Supplementary Material

An improved, gram-scale synthesis of protected 3-haloazetidines: Rapid diversified synthesis of azetidine-3-carboxylic acids

Youngran Ji, ${ }^{\text {a }}$ Lukasz Wojtas, ${ }^{\text {c }}$ and Justin M. Lopchuk*a,b,c
${ }^{a}$ Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
${ }^{b}$ Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, Florida 33612, United States
c Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
Email: justin.lopchuk@moffitt.org

Table of Contents

1. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR spectra S2
1.1. tert-butyl 3-iodoazetidine-1-carboxylate (6) S2
1.2. 1-amino-2,3-dibromopropane hydrobromide in $\mathrm{D}_{2} \mathrm{O}$ (17) S4
1.3. 1-amino-2,3-dibromopropane hydrobromide in MeOD (17) S6
1.4. 3-iodo-1-tosylazetidine (19) S8
1.5. tert-butyl 3-bromoazetidine-1-carboxylate (20) S10
1.6. (9H-fluoren-9-yl)methyl 3-bromoazetidine-1-carboxylate (21) S12
1.7. tert-butyl 3-cyanoazetidine-1-carboxylate (22) S14
1.8. 1-(tert-butoxycarbonyl)azetidine-3-carboxylic acid (23) S16
1.9. tert-butyl 3-hydroxyazetidine-1-carboxylate (24) S18
1.10.tert-butyl 3-benzoylazetidine-1-carboxylate (25) S20
1.11.tert-butyl 3-cyano-3-methylazetidine-1-carboxylate (26) S22
1.12.1-(tert-butoxycarbonyl)-3-methylazetidine-3-carboxylic acid (27) S24
1.13.tert-butyl 3-allyl-3-cyanoazetidine-1-carboxylate (28) S26
1.14.3-allyl-1-(tert-butoxycarbonyl)azetidine-3-carboxylic acid (29) S28
1.15.tert-butyl 3-cyano-3-(3-(trimethylsilyl)prop-2-yn-1-yl)azetidine-1-carboxylate (30) S30
1.16.1-(tert-butyl) 3-methyl 3-(prop-2-yn-1-yl)azetidine-1,3-dicarboxylate (31) S32
1.17.tert-butyl 3-cyano-3-((trifluoromethyl)thio)azetidine-1-carboxylate (33) S34
1.18.1-(tert-butoxycarbonyl)-3-((trifluoromethyl)thio)azetidine-3-carboxylic acid (34) S37
1.19.1-(tert-butoxycarbonyl)-3-(prop-2-yn-1-yl)azetidine-3-carboxylic acid (35) S40
1.20.1-(tert-butyl) 3-methyl 3-(propa-1,2-dien-1-yl)azetidine-1,3-dicarboxylate (36) S42
1.21.tert-butyl 3-cyano-3-(prop-2-yn-1-yl)azetidine-1-carboxylate (37) S44
2. X-ray crystallographic data for compound 33 S46

Issue in Honor of Dr. Gordon W. Gribble

Page S4

Page S5

Issue in Honor of Dr. Gordon W. Gribble

ion

21

[^0]
Issue in Honor of Dr. Gordon W. Gribble

Issue in Honor of Dr. Gordon W. Gribble

$$
\begin{array}{lllllllllllllllllllllllllllllll}
210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10
\end{array}
$$

[^1]3

Issue in Honor of Dr. Gordon W. Gribble

[^2]

Issue in Honor of Dr. Gordon W. Gribble

$\begin{array}{ll}\circ & \stackrel{\circ}{\circ} \\ \stackrel{\circ}{0} & \stackrel{\circ}{\circ} \\ \stackrel{\circ}{0} & \stackrel{1}{\sim}\end{array}$

∞
∞
0
0

[^3]

[^4]

$\stackrel{\bullet}{\stackrel{\circ}{i}}$

Page S44

$\stackrel{\infty}{\stackrel{\infty}{0}}$

```
\circ
~~~~~
```


X-ray Crystallography for Compound 33

The X-ray diffraction data were measured on Bruker D8 Venture PHOTON 100 CMOS system equipped with a Cu K ${ }_{\alpha}$ INCOATEC ImuS micro-focus source ($\lambda=1.54178$ Å). Indexing was performed using Apex3 [1]. Data integration and reduction were performed using SaintPlus 6.01 [2]. Absorption correction was performed by multi-scan method implemented in SADABS [3]. Space group was determined using XPREP implemented in APEX3 [1]. Structure was solved using SHELXT [4] and refined using SHELXL-2017 [5-7] (full-matrix leastsquares on F^{2}) through OLEX2 interface program [8]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in geometrically calculated positions and were included in the refinement process using riding model with isotropic thermal parameters. $-\mathrm{CF}_{3}$ group was modeled as disordered over two positions and was refined using restraints. Crystal data and refinement conditions are shown in Table 1.
[1] Bruker (2017). APEX3 (Version 2015.9). Bruker AXS Inc., Madison, Wisconsin, USA.
[2] Bruker (2017) SAINT V8.35A. Data Reduction Software.
[3] Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption
Correction. University of Gottingen, Germany.
[4] Sheldrick, G. M. (2015) "SHELXT - Integrated space-group and crystal structure determination" Acta Cryst. A71, 3-8
[5] Sheldrick, G.M. (1990) Acta Cryst. A46, 467-473
[6] Sheldrick, G. M. (2008) Acta Cryst. A64, 112-122.
[7] G.M. Sheldrick (2015) "Crystal structure refinement with SHELXL", Acta Cryst., C71, 3-8
[8] Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H., OLEX2: A complete structure solution, refinement and analysis program (2009). J. Appl. Cryst., 42, 339-341.

Figure S1. Asymmetric unit of YJ_1_245_2. Anisotropic displacement parameters were drawn at 50% probability. CF_{3} group is disordered over two positions.

Table S1. Crystal data and structure refinement for YJ_1_245_2.

Identification code	YJ_1_245_2
CCDC\#	1826005

Empirical formula
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
Formula weight 282.28

Temperature/K 99.99

Crystal system monoclinic
Space group
$\mathrm{P} 2_{1} / \mathrm{c}$
$a / A ̊$
12.4840(2)
b/Å
10.2765(2)
c/Å
10.8302(2)
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
110.1610(10)

$\gamma /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	1304.29(4)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.438
μ / mm^{-1}	2.553
F(000)	584.0
Crystal size/mm ${ }^{3}$	$0.116 \times 0.058 \times 0.045$
Radiation	CuK ${ }^{(\lambda=1.54178) ~}$
2Θ range for data collection/ ${ }^{\circ}$	- 7.544 to 148.818
Index ranges	$-15 \leq h \leq 15,-12 \leq k \leq 12,-13 \leq 1 \leq 13$
Reflections collected	19918
Independent reflections	2659 [$\left.\mathrm{inint}=0.0450, \mathrm{R}_{\text {sigma }}=0.0211\right]$
Data/restraints/parameters	2659/118/246
Goodness-of-fit on F^{2}	1.069
Final R indexes [$1>=2 \sigma(\mathrm{l})$]	$\mathrm{R}_{1}=0.0287, \mathrm{wR}_{2}=0.0644$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0369, w \mathrm{R}_{2}=0.0682$
Largest diff. peak/hole /e \AA^{-3}	0.22/-0.27

[^0]:

[^1]: $\left.\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$

[^2]: $\left.\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$

[^3]: $\begin{array}{lllllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & \end{array}$

[^4]:

