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Abstract 15 

Medium-sized ring nitrogen heterocycles are an important class of compound which occurs in a range of 16 

natural and synthetic products. This review summarizes the current methods for the synthesis and chemical 17 

properties of cyclic amidines and cyclic amidinium salts of medium-sized rings (n= 2-4) with a fully saturated 18 

backbone. 19 
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1.  Introduction 54 

 55 

Monocyclic medium-sized ring nitrogen heterocycles are an extremely important class of compounds which 56 

occur in a range of natural and synthetic products. The term “medium-sized ring” is usually applied to cyclic 57 

compounds having eight to eleven members;1 however, seven- and twelve-membered rings are frequently 58 

included. 59 

Cyclic amidines (I) represent a heterocyclic core of chemical, biological and pharmacological interest due 60 

to the nitrogen function present in these molecules (Figure 1). They are of considerable interest in drug 61 

discovery and have been proposed as potential agents for the treatment of several diseases. They are also 62 

important as synthetic intermediates. 63 
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    n = 2, 1H-4,5,6,7-tetrahydro-1,3-diazepinium salt 
    n = 3, 1,4,5,6,7,8-hexahydro-1,3-diazocinium salt 
    n = 4, 1H- 4,5,6,7,8,9-hexahydro-1,3-diazoninium salt 65 

 66 

Figure 1 67 

 68 

Five- and six-membered cyclic amidines, namely imidazolines and tetrahydropyrimidines (I, n = 0, 1), have 69 

been the most studied compounds and are present in many biologically active compounds.2-14 However, 70 
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higher homologues, such as 1H-4,5,6,7-tetrahydro-1,3-diazepines and 1,4,5,6,7,8-hexahydro-1,3-diazocines (I, 71 

n = 2, 3) have been less studied. It is known that medium-sized rings are generally more difficult to synthesize 72 

than their lower counterparts,15-18 since the synthetic strategies employed have to overcome unfavorable 73 

transannular interactions leading to large enthalpies of activation19,20 and the possibility of obtaining products 74 

of intramolecular condensation.21 75 

Several tetrahydro-1,3-diazepines (I, n = 2) are especially interesting compounds due to their pharmaco-76 

logical activities. The antispasmodic,22,23 hypoglycemic,24,25 antiinflammatory,25 diuretic,24,25 and antitumor 77 

activities26 of these compounds have been assessed. More recently, some of these compounds have been 78 

investigated as N-methyl-D-aspartate (NMDA) receptor antagonists,27 dopamine D4 receptor28 and muscarinic 79 

agonists,29 as well as for the prophylaxis and protection of human skin against premature aging.30 80 

Seven- and eight-membered substituted cyclic amidines are also useful precursors for the synthesis of 81 

heterocyclic ring systems as amidinium salts by alkylation,31-33 and selectively substituted alkylenediamines by 82 

either reduction or alkaline hydrolysis.34-36 83 

In recent years, cyclic amidinium salts (CAS) with a fully saturated backbone (II) have attracted a great deal 84 

of attention. 1H-Dihydroimidazolium and tetrahydropyrimidinium salts (II, n = 0, 1) have been the most 85 

investigated CASs. These salts have been studied in the past century as models of the coenzyme N5,N10-86 

methenyltetrahydrofolic acid, which is involved in the biochemical transfer of one carbon unit at the oxidation 87 

level of formic acid.37-46 CASs II with different patterns of substitution have been employed as synthetic 88 

intermediates for the preparation of cyclic and acyclic compounds carrying the alkylenediamine unit (>N-89 

(CH2)n-N<).42,43 Imidazolinium and tetrahydropyrimidinium salts are chemical precursors of N-heterocyclic 90 

carbenes (NHCs) that, either alone or as a metal complex, are efficient catalysts for chemical transformation 91 

reactions.47-49
 4,5-Dihydro-1H-imidazolium salts have also been investigated as surfactants,50

 due to their 92 

potential for chiral molecular recognition,51 and as catalysts for several chemical reactions.52,53 93 

Unlike the compounds mentioned above, medium-sized cyclic amidinium salts have been less explored. 94 

The most important application of these salts is based on their capacity to act as precursors of expanded ring 95 

NHCs, which are stronger -donating ligands. 96 

The present review will therefore focus on the synthesis and the main properties of medium-sized cyclic 97 

amidines and cyclic amidinium salts (I and II, n= 2-4).  98 

 99 

 100 

2.  Synthesis of Cyclic Amidines 101 

 102 

Synthetic methods of medium-sized cyclic amidines are generally extensions of the methods employed for 103 

lower homologous cycles such as imidazolines and tetrahydropyrimidines. Literature data on the higher 104 

homologues, 1,3-diazepines, diazocines and diazonines, are scarce.  105 

There are basically two methods for the synthesis of cyclic medium-sized amidines which involve acyclic 106 

compounds as precursors (Scheme 1) : 107 

Method A: from 1,n-alkylenediamines as precursors 108 

Method B: from -aminoamides as precursors 109 
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 113 

2.1 Synthesis of amidines from 1,n-alkylenediamines (Method A) 114 

The construction of the amidine nucleus involves the coupling of a 1,n-diamine with an appropriate 115 

condensation partner that provides the C-2 of the amidine ring. The synthesis of tetrahydro-1,3-diazepines 116 

and hexahydro-1,3-diazocines from tetramethylenediamines (putrescine) and pentamethylenedimine 117 

(cadaverine) was the first class of methods developed in chemistry. Generally, this method was applied to the 118 

synthesis of cyclic amidines C-2-substituted with alkyl or aryl groups but without N-substitution. 119 

Cyanides can be an adequate source of C-2. Oxley et al. have described the synthesis of some 2-120 

substituted tetrahydrodiazepines 1 in good yields from a mixture of a nitrile and tetramethylenediamine/ 121 

tetramethylenediammonium bistoluene-p-sulfonate at 200 oC (Scheme 2).54 The practical limitation of this 122 

method appears to be that ocurring with the synthesis of tetrahydrodiazepines, since attempts to produce 123 

hexahydrodiazocines and diazonines (I, n= 3,4) by condensation of penta- and hexamethylenediamines or 124 

their salts with cyanides, resulted in a mixture from which no homogeneous solid derivative could be isolated.  125 
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 129 

Johnson and Woodburn have used more electrophilic nitriles for the synthesis of cyclic amidines of five to 130 

seven members. Thus, the authors accomplished the reaction between trifluoroacetonitrile with aliphatic 131 

diamines to yield carboxamidines and, where n = 0-2, with cyclic amidines as well.55 The reactions with 132 

tetramethylenediamine yielded carboxamidine as the major product but only 6 % of the cyclic compound, 133 

namely 2-trifluoromethyl-4,5,6,7-tetrahydro-1H-1,3-diazepine 2, was isolated (Scheme 3). On the other hand, 134 

penta- and hexa-methylenediamine only produced carboxamidines when treated with trifluoroacetonitrile. 135 
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Working at high temperatures, 2-o-hydroxyphenyl-1,3-diazepines 3 with antihypertensive activity have 139 

been obtained from putrescine and 2-methoxybenzonitriles (Scheme 4).56 140 
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 144 

The use of catalysts has, in some cases, improved the results of reactions of diamines with nitriles. In 145 

1974, three 1,3-diazepines containing -alkoxybenzyl groups on C-2, with potential hypoglycemic and 146 

natriuretic activity, were synthesized using 2-alkoxy-2-arylacetonitriles as source of C-2.57 The conversion of 147 

the nitrile into the corresponding amidine was readily accomplished by heating the reaction mixture with an 148 

excess of diamine using a few drops of CS2 as catalyst.  149 

Forsberg et al. have published the lanthanide(III)-catalyzed addition of amines to nitriles for the 150 

construction of amidines.58 Ln3+ ions activate nitriles through a predominantly electrostatic ion-dipole 151 

interaction. This interaction enhances polarization of the cyano group, thereby facilitating the attack by the 152 

nucleophilic amine. The reactions are quite facile and progress to completness (yields 75-95%) when 153 

equimolar amounts of amine and nitrile are heated with 1 mol % Ln3+ for 24 h. By means of this strategy, 2-154 

methyl, ethyl and phenyl 1H-4,5,6,7-tetrahydro-1,3-diazepines 4 could be synthesized (Scheme 5). 155 
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 159 

As activated equivalents of carboxylic acids, imidic esters (imidates), have been used in the synthesis of 160 

cyclic amidines. The reaction of an imidic ester with alkylendiamines generally requires milder reaction 161 

conditions than those in which the corresponding nitriles are employed. Sahyun et al. have obtained among 162 

other cyclic amidines 2-chloro- and 2-hydroxy-alkyltetrahydro-1,3-diazepines 5,6 from the corresponding 163 

imidic ester hydrochlorides. The compounds were subsequently transformed into esters 7 with antispasmodic 164 

activity (Scheme 6).22 165 
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 169 

White et al. have patented the synthesis of a series of five to eight-membered amidines (imidazolines, 170 

tetrahydropyrimidines, tetrahydro-1,3-diazepines and hexahydro-1,3-diazocines) from imidic esters with the 171 

corresponding diamines.59,60  172 

Many of the synthesized compounds have pharmacological activity e.g. diuretic, anti-inflammatory, 173 

hypoglycemic and cardiovascular activity.59 Miller et al. have obtained other tetrahydrodiazepines and 174 

hexahydrodiazocines with antifungal activity using the same methodology.61 175 

Another example of the use of an imidic ester as source of C-2 is the formation of the 2-phenyl-1,3-176 

diazepines by condensation of 1,4-diaminobutane derivative with methyl benzimidate under moderate 177 

reaction conditions. These compounds have been studied as potential dopamine D4 receptor agonists.28 178 

More recently, a series of cyclic amidines including a 2,4-diaryl-1,3-diazepines 8 with selective NMDA 179 

antagonist activity has been synthesized by reaction of an imidoester with 2-phenylputrescine (Scheme 7).27 180 
 181 
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 184 

The synthesis of cyclic amidines from alkylenediamines and amidinium salts was reported in 1950 by 185 

Oxley et al.,62 who obtained 2-benzyl-1H-4,5,6,7-tetrahydro-1,3-diazepine 9 from N-substituted amidinium 186 

salts and putrescine (Scheme 8). 187 
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Desmarchelier reported the synthesis of 2-methyl-1H-4,5,6,7-tetrahydro-1,3-diazepine from 1,4-191 

diaminobutane with acetamidine hydrochloride under mild experimental conditions.63 192 

Ethoxyacetylene was used as electrophilic precursor to synthesize 2-methyl-1H-4,5,6,7-tetrahydro-1,3-193 

diazepine 10 (Scheme 9).64 194 
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 198 

Organylthiochloroacetylenes react easily with aliphatic diamines such as putrescine and cadaverine, at 199 

low temperatures in benzene, with the formation of 2-(ethylthiomethyl)-1,3-diazepine 11 and the 200 

corresponding hexahydrodiazocine (Scheme 10).65 201 
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 205 

Thioamides such as N-ethoxycarbonylthioamides have been used to obtain 2-arylderivatives of 4,5,6,7-206 

tetrahydro-1H-1,3-diazepines 12 to obtain moderate yields (Scheme 11).66 207 
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 211 

One of most intensively developing fields in the chemistry of biologically active heterocycles is the 212 

synthesis of fluorinated analogues. 4,5,6,7-Tetrahydro-1H-1,3-diazepines 13 bearing a perfluoroalkyl group on 213 

C-2 have been obtained by reactions of tetramethylenediamine and a polyfluoroalkylthioamide.67 One 214 

possible reaction mechanism assumes the intramolecular cyclization of the re-amidation product with the 215 

subsequent separation of hydrogen sulfide from the product of cyclization. The reactions have been 216 

performed under mild conditions to obtain good yields of the corresponding heterocycles (Scheme 12). 217 
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 220 

Orthoesters have also been used in the synthesis of cyclic amidines. Plate et al. have synthesized a series 221 

of 1,3-diazacycloalkyl carboxaldehyde oxime derivatives with potential muscarinic activities.29 Among them, 222 

4,5,6,7-tetrahydro-1,3-diazepine-4-carboxaldehyde oxime 14 was obtained using triethyl orthoformate as 223 

reagent (Scheme 13). 224 

 225 

H2N NH2

R
2

N OR
1

.HCl

+
CH3OH

HN N

N

R
2(  )2

OR
1

CH(OEt)3

14  226 
Scheme 13 227 

 228 

In 2009, Wilhelm et al. synthesized a tetrahydro-1,3-diazepine 15 containing a bicyclic core derived from 229 

camphor from 1,3-diamino-1,2,2-trimethylcyclopentane, which is a compound easily obtained from camphor 230 

that is a very useful material to construct chiral compounds. The method involves the N-alkylation of the 231 

camphoric diamine followed by reaction with triethyl orthoformate.68 232 
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 236 

Lentzen has patented the synthesis of five- to seven-membered 2-substituted cyclic amidines 16. The ring 237 

closure to the generate the cyclic amidines was accomplished by reactions of C-substituted alkylenediamines 238 

with orthoesters (Scheme 15).69 239 
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 242 

Alkyl halides have also been used as source of C-2. The 3-substituted 5-(chloromethyl)-1,2,4-oxadiazole 243 

reacts with putrescine in the presence of sulfur as dehydrogenating agent to yield 2-heteroaryltetrahydro-1,3-244 

diazepines 17 (Scheme 16).70,71 245 
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 249 

Bieraugel has studied the carbon unit transfer from cyclic amidinium salts to bifunctional nucleophiles as 250 

-diaminoalkanes.72,34 Thus, protonated 4,5,6,7,8,9-hexahydro-1,3-diazonine 18 was obtained using an 251 

imidazolinium salt as C-2 donor to hexamethylenediamine (Scheme 17). The process results from the ability of 252 

such imidazolinium salt to transfer a formyl equivalent to a variety of nucleophiles. However, the product was 253 

only characterized by 1H-NMR through the presence of the N = CH signal at 8.00 ppm. 254 

 255 
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Scheme 17 257 

 258 

Recently Simion et al. have reported an unexpected synthesis of the same diazonine 19 using 259 

hexamethylenediamine and dimethylformamide as source of C-2.73 The cyclization was explained as a two-260 

step process involving formylation and subsequent intramolecular condensation (Scheme 18). 261 
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 265 

The usefulness of this process has been demonstrated through the synthesis of two other nitrogen-266 

containing macroheterocycles (Scheme 19). 267 
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 270 

2.2 Synthesis of amidines from -aminoamides (Method B) 271 

This general method involves the cyclodehydration of N-aryl-N'-acylalkylenediamines 20 to the corresponding 272 

cyclic amidine by heating with a cyclizing agent. The proposed mechanism is given below. This is a general 273 

method for the synthesis of five to eight-membered N-aryl substituted cyclic amidines, and the variations 274 

depend on the synthetic route to generate the precursor aminoamide and the cyclizing agent used (Scheme 275 

20).  276 
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 280 

Two methods have been employed to synthesize the precursor aminoamides 20 of tetrahydrodiazepines 281 

and hexahydrodiazocines: N-acylation of the corresponding N-arylalkylenediamines 21 (Method B-1) and from 282 

the reaction of N-4-halobutyl or 5-halopentyl benzamides 22 with arylamines (Method B-2) (Scheme 21). 283 

In the first method (Method B-1), the precursor -aminoamides can be obtained by aminolysis of the 284 

appropriate chloronitrobenzene with tetra- or penta-methylenediamine, followed by benzoylation under 285 

Schotten-Baumann conditions. Thus, in 1977 Perillo et al. reported the use of N-nitroaryl-N’-aroyltetra- and 286 

penta-methylenediamines 23 as precursors of 1,2-diaryl-1,3-diazepines and diazocines having a nitrophenyl 287 

substituent on N-1 (Scheme 22).74 288 

 289 
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 296 

However, when the aryl group of the N-arylalkylenediamine is not substituted or when it is substituted 297 

with electron donor or slightly electron withdrawing groups, the reaction with acyl chlorides under Schotten-298 

Baumann conditions led to the corresponding N,N’-diacyl derivatives.32 Selective monoacylation was achieved 299 

using aliphatic carboxylic acid anhydrides working at 0 oC in a biphasic system (Cl3CH/aqueous Na2CO3)75 or 300 

working in homogeneous phase with DCM as solvent and TEA as acceptor of hydrogen chloride at -10 oC (55-301 

60%).32  302 

Another suitable synthetic strategy to obtain the precursor aminoamides 20 involves the synthesis of N-4-303 

halobutyl or N-5-halopentylbenzamides 22 as key synthetic intermediates and subsequent reaction with 304 

amines (Method B-2). Attempts to obtain the haloalkylamides 22 by acylation of the corresponding -305 

haloalkylamines in basic medium have failed, because in such reaction medium intramolecular aminolysis 306 

occured.33 Conversely, 4-chlorobutyl- and 5-chloropentyl-benzamides could be obtained by reaction of N-307 

benzoylpyrrolidine or piperidine with phosphorus pentachloride by the von Braun reaction (Scheme 23).76 The 308 

subsequent reaction with arylamines leads to the expected aminoamides 20 (R1 = Ar).31,77 A drawback of this 309 

strategy is that the procedure is restricted to N-acyl derivatives without -hydrogens.76 310 

Phosphorus oxychloride, polyphosphoric acid (PPA), ethyl polyphosphate (PPE) and trimethylsilyl-311 

polyphosphate (PPSE) have been used as dehydrating agents for the synthesis of N-aryl five- to eight-312 

membered cyclic amidines.35,78-80 The synthesis of medium-sized cyclic amidines through the cyclization of 313 

aminoamides was first reported in 1977 (Table 1, entries 1-6),74 when a series of 1,2-diaryl-1,3-diazepines and 314 

diazocines having a nitrophenyl substituent on N-1 were synthesized through the ring closure of the 315 

corresponding N-nitroaryl-N’-aroyltetra- and penta-methylenediamines, respectively, employing a chloroform 316 

solution of PPE or phosphorus oxychloride as cyclizing agent for the synthesis of diazepines and neat PPE to 317 

obtain the corresponding diazocines. Similarly in 2000 Hedrera et al. synthesized 1,3-diazepines employing the 318 

same cyclizing agent (Table 1, entries 7-10).33,35 319 
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Table 1. Synthesis of -aminoamides and their cyclization conditions 323 
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 326 

Entry 

20 

Synthetic 

method 

R1 R2 n Cyclization conditions Yield (%) Ref. 

1 B-1 4-NO2 C6H5 2 PPE/CHCl3, POCl3 92, 76 74 

2 B-1 4-NO2 4-NO2-C6H4 2 PPE/CHCl3, POCl3 89, 65 74 

3 B-1 2-NO2 C6H5 2 PPE/CHCl3, POCl3 80, 62 74 

4 B-1 2-NO2 4-NO2C6H4 2 PPE/CHCl3, POCl3 75, 59 74 

5 B-1 4-NO2 C6H5 3 PPE, POCl3/SFa 39, 24 74 

6 B-1 4-NO2 4-NO2C6H4 3 PPE, POCl3/SF 42, 30 74 

7 B-2 H C6H5 2 PPE/CHCl3 64 33,35 

8 B-2 4-CH3 C6H5 2 PPE/CHCl3 68 33,35 

9 B-2 4-OCH3 C6H5 2 PPE/CHCl3 60 33,35 

10 B-2 4-Cl C6H5 2 PPE/CHCl3 55 33,35 

11 B-1 2-NO2 C2H5 2 PPE/CHCl3/MWb 93 81 

12 B-1 4-Br C6H5 2 PPE/CHCl3/MW 89 81 

13 B-1 3,4-(CH2)4 C(CH3)3 2 PPE/CHCl3/MW 84 81 

14 B-1 H C6H5 3 PPE/CHCl3/MW 83 81 

15 B-1 4-CH3 C6H5 3 PPE/CHCl3/MW 79 81 

16 B-1 4-Cl C2H5 2 PPE/CHCl3/MW/100° 79 75 

17 B-1 4-Cl CH3 2 PPE/CHCl3/MW/100° 85 75 

18 B-1 4-Cl iso-C3H7 2 PPE/CHCl3/MW/100° 75 75 

19 B-1 4-CH3 CH3 2 PPE/CHCl3/MW/100° 87 75 

20 B-1 4-CH3 C2H5 2 PPE/CHCl3/MW/100° 71 75 

21 B-1 4-CH3 iso-C3H7 2 PPE/CHCl3/MW/100° 90 75 
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Table 1. Continued 327 

Entry 

20 

Synthetic 

method 

R1 R2 n Cyclization conditions Yield (%) Ref. 

22 B-1 4-Br iso-C3H7 2 PPE/CHCl3/MW/100° 72 75 

23 B-1 4-F iso-C3H7 2 PPE/CHCl3/MW/100° 63 75 

24 B-1 4-CH3 iso-C3H7 3 PPE/CHCl3/MW/100° 42 75 

25 B-1 4-CH3 C2H5 3 PPSE/SFb/ MW/90° 58 82 

26 B-1 4-CH3 iso-C3H7 3 PPSE/SF/ MW/90° 60 82 

27 B-1 4-Cl CH3 3 PPSE/SF/ MW/90° 50 82 

28 B-1 4-Cl C2H5 3 PPSE/SF/ MW/90° 61 82 

29 B-1 4-Cl iso-C3H7 3 PPSE/SF/ MW/90° 84 82 

30 B-1 4-Br CH3 3 PPSE/SF/ MW/90° 52 82 

31 B-1 4-Br C2H5 3 PPSE/SF/ MW/90° 61 82 

32 B-1 4-Br iso-C3H7 3 PPSE/SF/ MW/90° 81 82 

33 B-1 H H 3 PPSE/SF/ MW/90° 27 82 

34 B-1, B-2 H C6H5 3 PPE/CHCl3/MW/120° 95-100 32 

35 B-1, B-2 H 4-ClC6H4 3 PPE/CHCl3/MW/120° 95-100 32 

36 B-1, B-2 4-CH3 C6H5 3 PPE/CHCl3/MW/120° 95-100 32 

37 B-1, B-2 4-CH3 4-ClC6H4 3 PPE/CHCl3/MW/120° 95-100 32 

38 B-1, B-2 4-Cl C6H5 3 PPE/CHCl3/MW/120° 95-100 32 

39 B-1, B-2 3,4-Cl2 4-ClC6H4 3 PPE/CHCl3/MW/120° 95-100 32 

40 B-2 4-Cl C6H5 2 PPE/CHCl3/MW/70° 96 31 

41 B-2 H 4-ClC6H4 2 PPE/CHCl3/MW/70° 95 31 

42 B-2 2-Cl C6H5 2 PPE/CHCl3/MW/70° 98 31 

43 B-2 H 2,4-Cl2C6H3 2 PPE/CHCl3/MW/70° 96 31 

44 B-2 4-Cl 2,4-Cl2C6H3 2 PPE/CHCl3/MW/70° 97 31 
a SF = solvent-free conditions.  bMW = microwave heating. 

 328 

In general, cyclization reactions usually required long reaction times and high temperatures, resulting in 329 

lower product yields in some cases. The traditional methods have been modified to improve their efficiency, 330 

optimizing the routes of synthesis with the use of new technologies. Microwave irradiation has emerged as an 331 

efficient technique for reagent activation in organic reactions. The remarkable advantages of this 332 

methodology are the simple experimental procedures, high yields of products, short reaction times, mild 333 

conditions and easy work-ups. In this context, a large number of organic reactions can be carried out under 334 

microwave irradiation and compared with classical synthesis procedures.83-87 335 

Using this methodology, Orelli et al. have presented a simple and efficient microwave-based protocol for 336 

the synthesis of cyclic amidines through an PPE-promoted cyclodehydration of N-aryl-N'-acylalkylenediamines, 337 

using a modified domestic microwave81 (Table 1, entries 11-15). Employing microwave heating and a 338 

chloroformic solution of PPE, 1-aryl-1,3-diazepines and diazocines could be obtained with satisfactory (240 W, 339 

2.5 min and 320 W, 6 min respectively.)  340 

The microwave-assisted ring closure of N-aryl-N’-acyltetramethylenediamine derivatives promoted by PPE 341 

allowed the synthesis of 1-aryl-2-alkyl-1,3-diazepines (Table 2, entries 16-23).75 The cyclodehydration was 342 
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carried out in a Monowave 300 monomode reactor. The reactions were completed in 8 min at 100°C with 63-343 

90% yield. Under similar conditions, however, considerably lower yields of homologous 1-(4-methylphenyl)-2-344 

alkyl-1,3-diazocine were obtained (Table 1, entry 24).75 Alternatively, the use of PPSE as cyclodehydrating 345 

agent under solvent-free conditions in the microwave-assisted ring closures of N-acyl-N'-346 

arylpentamethylenediamines allowed obtaining acceptable yields of 1-aryl-2-alkyldiazocines (Table 1, entries 347 

25-33).82  On the other hand, 1,2-diarylderivatives of 1,3-diazepines and diazocines were obtained by 348 

cyclization of either the corresponding N-aryl-N'-aroyltetra- or penta- methylenediamine (Table 1, entries 34-349 

38).31,32 350 

 351 

 352 

3. Chemical Properties of Cyclic Amidines 353 

 354 

3.1 Basicity 355 

Cyclic amidines are monobases which, upon protonation on N-3, become cyclic amidiniums salts that are 356 

strongly stabilized by mesomeric effect (Scheme 24).35,36,74 357 

 358 

N N
R

R

N N
R

R
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Scheme 24  360 

 361 

Upon comparing the basicity of the seven and eight-membered 1,2-diaryl substituted cyclic amidines 362 

(n=2,3) with that of the lower amidine (n=0,1), it was observed that basicity decreases in the order 363 

tetrahydropyrimidines (n=1) > tetrahydrodiazepines (n=2) > hexahydrodiazocines (n=3) > imidazolines.35,36,74 364 

This phenomenon was attributed to the possible torsion of the seven and eight-membered rings that may 365 

result in a less favored delocalization of the amidinium charge, and consequently in a decrease in basicity.  366 

The effects of the sustituents on the N-1 aryl, were analyzed in a series of 1-aryl-2-phenyltetrahydro-367 

diazepines.35,36 368 
 369 

3.2 Nucleophilic character 370 

Like other cyclic amidines,88-91 1-substituted tetrahydrodiazepines and hexahydrodiazocines have a strong 371 

nucleophilic character due to the N-3 lone electron pair. The reaction with alkyl halides leads to the 372 

corresponding resonance-stabilised cyclic amidinium salts 24.31-33,35 Since the reaction is a typical SN2 373 

displacement, it is adequate for the introduction of primary alkyl groups (Scheme 25). 374 
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 377 

3.3 Hydrolysis 378 

1,2-Diaryltetrahydrodiazepines and hexahydrodiazocines are resistant to acid hydrolysis due to the high 379 

stability of the amidinium ion.36 However, due to their amidinic nature, they are hydrolyzed in alkaline 380 

solutions affording N-acyl derivatives of the corresponding tetra- and pentamethylenediamines. The observed 381 

regioselectivity was analyzed in the light of the stereoelectronic control theory (Scheme 26).35,36 382 
 383 
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 386 

The resistance of cyclic amidines to alkaline hydrolysis depends on the cycle size. A comparison of half-387 

lives of 1,2-diaryl derivatives has demonstrated that the degree of stability is: imidazolines (n=0) < 388 

tetrahydropyrimidines (n=1) << tetrahydrodiazepines (n=2) < hexahydrodiazocines (n=3).74 The greater 389 

stability of the larger rings was attributed to conformational factors that prevent the attack of the nucleophile 390 

OH- on C-2. 391 

 392 

3.4 Reduction 393 

Reduction of 1,2-diaryltetrahydrodiazocines 25 with borane/THF leads to the regiospecific asymmetrical N-394 

aralkyl-N’-aryltetramethylenediamines 26 with good yields (78-81%)33,35 (Scheme 27). The following reaction 395 

mechanism explains the observed regioselectivity (Scheme 27) : 396 

 397 
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 400 

 401 

4. Synthesis of Cyclic Amidinium Salts 402 

 403 

As indicated above (3.2) cyclic amidinium salts are typical salts where the cation is resonance-stabilized and 404 

the positive charge can be delocalized either on the nitrogen atoms or on the C-2 (Scheme 25). 405 

As in the case of cyclic amidines, the methods of synthesis for cyclic amidinium salts of medium size, are in 406 

general, extensions of the methods employed for lower cyclic amidinium salts. These methods employ both 407 

cyclic and acyclic compounds as precursors. 408 

 409 

4.1 Synthesis of amidinium salts from acyclic precursors  410 

The treatment of N,N’-disubstituted -alkanediamines with trialkyl orthoesters in the presence of a source 411 

of protons and anions (ammonium tetrafluoroborate, ammonium hexafluorophosphate, ammonium chloride), 412 

leads to the corresponding cyclic amidinium salts. The drawback of this method is that it is not applicable to 413 

acid-sensitive substrates. This method employing alkyl orthoformates as C-1 building block is the method of 414 

choice for obtaining 2-unsubstituted salts (R2 = H, Scheme 28), which are important as NHC precursors. 415 
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 419 

The synthetic routes for obtaining the precursor diamines vary according to the nature of the linking 420 

backbone, the nitrogen substituents and the presence of chirality. This issue has been extensively addressed 421 

by César et al.92 422 

The first report on the synthesis of seven-membered cyclic amidinium salts dates from 1991, when Saba et 423 

al.93 prepared a series of cyclic amidinium salts by the reaction of trialkyl orthoesters with various N,N’-dialkyl-424 

-alkanediamines in the presence of ammonium tetrafluoroborate or hexafluorophosphate. Among others, 425 

2-methyl, 2-ethyl and 2-isopropyl substituted tetrahydro-1,3-diazepinium salts were obtained. 426 
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Several diazepinium salts were synthesized later to be used as precursors in the synthesis of seven-427 

membered N-heterocyclic carbenes (NHC). In this sense, Iglesias et al. have obtained 1,3-dicyclohexyl 428 

derivatives 27 through the reaction of N,N’-dicyclohexylputrescine with triethyl orthoformate in the presence 429 

of ammonium hexafluorophosphate.94 The diamine was obtained in high yields by condensation of 1,4-430 

diaminobutane followed by reduction of the formed di-imine with sodium borohydride. Overall yields of 70% 431 

after recrystallization were obtained for the formation of the amidinium salt (Scheme 29). 432 
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 436 

Çetinkaya et al. have reported the synthesis of 1,3-dibenzyl and 1,3-diheteroarylmethyl diazepinium salts 437 

with good yields.95,96 More recently, Wilhelm et al. has reported the synthesis of 1,3-dibenzyl and 1,3-di--438 

phenylethyl)diazepinium salts to be employed as organocatalysts97 Diazepinium salts embedded in a rigid 439 

bicyclic system containing a core derived from camphor 28 were obtained by cyclization of 1,3-diamino-1,2,2-440 

trimethylcyclopentane (camphoric diamine) with triethyl orthoformate.68 These salts were employed as 441 

precursors of enantiopure NHCs (Scheme 30). 442 
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 446 

Employing a similar methodology, Newman et al. have synthetized salts containing aryl groups bearing 447 

electron donor groups as precursors of tridentate ligands.98,99 448 

In 2005, a method was patented in which orthoesters were used as precursors to prepare cationic 449 

polymers bearing cyclic non-aromatic units containing an amidinium group, such as tetrahydrodiazepinium 450 

salts, among others.100 One strategy to introduce a cyclic amidinium group into a side chain of the polymer is 451 

either to start out from a polymer which bears an orthoester group 29, preferably an ethyl orthoester, in the 452 

side chain and allow it to react with an N,N'-dialkyl-α,ω-alkanediamine, or to start out from a polymer which 453 

bears the diamine function 30 in the side chain and allow it to react with an orthoester, preferably an ethyl 454 

orthoester (Scheme 31). 455 
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 458 

In the same patent, polymers in which cyclic amidinium cations are located in the main chain and are 459 

linked to it via C atoms are described. Thus, for example, the reaction of polyamine with an orthoester leads to 460 

the formation of polymers 31 eight-membered rings (cyclic diazocinium ions) in the main chain (Scheme 32). 461 
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 465 

The reaction of an N,N’-disubstituted amidine with an ,-dihalo compound in basic medium has been 466 

successfully used for the synthesis of N,N’-diaryl substituted cyclic amidinium salts 32. From a mechanistic 467 

point of view, in the basic medium the deprotonation of the amidine 33 generates an 1,3-diazaallyl anion, 468 

which reacts with a dielectrophile such as the ,-dihalo compound (Scheme 33). 469 
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 473 

Thus, 2-unsubstituted tetrahydrodiazepinium salts have been synthesized by Cavell through the reaction 474 

of the appropriate N,N’-diarylformamidine with 1,4-diiodobutane in refluxing acetonitrile in the presence of a 475 

mild base such as potassium carbonate.101,102 The reaction proceeds rapidly for the larger ring sizes and less 476 

congested amidines. Formamidine precursors are easily obtained through the reaction of triethyl 477 

orthoformate with anilines. This synthetic strategy has been especially employed for N-substituted 478 
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compounds bearing bulky aryl groups (Scheme 34). This method has been used with good results for the 479 

synthesis of seven-membered salts with different N-aryl substituents.103-106 480 
 481 
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 484 

Similarly, Nechaev et al. have synthesized six- and seven-membered ring salts with bulky aryl groups by 485 

reaction of neat N,N’-diarylformamidine with 1,4-dibromobutane in the presence of diisopropylethylamine 486 

(DIPEA).107,108 This method has recently been extended to the synthesis 1,3-dialkyl diazepinium salts.109 The 487 

formamidine precursor was obtained through the reaction of the alkyl amine with triethyl orthoformate and 488 

one equivalent of acetic acid. 489 

Asymmetrically 1,3-substituted rings 34 may be generated in good to high yields using a formamidine 490 

obtained by a step-wise reaction sequence.106 During the synthesis of the seven-membered salts containing a 491 

pyridine substituent 35, an alternative ring closure, via of the pyridine ring nitrogen, was observed, giving rise 492 

to a novel ionic fused ring product 36 (Scheme 35). 493 
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 497 

Employing this method, Cavell et al. have recently synthesized the first eight-membered cyclic amidinium salts 498 

to be employed as NHC precursors (Scheme 36). The reaction was slow but yields were good (75%).110 499 
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 503 

4.2 Synthesis of amidinium salts from cyclic precursors 504 

One of the method involves the dehydrogenation of cyclic aminals (Scheme 37). 505 
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 508 

The cyclic aminal 37 is commonly obtained from the corresponding -diaminoalkane and an aldehyde. 509 

Formaldehyde is used as C-1 building block to obtain 2-unsubstituted salts. In this method, the cyclization step 510 

requires neutral conditions, therefore, it is applicable to acid-sensitive substrates. Probably, for these reasons, 511 

Iglesias et al.94 have used this route for the synthesis of a seven-membered ring salt 38 containing a strained 512 

5,6-dioxolane moiety using NBS as a dehydrogenating agent (Scheme 38). 513 
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 517 

Similarly, Wilhelm97 has reported the synthesis of analogous 1,3-dibenzyl derivatives using NBA as 518 

dehydrogenating agent. 519 

The synthesis of 1,3-dibenzyltetrahydrodiazepinium and hexahydrodiazociniun salts 39 through the 520 

dehydrogenation of aminals with NBS has recently been described (Scheme 39).31 521 
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 525 

As mentioned in Section 3.2, the alkylation of 1-substituted cyclic amidines affords the corresponding 526 

cyclic amidinium salts (Scheme 25). Since the reaction is a typical SN2 displacement, it is adequate for the 527 

introduction of primary alkyl groups, being a method of choice for the synthesis of asymmetrically substituted 528 

salts. Thus, series of 1,2-diaryl-3-methyl-1H-4,5,6,7-tetrahydro-1,3-diazepinium iodides have been obtained 529 

through the reaction of the corresponding diazepines with methyl iodide in anhydrous THF under reflux, 530 

obtaining yields of 81-90 % in reaction times of 1-2 h.33,35 More recently, this methodology has been optimized 531 

by the use of MW irradiation, the reaction times were dramatically decreased (3-6 min) using a Microwave 532 

Digestion System in chloroform solution at 90 oC and 400 W.31 However, when the reaction of 1,3-diazocines 533 

were conducted under the same conditions, the major product obtained was the corresponding hexahydro-534 

diazocine hydrohalide.32 The protonation of the amidine could be avoided by using a mixture of DCM-DMSO 535 

(10:1) as solvent. Working under reflux conditions with conventional heating, 2-4 h were required for total 536 
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conversion (71-95%), while the reaction times were reduced to 6-15 min when MW irradiation was employed 537 

(85-96% yields).31,32 538 

Diazepinium salts with a rigid bicyclic system 40 (camphor skeleton) were also obtained by alkylation 539 

(Scheme 40).68 540 
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 544 

 545 

5.  Chemical Properties of Cyclic Amidinium Salts 546 

 547 

5.1 Reaction with bases  548 

5.1.1 Cyclic amidinium salts as precursors of N-heterocyclic carbenes (NHC). The deprotonation of 2-549 

unsubstituted cyclic amidinium salts leads to the generation of NHCs 41.92 These compounds are of special 550 

interest due to their electron richness. Consequently, they have been widely applied as ligands in transition-551 

metal catalysts and organometallic chemistry,111-115 and as organocatalysts in their own right (Scheme 41).116-552 
120 553 
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 557 

In particular, tetrahydrodiazepinium salts have been synthesized to be employed as precursors of ring 558 

expanded NHCs (RE-NHCs), which are stronger -donating ligands.120 Structurally, they also have unique 559 

features: the saturated seven-membered ring is flexible, highly twisted, which provides an opportunity to 560 

design novel chiral ligands, and of considerable interest due to the large heterocyclic rings with large N-CNHC-N 561 

angles. Key features of these ligands are the presence of an increased basicity and a a high “steric” pressure on 562 

the metal center with respect to the more traditional five-membered NHCs. 563 

Different bases have been employed to generate ER-NHCs: KN(SiMe3)2 (potassium hexamethyl-564 

disilylamide, KHMDS) in THF;101-103,106,109,121 LiN(iPr)2 (lithium diisopropylamide, LDA) in toluene,101 t-BuOK in 565 

water/DMF, 96,104,105,122 Ag2O (silver oxide) in DCM102,107 and potassium carbonate.95 566 

In some cases, seven-membered free carbenes have been isolated and characterized. 102,108,121 However, 567 

they are generally obtained as metal complexes by direct reaction of the in situ generated carbenes with 568 

suitable metal salts. Thus, the generation of Pd-containing complexes have been reported.95,96,105,122 Other 569 

complexes with Pt,104 Au,123 Rh and Ir,98,103,106,109 have also been reported. Seven-membered NHC complexes 570 

of Cu and Pd have been obtained by transmetallation of the corresponding NHC-Ag (I) complex with suitable 571 

metal salts.107,108 572 
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The use of seven-NHC metal complexes in catalytic transformations have provided encouraging results. 573 

The first example has been reported by Cetinkaya et al., who demonstrated that in situ generated 1,3-574 

dibenzyltetrahydrodiazepin-2-ylidene palladium complexes are very effective in Suzuki-Miyaura coupling 575 

reactions of deactivated aryl chlorides.95 Since then, seven-membered NHC complexes have been tested for 576 

catalytic transformations such as the Heck type cross-coupling,96,105,122 Suzuki type reactions,10,99 hydration of 577 

internal alkynes,123 hydrosilylation,99,104 catalytic hydrogenation106 and transfer hydrogenation.124,125 578 

The important results achieved with complexes bearing expanded ring NHC ancillary ligands in catalytic 579 

transformations have been attributed to the strong binding of the electron-rich carbene to the metal center 580 

that helps the metal retain its ligand, which provides the compound a longer catalyst life time, thus affording 581 

enhanced activity106, 126 582 

Cavell et al. have reported the synthesis of the first eight-membered ring (diazocanylidene) NHCs 43 (8-583 

NHCs) through the reaction of the corresponding cyclic amidinium salt 44 with KHMDS.110  In general, the free 584 

RE-NHCs could be isolated, and in one case, the molecular structure was elucidated. Rh complexes 45, 46 have 585 

been formed through the treatment of the in situ formed free carbene with the appropriate Rh precursor 586 

complex. Silver complexes 47 have been prepared through direct reaction of Ag2O with the diazocanylidinium 587 

salts (Scheme 42). 588 
 589 
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Scheme 42 591 

 592 

Key features of these novel RE-NHCs are the extreme steric strain they impose on the metal center and their 593 

high electron donor capacity, being some of the most basic NHCs currently available. 594 

5.1.2 Adduct formation. In some cases, the reaction of 1,3-diazepinium salts with alkoxides leads to the 595 

addition products (2-alkoxyaminals). In this sense, while the 1,3-dicyclohexyl salt 48 reacts with strong bases 596 

affording the expected NHC 49, the corresponding adduct 50 was obtained when the salt was treated with 597 

potassium tert-butoxide in toluene (Scheme 43).101 598 
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 601 

Similarly, the adduct (7-dipp)(H)(OMe) 51 has been obtained by the reaction of equimolar amounts of the 602 

salt and NaOMe in absolute THF (Scheme 44). Attempts to obtain the NHC by vacuum thermolysis have 603 

failed.107 604 

 605 
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 606 
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 608 

5.2 Catalytic activity 609 

Cyclic amidinium salts have low Lewis acid character due to the contribution of the mesomeric structure with 610 

the positive charge on the C-2 (Scheme 25). These salts have been used as organocatalysts.127-129  611 

Wilhelm et al. have reported the application of several cyclic amidinium salts as catalysts in the ring 612 

opening of epoxides (Scheme 45).97 They tested four 1,3-diazepinium salts (52-55) and their activity was 613 

compared with the imidazolinium salt 56 (Figure 2). While the salt 56 displayed very low catalytic activity 614 

(12%), diazepinium salts 53 and 55 gave the product in 78% and 99% yield, respectively.  615 

 616 
O 10 mol % cat.

2 equiv. PhNH2, rt
          DCM

HO NHPh

 617 
Scheme 45 618 
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Figure 2 620 

 621 

These results were attributed to the special geometry of the 1,3-diazepinium cation which does not allow 622 

the planar conformation to be kept, thus the positive charge is less delocalized over the NCN atoms. Instead, 623 

there is a better delocalization of the positive charge in the planar sp2-centered imidazoline scaffold in the 624 

imidazolinium salts. The camphor-based salt 52 and the salt 54, with a larger steric environment around the 625 

amidinium unit, gave yields of only 24% and 38%, respectively. 626 
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