70.39; H, 5.68; N, 9.47; S, 14.46. Found: C, 70.32; H, 5.65; N, 9.53; S, 14.41%.  

2-({5-[8-(2-Ethylhexyl)-8H-thieno[2,3-b]indol-2-yl}thiophen-2-yl]methylidene)-2,3-dihydro-1H-indene-1,3-

dione (3). 1,3-Indanedione (40 mg, 0.30 mmol,) and aldehyde (1) (90 mg, 0.25 mmol) were dissolved in n-

butanol (3ml). After 3 h of reflux, the reaction mixture was cooled down to room temperature. The crude 

product was filtered off and purified by column chromatography (silica gel, eluent – mixture CH2Cl2/Hex, 1:1) 

to get the desired compound (3) as a purple solid, yield 90 mg (68%). M.p. 115-117 оС. IR, cm−1: 1716 (C= О) 
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(CHCl3). 1H NMR (CDCl3, 400 MHz) : 0.80 (3H, t, 3JHH 7.3 Hz), 0.92 (3H, t, 3JHH 7.6 Hz), 1.27 (8H, m), 2.11 (1H, 

m), 4.05 (2H, d, 3JHH 7.5 Hz), 7.18 (1H, t, 3JHH 8.0 Hz), 7.26 (1H, d, 3JHH 8.4 Hz), 7.31 (1H, t, 3JHH 8.1 Hz), 7.38 (1H, 

d, 3JHH 8.3 Hz), 7.69-7.72 (2H, m), 7.77 (1H, d, 3JHH 7.6 Hz), 7.80 (1H, s),  7.83 (1H, d, 3JHH 4.1 Hz), 7.73 (s, 1H), 

7.91 (2H, m). 13C NMR (CDCl3, 400 MHz,) δ = 10.6, 13.9, 22.6, 24.2, 28.6, 31.8, 39.1, 50.7, 119.7, 116.7, 119.9, 

120.2, 121.9, 122.5, 122.7, 125.1, 127.2, 128.8, 132.6, 134.5, 134.7, 135.3, 136.1, 137.8, 140.5, 141.9, 142.6, 

144.0, 151.4, 154.6, 158.8, 188.5, 192.5. Anal. calcd. for C32H29NO2S2 (523.71): C, 73.39; H, 5.58; N, 2.67; S, 

12.25. Found: C, 73.36; H, 5.53; N, 2.71; S, 12.15%. 

2-[2-({5-[8-(2-Ethylhexyl)-8H-thieno[2,3-b]indol-2-yl]thiophen-2-yl}methylidene)-3-oxo-2,3-dihydro-1H-

inden-1-ylidene]propanedinitrile (4). 3-(Dicyanomethylene)indan-1-one (30 mg, 0.18 mmol,) was added to a 

solution of aldehyde (1) (100 mg, 0.25 mmol) in ethanol (6 ml) at 60 °C. The reaction mixture was then stirred 

for 5 min, cooled down to room temperature, concentrated in vacuo and purified by chromatography on silica 

gel (eluent: CH2Cl2/Hex, 1:1) to get the desired compound as a dark blue solid, yield 80 mg (56 %). M.p. 194-

196 оС. IR, cm−1: 2220 (C≡N), 1690 (C= O) (CHCl3). 1H NMR (CDCl3, 400 MHz)ppm: 0.86 (3H, t, 3JHH 8), 0.91 (3H, 

t, 3JHH 7.6), 1.36 (8H, m), 2.11 (1H, m), 4.04 (2H, d, 3JHH 7.5 Hz), 7.20 (1H, t, 3JHH 8.4 Hz), 7.26 (1H, d, 3JHH 4.2 Hz), 

7.32 (1H, t, 3JHH 8.0 Hz), 7.38 (1H, d, 3JHH 8.8 Hz), 7.68 (2H, t, 3JHH 9.6 Hz),  7.73 (1H, d, 3JHH 4.4 Hz),  7.84(2H, d, 
3JHH 8.0 Hz), 7.88 (1H, s), 8.63 (2H, d, 3JHH 8.0 Hz), 8.78 (1H, s). 13C NMR (CDCl3, 400 MHz,) δ = 10.5, 14.0, 22.9, 

24.2, 29.3, 31.8, 38.9, 50.6, 76.4 112.1, 113.7, 116.3, 120.0, 122.1, 123.4, 124.2, 125.5, 125.9, 128.0, 128.7, 

130.8, 132.2, 134.1, 134.7, 135.6, 140.4, 143.7, 146.8, 149.5, 153.8, 156.8, 158.7, 159.7, 167.6, 190.9. Anal. 

calcd. for C35H29N3OS2 (571.75): C, 73.52; H, 5.11; N, 7.35; S, 11.22. Found: C, 73.49; H, 5.07; N, 7.27; S, 

11.16%. 
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