Supplementary Material

Synthesis of new chiral bis-imidazolidin-4-ones: comparison between the classic method and green chemistry conditions

Nadia Bouzayani, Wassima Talbi, Sylvain Marque, Yakhdhane Kacem, and Béchir Ben Hassine

Laboratoire de Synthèse Asymétrique et Catalyse Homogène, Faculté des Sciences, Université de Monastir, Avenue de l’Environnement, 5019 Monastir, Tunisie
Université de Versailles Saint-Quentin-en-Yvelines, Institut Lavoisier de Versailles (ILV), UMR CNRS 8180, 45 avenue des Etats-Unis, 78035 Versailles Cedex, France
Email: sylvain.marque@uvSQ.fr, yacem@yahoo.com

Table of Contents

1. Stereochemistry analysis S2
2. Examples of NMR spectra S3
 2.1. 1HNMR spectrum of the 5a compound S3
 2.2. 13C NMR spectrum of the 5a compound S4
Stereochemistry analysis

Starting from the hydrazide 3 our works lead to unprecedented bisimidazolidinones 5 and two new stereocenters are generated. Keeping the stereocenters inherited from the chiral enantiopure amino acid, the stereochemistry analysis clearly shows that only three diastereoisomers could be existed. There are no pairs of enantiomers, therefore there is no racemic mixture whatever the cases are.

This analysis performed with the ortho isomer gives the same results with the meta and para isomers.
Examples of NMR spectra

1H NMR spectrum of the 5a compound
13C NMR spectrum of the 5a compound