Synthesis and anti-microbial / anti-malarial activity of a new class of chromone-dihydroquinazolinone hybrid heterocycles

Pavan Kumar Bathini, a Hemasri Yerrabelly, b and Jayaprakash Rao Yerrabelly*c,d

a Department of Process Research & Development, Dr. Reddy’s Laboratories Limited, CTO-II, Hyderabad 502 325, Telangana, India
b Department of Chemistry, Nizam College, Osmania University-500 001, India
c Department of Chemistry, Osmania University, Hyderabad, Telangana-500 007, India
d Department of Chemistry, Telangana University, Nizamabad-503 322, India
E-mail: yjpr_19@yahoo.com

Received 09-29-2017
Accepted 01-16-2018
Published on line 03-15-2018

Abstract

A new series of chromone-2,3-dihydroquinazolin-4-one hybrid heterocycles are synthesized from chromone-2-carbaldehydes by coupling with 2-aminobenzamides and hydrazides without oxidizing agents. The newly synthesized products exhibited moderate to good antimicrobial activity.

Keywords: Chromone-2-carbaldehydes, 2-aminobenzamide, 2-aminobenzohydrazide, 2,3-dihydroquinazolin-4-ones, antimicrobial activity, antimalarial activity
Introduction

Chromones and their derivatives are well-known naturally occurring oxygen heterocyclic compounds which exhibit important biological functions in nature. The rigid bicyclic chromone is a privileged moiety in drug discovery with activities such as anti-inflammatory, antitumor and anticancer activity.\(^1\) Simple, non-hydroxylated chromones were discovered to be selective inhibitors of p56lck tyrosine kinase.\(^4\) Thus, a simple, efficient synthesis of chromone molecular hybrids remains an important research topic.

Nitrogen-containing heterocyclic compounds are also reported to be significantly important because of their diverse biological and pharmacological activities such as antibacterial, antifungal,\(^5\)\(^-\)\(^8\) anticancer,\(^9\)-\(^11\) antiparkinson,\(^12\) antidepressant,\(^13\) analgesic,\(^14\) diuretic\(^15\),\(^16\) and antihistamine activity.\(^17\) These compounds also act as vasodilating agents,\(^18\) antihypertensive,\(^19\),\(^20\) and CNS stimulant.\(^21\) Other major pharmacological activities include, antianxiety,\(^22\) tranquilizing,\(^23\) antifibrillatory,\(^24\) and anticonvulsant\(^25\) effects. Some of the important chromone and 2,3-dihydroquinazolin-4-one scaffold drug candidates are presented in Figure 1.\(^26\)-\(^31\)

The heterocyclic molecular hybrids have advantages, such as, the potential to reduce the development of drug resistance and undesired side effects.\(^32\)-\(^39\) Chromone scaffold based hybrid heterocyclic products exhibited a wide range of biological activity.\(^40\)-\(^45\)

Figure 1. Chromone and 2,3-dihydroquinazolin-4-one drugs

In view of the interesting biological activities exhibited by chromones and 2,3-dihydroquinazolin-4-ones, structural modification of chromones has been attempted. The present work describes the design, synthesis and evaluation of antimicrobial and antimalarial activity of novel chromone-2,3-dihydroquinazolinone hybrid molecules. These novel scaffolds have been prepared by coupling 4-oxo-4\(^H\)-chromene-2-carbaldehydes with 2-aminobenzamide and 2-aminobenzohydrazide derivatives. During the synthesis, formation of new intermediates has also been realized.

Literature survey has shown that while extensive studies have been carried out on chromone-3-carbaldehyde\(^46\)-\(^47\), there is not much work on the synthesis and chemistry of chromone-2-carbaldehydes, probably due to the complexity in synthetic procedures.
Results and Discussion

4-Oxo-4H-chromen-2-carbaldehydes 9a-f were synthesized using reported procedures48-50 (1) by SeO\textsubscript{2} oxidation of 2-methyl-4H-chromen-4-ones 7a-c, (2) by MnO\textsubscript{2} oxidation of 2-(hydroxymethyl)-4H-chromen-4-ones 8a-c (Scheme 1). Approach 2 was specific for 6-substituted chromones as approach 1 resulted in very low yields of compounds 9e-f.

![Scheme 1. Synthesis of 4-oxo-4H-chromene-2-carbaldehydes (9a-f)](image)

4-Oxo-4H-chromene-2-carbaldehydes 9a-d were reacted with 2-aminobenzamide 10 in ethanol at 75-80 °C using PTSA as a catalyst for 3 hrs. The reaction was monitored for completion by TLC. The compounds 2-(4-oxo-4H-chromen-2-yl)-2,3-dihydroquinazolin-4(1H)-ones 11a-d were isolated by column chromatography (Scheme 2). Under the present reaction conditions, formation of two compounds (the desired cyclized compound and an imine intermediate) was possible, but only the desired cyclized compounds 11a-d were obtained in excellent yields.

![Scheme 2. Synthesis of 2-(4-oxo-4H-chromen-2-yl)-2,3-dihydroquinazolin-4(1H)-one (11a-d)](image)

The IR (solid, KBr) spectrum of 2-(4-oxo-4H-chromen-2-yl)-2,3-dihydroquinazolin-4(1H)-one 11a exhibited absorption bands at 3318 cm-1 (NH), 1721 cm-1 (CO, chromone) and 1672 cm-1 (CO, amide). The 1H NMR (400 MHz, DMSO-\textit{d}_6) spectrum of the compound 11a showed ten signals corresponding to twelve protons. The aldehyde proton of 4-oxo-4H-chromen-2-carbaldehyde 9a was absent. Exchangeable protons were identified...
by D$_2$O exchange analysis at δ_H 8.67 ppm (d, J 2.8 Hz, 1H, NH amide) and δ_H 7.5 ppm. Characteristic CH proton signals (H-2) appeared at δ_H 5.76 ppm (t, J 2.8 Hz, 1H). This observation suggested the formation of a cyclized compound 11a. The 13C NMR (100 MHz, DMSO-d_6) spectrum of 11a showed seventeen signals. Of the seventeen signals, one was observed in the aliphatic region at δ_C 63.32 ppm, which can be correlated with the aliphatic proton at δ_H 5.76 ppm. The remaining 16 signals were observed between δ_C 108.07 and 176.97 ppm. The positive-ion ESI-MS and HRMS data of 11a showed a protonated molecular ion at m/z 293.09 [M+H]$^+$ and m/z 293.0936 [M+H]$^+$, respectively.

Following the above observations, the study was extended to 2-aminobenzohydrazides 14a-c which were synthesized using commercially available isatoic anhydride 12 and different hydrazine’s 13a-c in DMF (Scheme 3).

![Scheme 3. Synthesis of 2-amino-N-substituted hydrazides (14a-c)](image)

The reaction of 4-oxo-4H-chromene-2-carbaldehyde 9a-f with 2-aminobenzohydrazide 14a gave imine intermediates 15a-f and the desired cyclized products 16a-f were not observed even under forcing experimental conditions (Scheme 4). Literature survey supported the imine formation from aldehydes with 2-aminobenzohydrazide.51

The IR (solid, KBr) spectrum of 2-amino-N’-[(4-oxo-4H-chromen-2-yl)methylene]benzohydrazide 15a exhibited absorption bands at 3466 cm$^{-1}$ (NH, primary amine), 3351 cm$^{-1}$ (NH, secondary amine), 1738 cm$^{-1}$ (CO, chromone) and 1663 cm$^{-1}$ (CO, amide). The 1H NMR (400 MHz, DMSO-d_6) spectrum of 15a showed twelve signals corresponding to thirteen protons. The aldehyde proton of 9a had disappeared. D$_2$O exchange analysis showed exchangeable protons at δ_H 12.2 (s, 1H, amide NH) and δ_H 6.52 ppm (s, 2H, NH$_2$). Presence of two amine protons suggested the involvement of only the hydrazide NH$_2$ in the reaction. The absence of a proton in the aliphatic region suggested that the compound formed was an imine, but not the expected cyclic product. The 13C NMR (100 MHz, DMSO-d_6) of 15a showed seventeen signals between δ_C 111.71 ppm and 176.84 ppm. The absence of aliphatic carbons correlates with the absence of aliphatic protons in 1H NMR. The positive ESI-MS and HRMS data of 15a showed the molecular ion at m/z 308.1 [M+H]$^+$ and 308.1046 [M+H]$^+$, respectively. From the HSQC data of 15a, the absence of correlations for the protons at δ_H 12.2 and 6.52 ppm confirmed that these are not attached to any carbon. This data supported the D$_2$O exchange information. The HSQC data showed that there are ten methine groups and seven quaternary carbons, two of them corresponding to carbonyl carbons. HOMO COSY of 15a showed two singlets at δ_H 8.25 and 6.72 ppm which did not show any correlations. From the 1H NMR study on 4-oxo-4H-chromene-2-carbaldehydes, the proton at δ_H 6.72 ppm was assigned to the H-3 olefin proton. The other proton at δ_H 8.25 ppm which correlated with the
carbon at δC 138.7 ppm (HSQC) was predicted to be from an imine. This was supported by the double bond equivalence (DBE) from HRMS data.

The results can be explained based on the difference in nucleophilicity of the NH$_2$ of hydrazide and aniline. The lone pair of electrons on the amino group corresponding to aniline 14a are conjugated with the aromatic nuclei and also the carbonyl group at the ortho position. Hence, these electrons are not freely available for the reaction when compared to the lone pair of electrons on the NH$_2$ of hydrazide 14a.

The imine compound 15a was further reacted with benzaldehyde 17. Interestingly, the reaction yielded the novel cyclic product 3-[(4-oxo-4H-chromen-2-yl)methylene]amino]-2-phenyl-2,3-dihydroquinazolin-4(1H)-one 18 (Scheme 4). In the 1H NMR spectrum of 18, the characteristic peak of cyclic compound H-2' appeared at δH 6.67 ppm and corresponding 13C signal of C-2' appeared at δC 76.32 ppm. When the same reaction was carried out using 4-oxo-4H-chromene-2-carbaldehyde 9a, the reaction did not occur (Scheme 4), probably due to steric hindrance.

Further reaction was carried out using the N-substituted 2-aminobenzohydrazides 14b,c. Interestingly, the compounds obtained were the desired cyclic products 19a-f (Scheme 5). In the 1H NMR (400 MHz, DMSO-d$_6$)
spectra of the obtained compounds 19a-f, a characteristic signal of H-2 was observed at δ_H 5.93 – 6.41 ppm and the corresponding carbon signal was observed at δ_C 71.4 – 72.2 ppm in 13C NMR. In the case that the free NH2 of hydrazide 14a was substituted with a phenyl 14b (where the lone pair is conjugated with the phenyl ring), the NH of the amide participated in the reaction, resulting in cyclized compounds having two heterocyclic moieties.

In order to develop hybrid triazole heterocyclic skeletons 20a-d, 4-oxo-4H-chromene-2-carbaldehydes 9a-d were reacted with N’-{4-[(1H-1,2,4-triazol-1-yl)methyl]phenyl}-2-aminobenzohydrazide 14c (Scheme 5).

![Scheme 5. Synthesis of 2-(4-oxo-4H-chromen-2-yl)-3-(phenylamino)-2,3-dihydroquinazolin-4(1H)-ones (19a-f) and 3-(4-[(1H-1,2,4-triazol-1-yl)methyl]phenyl)amino)-2-(4-oxo-4H-chromen-2-yl)-2,3-dihydroquinazolin-4(1H)-one (20a-d)](image)

Biological Activity

In vitro antibacterial activity

The hybrid molecules synthesized were tested against Gram-positive bacteria *Staphylococcus aureus* (MTCC 96), *Streptococcus pyogenes* (MTCC 442), and Gram-negative bacteria *Escherichia coli* (MTCC 443), and *Pseudomonas aeruginosa* (MTCC 741) (Table 1). Compounds 11b, 19a-c, 20b showed very good activity against the gram-positive organism *Staphylococcus aureus* compared to the standard drug Ampicillin. The compound 19b exhibited higher activity against gram-negative organism *Escherichia coli* when compared with the drug Ampicillin.
Table 1. Antimicrobial activity results of the synthesized compounds

<table>
<thead>
<tr>
<th>S. No</th>
<th>Compound</th>
<th>E. coli MTCC 443</th>
<th>P. aeruginosa MTCC 441</th>
<th>S. aureus MTCC 96</th>
<th>S. pyogenus MTCC 442</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Minimal inhibition concentration (µg/ml)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>11a</td>
<td>100</td>
<td>100</td>
<td>250</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>11b</td>
<td>200</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>3</td>
<td>15a</td>
<td>500</td>
<td>125</td>
<td>62.5</td>
<td>125</td>
</tr>
<tr>
<td>4</td>
<td>19a</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td>19b</td>
<td>250</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>6</td>
<td>19c</td>
<td>500</td>
<td>>1000</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td>7</td>
<td>19e</td>
<td>125</td>
<td>200</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>8</td>
<td>19f</td>
<td>200</td>
<td>>1000</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td>9</td>
<td>20a</td>
<td>100</td>
<td>>1000</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td>10</td>
<td>20b</td>
<td>>1000</td>
<td>250</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>20c</td>
<td>>1000</td>
<td>250</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td>12</td>
<td>20d</td>
<td>>1000</td>
<td>250</td>
<td>250</td>
<td></td>
</tr>
</tbody>
</table>

In vitro antifungal activity

The in vitro antifungal activity of the synthesized compounds were tested against fungal strains, Candida albicans (MTCC 227), Aspergillus niger (MTCC 282) and Aspergillus clavatus (MTCC 1323) (Table 2). The compounds 15a, 19e-f, 20c showed more activity against Candida albicans when compared to the standard drug Griseofulvin.

Table 2. Antifungal activity results of the synthesized compounds

<table>
<thead>
<tr>
<th>S. No</th>
<th>Compound</th>
<th>C. albicans MTCC 227</th>
<th>A. niger MTCC 282</th>
<th>A. clavatus MTCC 1323</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Std.</td>
<td>Griseofulvin</td>
<td>500</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>11a</td>
<td>500</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td>2</td>
<td>11b</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>3</td>
<td>15a</td>
<td>250</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td>4</td>
<td>19a</td>
<td>500</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>5</td>
<td>19b</td>
<td>1000</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td>6</td>
<td>19c</td>
<td>1000</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td>7</td>
<td>19e</td>
<td>250</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td>8</td>
<td>19f</td>
<td>200</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td>9</td>
<td>20a</td>
<td>1000</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td>10</td>
<td>20b</td>
<td>>1000</td>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td>11</td>
<td>20c</td>
<td>>1000</td>
<td>250</td>
<td>>1000</td>
</tr>
<tr>
<td>12</td>
<td>20d</td>
<td>>1000</td>
<td>250</td>
<td>250</td>
</tr>
</tbody>
</table>
Antimalarial activity

The antimalarial activity of the synthesized compounds was evaluated and compared with standard drugs Chloroquine and quinine. Activity of all the synthesized compounds was found to be lower than the standard drugs.

Conclusion

In summary, we have developed a simple, efficient and convenient method for the synthesis of novel chromone / 2,3-dihydroquinazolin-4-one hybrid heterocycles by coupling of 2-aminobenzamide / 2-amino-benzohydrazides with chromone-2-carbaldehydes. Some of the synthesized compounds were found to exhibit moderate to very good antimicrobial activity. Hence, derivatives of chromone / 2,3-dihydroquinazolin-4-ones can be utilized in the future for the development of potent antimicrobial drugs.

Experimental Section

General. Electrospray ionization and tandem mass spectrometry experiments were performed using a triple quadrupole mass spectrometer (PE Sciex model API 3000). The positive and negative electrospray data were obtained by switching the capillary voltage between +5000 and −4500 V, respectively. For HRMS, UPLC-TOF-MS system consisted of an Acquity™ Ultra Performance Liquid Chromatography system and Micromass LCT Premier XE Mass Spectrometer (High sensitivity orthogonal time-of-flight instrument; Waters, Milford, USA) equipped with an ESI lock spray source for accurate mass values. Leucine-enkephalin was used as reference compound, was introduced via the lock spray channel.

The NMR experiments were performed on Varian spectrometers operating at 400 and 500 MHz in DMSO-d$_6$ at 30 ºC. The 1H chemical shift values were reported on the δ scale in ppm, relative to TMS (δ = 0.00) and the 13C chemical shift values were reported relative to DMSO (δ = 40 ppm) as internal standard. Standard pulse sequences provided by Varian were used for distortionless enhancement by polarization transfer (DEPT), gradient double quantum filtered correlation spectroscopy (gDQCOSY), and gradient heteronuclear single quantum coherence spectroscopy (gHSQC).

Biological activity measurements were performed at M/s Microcare Laboratories, Surat, India. Antibacterial activity: Minimum inhibitory concentration (MIC) assay of the hybrid molecules synthesized was done by broth dilution method in tubes for macro dilution and in plates for micro dilution. Muller Hinton broth was used as nutrient medium to grow and dilute the drug suspension for the test bacteria. DMSO was used as diluent to get the desired concentration of synthesized compounds. Standard drugs ampicillin and ciprofloxacin were used for comparison.

Antifungal activity was performed against the fungal strains Candida albicans (MTCC 227), Aspergillus niger (MTCC 282) and Aspergillus clavatus (MTCC 1323). Fungal growth was done with Sabourauds dextrose broth at 28.8 ºC in aerobic condition for 48 hrs. 2% DMSO and sterilized distilled water were used as negative control and Griseofulvin (1 U strength) was used as positive control. Results were recorded in the form of primary and secondary screening.

Antimalarial Activity. The in vitro antimalarial assay was carried out in 96 well microtitre plates according to the micro assay protocol reference. Chloroquine and Quinine were taken as the reference drug for comparison.
General procedure for synthesis of 4-oxo-4H-chromene-2-carbaldehydes (9a-c)

1,4-dioxane (10 volumes), 2-methyl-4H-chromene-4-ones (7a-c) (160 mg, 1.0 mmol) and a catalytic amount of hydrogen peroxide were placed in a three-necked flask and selenium dioxide (177.5 mg, 1.6 mmol) was added under stirring and heated to 100-105 °C. After completion of the reaction (16 h.; TLC monitoring), the reaction mass was cooled to 25-35 °C and the selenium salts were removed by filtration. The filtrate was concentrated and the crude compound was purified by silica gel column chromatography. Elution of the column with ethyl acetate/petroleum ether 15:85 gave compounds 9a-c in 60% yield.

Chlorobenzene (15 volumes), 2-(hydroxymethyl)-4H-chromene-4-one (8a-c) (176 mg, 1.0 mmol) and MnO₂ (348 mg, 4.0 mmol) were placed in a three-necked flask and heated to 130-135 °C. After completion of the reaction (24 h. TLC monitoring), the reaction mass was cooled to 25-35 °C and the manganese salts were removed by filtration. The filtrate was concentrated and the crude compound was purified by silica gel column chromatography. Elution of the column with ethyl acetate/petroleum ether 15:85 gave compounds 9d-f in 70% yield.

General procedure for synthesis of 4-oxo-4H-chromene-2-carbaldehydes (9a-d)

4-Oxo-4H-chromene-2-carbaldehyde (9a-d) (1.0 mmol), ethanol (10 volumes) and PTSA (catalytic amount) were placed in a three-necked flask and 2-aminobenzamide (1.2 mmol) was added under stirring and heated to 75-80 °C. After completion of the reaction (3 h. TLC monitoring), the reaction mass was cooled to 20-25 °C and filtered. The crude compound was purified by silica gel column chromatography. Elution of column with ethyl acetate/petroleum ether 20:80 gave compounds 11a-d.

2-(4-Oxo-4H-chromen-2-yl)-2,3-dihydroquinazolin-4(1H)-one (11a-d)

Off-white crystalline solid (195 mg, 67%). Mp 282-285 °C. IR (solid, KBr, νmax, cm⁻¹): 3318 (NH, sec amine), 1762 (C=O, ketone), 1672 (C=O, amide). 1H NMR (400 MHz, DMSO-d₆): δH 8.67 (d, J 2.8 Hz, 1H, H-3'), amide NH), 8.00 (dd, J₁ 7.60 Hz , J₂ 0.8 Hz, 1H, H-5), 7.78 (dt, J₁ 8.4 Hz, J₂ 1.6 Hz, 1H, H-7), 7.64 (d, J 6.8 Hz, 1H, H-5'), 7.50 (m, 3H, H-6, H-8 and 1'H-NH), 7.31 (dt, J₁ 8.4 Hz, J₂ 1.6 Hz, 1H, H-7'), 6.83 (d, J 8.0 Hz, 1H, H-8'), 6.72 (t, J 7.6 Hz, 1H, H-6'), 6.28 (s, 1H, H-3), 5.76 (t, J 3.2 Hz, 1H, H-2'). 13C NMR (100 MHz, DMSO-d₆): δC 176.9 (C-4, C=O), 166.9 (C-2), 162.9 (C-4', amide C=O), 155.6 (C-8a), 146.5 (C-8'a), 134.7 (C-7'), 133.7 (C aromatic), 127.4 (C aromatic), 125.7 (C aromatic), 124.9 (C-5), 123.1 (C aromatic), 118.3 (C aromatic), 117.8 (C-8), 114.7 (C aromatic), 114.5 (C aromatic), 108.1 (C-3) and 63.3 ppm (C-2'). ESI-MS m/z: 293.093. HRMS (ESI): m/z calcd for C₁₁H₁₃N₂O₃ [M+H]+: 293.0926; found: 293.0936.

2-(3-Bromo-4-oxo-4H-chromen-2-yl)-2,3-dihydroquinazoline-4(1H)-one (11b)

Yellow crystalline solid (260 mg, 70%). mp 235-238 °C. IR (solid, KBr, νmax, cm⁻¹): 3297 (NH, sec amine), 1740 (C=O, ketone), 1672 (C=O, amide). 1H NMR (400 MHz, DMSO-d₆): δH 8.44 (d, J 1.6 Hz, 1H, H-3', amide NH), 8.07 (dd, J₁ 6.8 Hz, J₂ 1.2 Hz, 1H, H-5), 7.8 (m, 1H, H-7), 7.72 (d, J 6.4 Hz, 1H, H-5'), 7.52 (t, J 6.4 Hz, 1H, H-6), 7.42 (s, 1H, H-1'), NH), 7.28 (dt, J₁ 6.4 Hz, J₂ 1.2 Hz, 1H, H-7'), 7.16 (d, J 6.8 Hz, 1H, H-8), 6.76 (t, J 6.0 Hz, 1H, H-6'), 6.74 (d, J 6.8 Hz, H-8') and 6.27 ppm (t, J 2.4 Hz, 1H, H-2'). 13C NMR (100 MHz, DMSO-d₆): δC 171.9 (C-4, C=O), 165.7 (C-2), 161.9 (C-4', amide C=O), 152.9 (C-8a), 145.9 (C-8'a), 135.7 (C-7'), 134.9 (C aromatic), 128.4 (C aromatic), 125.7 (C aromatic), 124.7 (C-5), 123.1 (C aromatic), 118.1 (C aromatic), 117.8 (C-8), 114.8 (C aromatic), 114.5 (C aromatic), 108.1 (C-3) and 63.3 ppm (C-2'). ESI-MS m/z: 371.0033 [M+H]+; m/z 373.0013 [M+2+H]+. HRMS (ESI): m/z calcd for C₁₇H₁₃BrN₂O₃ [M+H]+: 371.0031; found: 371.0033.

2-(3-Bromo-6-methyl-4-oxo-4H-chromen-2-yl)-2,3-dihydroquinazolin-4(1H)-one (11c)

Brown crystalline solid (270 mg, 70%). mp 250-252 °C. IR (solid, KBr, νmax, cm⁻¹): 3317 (NH, sec amine), 1738 (C=O, ketone), 1672 (C=O, amide). 1H NMR (400 MHz, DMSO-d₆): δH 8.43 (d, J 2.0 Hz, 1H, H-3', amide NH), 7.85 (d, J 1.2 Hz, 1H, H-5), 7.71 (dd, J₁ 6.0 Hz, J₂ 1.2 Hz, 1H, H-5'), 7.60 (dd, J₁ 6.8 Hz, J₂ 1.2 Hz , 1H, H-7), 7.41 (s, 1H, H-1'-NH), 7.27 (dt, J₁ 6.4 Hz, J₂ 1.2 Hz, 1H, H-7').
1H NMR (400 MHz, DMSO-d$_6$): δH 8.69 (d, J 2.8 Hz, 1H, H-3'), 7.93 (d, J 2.8 Hz, 1H, H-5), 7.85 (dd, J1 9.6 Hz, J2 3.2 Hz, 1H, H-5'), 7.63 (dd, J1 6.0 Hz, J2 1.6 Hz, 1H, H-7), 7.55 (d, J 8.8 Hz, 1H, H-8), 7.51 (s, 1H, H-1' NH), 7.30 (dt, J1 8.4 Hz, J2 1.2 Hz, 1H, H-1'), 6.83 (t, J 7.6 Hz, 1H, H-8'), 6.73 (t, J 8.0 Hz, 1H, H-6'), 6.32 (s, 1H, H-3) and δH 5.77 ppm (t, J 3.2 Hz, 1H, H-2'). 13C NMR (100 MHz, DMSO-d$_6$): δC 178.5 (C-4, C=O), 165.8 (C-2), 162.6 (C-4', amide C=O), 154.2 (C-8a), 147.5 (C-8'a), 134.6 (C-7), 134.2 (C aromatic), 129.7 (C aromatic), 127.3 (C aromatic), 125.7 (C aromatic), 118.2 (C-8), 117.9 (C aromatic), 114.7 (C aromatic), 114.2 (C aromatic), 108.9 (C-3) and 63.8 ppm (C-2'). ESI-MS m/z: 327.05 [M+H]+, m/z 329.04 [M+2+H]+. HRMS (ESI): m/z calcd for C$_{17}$H$_{13}$ClN$_2$O$_3$ [M+H]+: 327.0536; found: 327.0533.

Synthesis of 2-amino-N'-(4-oxo-4H-chromen-2-yl)methylene]benzohydrazides (15a-f)

4-Oxo-4H-chromene-2-carbaldehydes (9a-f) (1.0 mmol), ethanol (10 volumes) were placed in a three-necked flask and 2-aminobenzohydrazide (14a) (1.2 mmol) was added under stirring and heated to 75-80 °C. After completion of the reaction (3 h. TLC monitoring), the reaction mass was cooled to 20-25 °C and the compound was filtered and dried at 70 °C for 4 h.

2-Amino-N'-(4-oxo-4H-chromen-2-yl)methylene]benzohydrazide (15a). Yellow crystalline solid (245 mg, 80%). mp 188-192 °C. IR (solid, KBr, ν$_{max}$, cm$^{-1}$): 3466 (NH, primary amine), 3351 (NH, sec amine), 1738 (C=O, ketone), 1663 (C=O, amide). 1H NMR (400 MHz, DMSO-d$_6$): δH 12.16 (s, 1H, H-1'b, amide NH), 8.24 (s, 1H, H-2'a), 8.06 (dd, J1 8.4 Hz, J2 2.0 Hz, 1H, H-5), 7.86 (m, 1H, H-7), 7.73 (d, J 8.0 Hz, 1H, H-8), 7.62 (dd, J1 8.0 Hz, J2 1.2 Hz, 1H, H-2'), 7.53 (dt, J1 7.6 Hz, J2 0.8 Hz, 1H, H-6), 7.26 (dt, J1 8.4 Hz, J2 1.2 Hz, 1H, H-4'), 6.78 (d, J 8.0 Hz, 1H, H-5'), 6.72 (s, 1H, H-3), 6.61 (dt, J1 8.4 Hz, J2 0.8 Hz, 1H, H-3') and 6.53 ppm (s, 2H, H-6'a, NH$_2$). 13C NMR (100 MHz, DMSO-d$_6$): δC 176.8 (C-4, C=O), 165.7 (C1'a, C=O amide), 159.2 (C-2), 155.5 (C-8a), 150.6 (C aromatic), 138.7 (C-2a), 134.7 (C-7), 132.9 (C4'), 128.5 (C-2'), 125.6 (C-6), 124.9 (C-5), 123.8 (C aromatic), 118.5 (C-8), 116.6 (C-5'), 114.6 (C-3'), 112.2 (C aromatic), and 111.7 ppm (C-3). ESI-MS m/z: 308.1 [M+H]+, HRMS (ESI): m/z calcd for C$_{17}$H$_{13}$ClN$_2$O$_3$ [M+H]+: 308.1035; found: 308.1046.

2-Amino-N'-(3-bromo-4-oxo-4H-chromen-2-yl)methylene]benzohydrazide (15b). Yellow crystalline solid (270 mg, 70%). mp 254-257 °C. IR (solid, KBr, ν$_{max}$, cm$^{-1}$): 3471 (NH, primary amine), 3357 (NH, sec amine), 1739 (C=O, ketone), 1635 (C=O, amide). 1H NMR (400 MHz, DMSO-d$_6$): δH 12.4 (s, 1H, H-2'b, amide NH), 8.87 (s, 1H, H-2'a), 8.00 (d, J 8.0 Hz, 1H, H-5'), 7.90 (t, J 8.0 Hz, 1H, H-7), 7.74 (d, J 8.8 Hz, 1H, H-8), 7.65 (d, J 8.0 Hz, 1H, H-2'), 7.56 (t, J 7.6 Hz, 1H, H-6), 7.26 (t, J 8.0 Hz, 1H, H-4'), 6.80 (d, J 8.4 Hz, 1H, H-5') and 6.60 ppm (t, J 7.6 Hz, 3H, H-3', H-6'a, NH$_2$). 13C NMR (100 MHz, DMSO-d$_6$): δC 171.9 (C-4, C=O), 165.6 (C1'a, C=O), 155.4 (C-2), 154.6 (C-8a), 150.8 (C aromatic), 138.0 (C-2a), 135.2 (C-7), 133.1 (C4'), 128.5 (C-2'), 126.0 (C-6'), 125.4 (C-5'), 121.6 (C aromatic), 118.3 (C-8), 116.8 (C-5'), 114.5 (C-3'), 111.9 (C aromatic) and 111.8 ppm (C-3). ESI-MS m/z: 386.01 [M+H]+, 388.01 [M+2+H]+. HRMS (ESI): m/z calcd for C$_{17}$H$_{15}$BrN$_2$O$_3$ [M+H]+: 386.0140; found: 386.0139.

2-Amino-N'-(3-bromo-6-methyl-4-oxo-4H-chromen-2-yl)methylene]benzohydrazide (15c). Yellow crystalline solid (292 mg, 73%). mp 236-239 °C. IR (solid, KBr, ν$_{max}$, cm$^{-1}$): 3464 (NH, primary amine), 3350 (NH, sec amine), 1739 (C=O, ketone), 1661 (C=O, amide). 1H NMR (400 MHz, CDCl$_3$ + DMSO-d$_6$): δH 12.32 (s, 1H, H-1'b, amide NH), 8.91 (s, 1H, H-2'a), 7.91 (s, 1H, H-5), 7.64 (m, 3H, H-7, H-8 and H-2'), 7.22 (t, 1H, H-4'), 6.81 (d, J 8.4 Hz, 1H, H-5'), 6.64 (t, J 8.0 Hz, 1H, H-8), 6.18 (d, J 8.0 Hz, 1H, H-7), 6.09 ppm (s, 2H, H-6'a, NH$_2$). 13C NMR (100 MHz, DMSO-d$_6$): δC 178.6 (C-4, C=O), 165.8 (C-2), 162.6 (C aromatic), 154.2 (C aromatic), 150.6 (C aromatic), 138.7 (C-2a), 135.2 (C-7), 132.9 (C4'), 128.5 (C-2'), 126.0 (C-6'), 125.4 (C-5'), 121.6 (C aromatic), 118.3 (C-8), 116.8 (C-5'), 114.5 (C-3'), 111.9 (C aromatic) and 111.8 ppm (C-3). ESI-MS m/z: 386.01 [M+H]+, 388.01 [M+2+H]+. HRMS (ESI): m/z calcd for C$_{17}$H$_{15}$BrN$_2$O$_3$ [M+H]+: 386.0140; found: 386.0139.
Hz, 1H, H-5), 6.59 (t, 1H, H-3') 6.50 (s, 2H, H-6'a, NH2) and 2.48 ppm (s, 3H, H-6a). 13C NMR (100 MHz, DMSO-d6): δc 171.8 (C-4, C=O), 165.9 (C1'a, C=O), 155.3 (C-2), 152.9 (C-8'a), 150.7 (C aromatic), 138.1 (C-2a), 136.3 (C-6), 135.8 (C-7), 133.1 (C-4'), 128.5 (C-2'), 124.6 (C-5), 121.4 (C aromatic), 118.1 (C-8), 116.6 (C-5'), 114.5 (C-3'), 111.8 (C aromatic), 111.8 (C-3) and 20.4 ppm (C-6a). ESI-MS m/z: 400.0 [M+H]+, 402.0 [M+2+H]+, HRMS (ESI): m/z calcd for C18H15BrN3O3 [M+H]+: 400.0297; found: 400.0302.

2-Amino-N'-[(6-chloro-4-oxo-4H-chromen-2-yl)methylene]benzohydrazide (15d). Yellow crystalline solid (240 mg, 71%). mp 218-220 °C. IR (solid, KBr, νmax cm⁻¹): 3459 (NH, primary amine), 3349 (NH, sec amine), 1742 (C=O, ketone), 1673 (C=O, amide). 1H NMR (400 MHz, DMSO-d6): δH 12.14 (s, 1H, H-1'b, amide NH), 8.23 (s, 1H, H-2a), 7.84 (s, 1H, H-5), 7.65 (m, 3H), 7.26 (dt, J 8.0 Hz, J 1.6 Hz, 1H, H-4'), 6.79 (d, J 7.6 Hz, 1H, H-5'), 6.61 (d, J 1.2 Hz, H-6, 1H, H-5), 6.70 (s, 1H, H-3), 6.61 (dt, J 1.2 Hz, J 8.4 Hz, 1H, H-3'), 6.72 (d, J 8.4 Hz, 1H, H-5'), 7.72 (dt, J 1.6 Hz, H-4, J 8.4 Hz, 1H, H-4'), 6.70 (s, 1H, H-3). 13C NMR (100 MHz, DMSO-d6): δc 175.9 (C-4, C=O), 165.5 (C1'a, C=O amide), 160.2 (C-2), 155.5 (C-8'a), 150.2 (C aromatic), 138.3 (C-2a), 134.1 (C-7), 131.1 (C-6), 129.5 (C aromatic), 128.5 (C-2'), 125.6 (C aromatic), 123.9 (C aromatic), 118.3 (C-8), 116.8 (C-5'), 114.1 (C-3'), 112.5 (C aromatic), and 111.6 ppm (C-3). ESI-MS m/z: 342.1 [M+H]+, 344.1 [M+2+H]+. HRMS (ESI): m/z calcd for C17H13ClN3O3 [M+H]+: 342.1049; found: 342.1055.

2-Amino-N'-[(6-chloro-7-methyl-4-oxo-4H-chromen-2-yl)methylene]benzohydrazide (15e). Yellow crystalline solid (275 mg, 85%). mp 249-251 °C. IR (solid, KBr, νmax cm⁻¹): 3463 (NH, primary amine), 3345 (NH, sec amine), 1800 (C=O, ketone), 1661 (C=O, amide). 1H NMR (400 MHz, DMSO-d6): δH 12.14 (s, 1H, H-1'b, amide NH), 8.23 (s, 1H, H-2a), 7.84 (s, 1H, H-5), 7.65 (m, 3H), 7.26 (dt, J 8.0 Hz, J 1.6 Hz, 1H, H-4'), 6.79 (d, J 7.6 Hz, 1H, H-5'), 6.61 (t, J 8.0 Hz, 1H, H-3'), 6.51 (s, 2H, H-6'a, NH2) and 2.44 ppm (s, 3H, H-6a). 13C NMR (100 MHz, DMSO-d6): δc 176.5 (C-4, C=O), 165.8 (C1'a, C=O), 159.2 (C-2), 153.2 (C-8'a), 150.5 (C aromatic), 138.3 (C-2a), 136.3 (C-6), 135.8 (C-7), 132.8 (C-4'), 128.3 (C-2'), 124.1 (C-5), 123.9 (C aromatic), 118.1 (C-8), 116.5 (C-5'), 114.4 (C-3'), 111.9 (C aromatic), 111.7 (C-3) and 20.2 ppm (C-6a). ESI-MS m/z: 322.11 [M+H]+, 342.11 [M+2+H]+. HRMS (ESI): m/z calcd for C18H15ClN3O3 [M+H]+: 322.1192; found: 322.1184.

2-Amino-N'-[(4-oxy-4H-chromen-2-yl)methylen]amino)-2-phenyl-2,3-dihydroquinazolin-4(1H)-one (18). 2-Amino-N'-[(4-oxy-4H-chromen-2-yl)methylene]benzohydrazide (15a) (307 mg, 1.0 mmol), ethanol (10 volumes) were placed in a three-necked flask and benzaldehyde (127 mg, 1.2 mmol) was added under stirring and heated to 75-80 °C. After completion of reaction (3 h. TLC monitoring), reaction mass was cooled to 20-25 °C and compound was filtered and dried at 70 °C for 4 h. to obtain a yellow crystalline solid (325 mg, 82%). mp 285-288 °C. IR (solid, KBr, νmax cm⁻¹): 3298 (NH, sec amine), 1740 (C=O, ketone), 1630 (C=O, amide). 1H NMR (400 MHz, DMSO-d6): δH 8.81 (s, 1H, H-2a), 8.14 (d, J 3.2 Hz, 1H, NH), 8.04 (dd, J 1; 8.0 Hz, J 1.2 Hz, 1H, H-5), 7.81 (dt, J 8.8 Hz, J 1.6 Hz, 1H, H-7), 7.74 (d, J 7.2 Hz, 1H, CH aromatic), 7.68 (d, J 8.8 Hz, 1H, H-8), 7.50 (t, J 8.0 Hz, 1H, H-6), 7.4-7.3 (m, 6H, CH aromatic), 6.83 (d, J 8.0 Hz, 1-H, CH aromatic), 6.76 (t, J 7.6 Hz, 1H, CH aromatic), 6.70 (s, 1H, H-3) and 6.67 ppm (d, J 2.8 Hz, 1H, H-2'). 13C NMR (100 MHz, DMSO-d6): δc 171.8 (C-4,
C=O), 162.5 (C-1'a, C=O), 159.9 (C-2'), 156.1 (C-8'a), 145.1 (C aromatic), 143.7 (C aromatic), 139.1 (C-2'a), 134.9 (C-7), 134.0 (C-4'), 129.3 (C aromatic), 129.1 (C aromatic), 128.8 (C-3' and C-5'), 126.6 (C-2' and C-6'), 125.7 (C-6), 125.0 (C aromatic), 124.5 (C-5), 120.2 (C-8), 118.3 (C-5'), 116.2 (C-3'), 115.2 (C aromatic), 110.9 (C-3) and 76.4 ppm (C-2'). ESI-MS m/z: 396.2 [M+H]+.

Synthesis of 2-(4-oxo-4'H-chromen-2-yl)-3-(phenylamino)-2,3-dihydroquinazolin-4(1H)-ones (19a-f)

4-Oxo-4'H-chromene-2-carbaldehyde (9a-f) (1.0 mmol), and ethanol (10 volumes) were placed in a three-necked flask and 2-amino-N-phenylbenzohydrazide (14b) (1.2 mmol) was added under stirring and heated to 75-80 °C. After completion of the reaction (3 h. TLC monitoring), the reaction mass was cooled to 20-25 °C and filtered. The crude compound was purified by silica gel column chromatography. Elution of the column with ethyl acetate/petroleum ether 20:80 gave compounds 19a-f.

2-(4-Oxo-4'H-chromen-2-yl)-3-(phenylamino)-2,3-dihydroquinazolin-4(1H)-one (19a). Off white crystalline solid (306 mg, 80%). mp 153-155 °C. IR (solid, KBr, cm−1): 3279 (NH, sec amine), 1649 (C=O, ketone), 1607 (C=O amide). 1H NMR (400 MHz, DMSO-d6): δH 8.61 (s, 1H, H-3'a), 8.00 (dd, J = 8.0 Hz, J = 1.6 Hz, 1H, H-5), 7.88 (d, J = 3.2 Hz, 1H, H-1'), 7.79 (m, 1H, H-7), 7.70 (dd, J = 8.4 Hz, J = 1.2 Hz, 1H, H-5'), 7.47 (dt, J = 8.0 Hz, J = 1.2 Hz, 1H, H-6'), 7.42 (d, J = 8.4 Hz, 1H, H-8), 7.34 (dt, J = 8.4 Hz, J = 1.6 Hz, 1H, H-7'), 7.19 (t, J = 8.4 Hz, 2H, H-3', H-5'), 6.8 (m, 5H, CH aromatic), 6.42 (s, 1H, H-3) and 5.95 ppm (d, J = 3.2 Hz, 1H, H-2'). 13C NMR (100 MHz, DMSO-d6): δC 176.9 (C-4, C=O), 165.3 (C-2), 162.5 (C-4', C=O), 155.6 (C-8'a), 147.6 (C-8'a), 146.3 (C aromatic), 134.5 (C aromatic), 134.0 (C aromatic), 128.9 (C-3', 5'), 127.5 (C (aromatic), 125.7 (C (aromatic), 124.9 (C-5), 123.2 (C aromatic), 119.4 (C aromatic), 118.4 (C-8), 118.2 (C aromatic), 114.7 (C (aromatic), 114.3 (C aromatic), 112.3 (C-2' and C-6'), 108.9 (C-3) and 71.6 ppm (C-2'). ESI-MS m/z: 384.13 [M+H]+, HRMS (ESI): m/z calcd for C23H18N3O3 [M+H]+: 384.1348; found: 384.1333.

2-(3-Bromo-4-oxo-4'H-chromen-2-yl)-3-(phenylamino)-2,3-dihydroquinazolin-4(1H)-one (19b). Off white crystalline solid (322 mg, 70%). mp 259-262 °C. IR (solid, KBr, cm−1): 3300 (NH, sec amine), 1678 (C=O, ketone), 1664 (C=O, amide). 1H NMR (400 MHz, DMSO-d6): δH 8.33 (s, 1H, H-3'a, NH), 8.06 (dd, J = 8.4 Hz, J = 1.6 Hz, 1H, H-5), 7.85 (d, J = 2.8 Hz, 1H, H-1'), NH), 7.78 (m, 2H, H-7, H-5'), 7.52 (t, J = 8.0 Hz, 1H, H-6), 7.33 (t, J = 6.8 Hz, 1H, H-7'), 7.17 (t, J = 8.0 Hz, 2H, H-3', H-5'), 7.07 (d, J = 8.4 Hz, 1H, H-8), 6.80 (m, 5H, CH aromatic) and 6.41 ppm (d, J = 2.8 Hz, 1H, H-2'). 13C NMR (100 MHz, DMSO-d6): δC 171.6 (C-4, C=O), 163.0 (C-2) 161.5 (C-4', C=O), 154.3 (C-8'a), 147.2 (C-8'a), 145.9 (C aromatic), 135.1 (C aromatic), 133.9 (C-7'), 129.0 (C-3', 5'), 127.3 (C-7), 126.3 (C aromatic), 125.5 (C aromatic), 121.2 (C aromatic), 119.5 (C aromatic), 118.1 (C-8), 117.9 (C aromatic), 114.3 (C aromatic), 113.9 (C aromatic), 112.3 (C-2' and C-6'), 107.3 (C-3) and 71.9 ppm (C-2'). ESI-MS m/z: 462.04 [M+H]+, m/z 464.04 [M+2+H]+, HRMS (ESI): m/z calcd for C23H17N2O3Br [M+H]+: 462.0453; found: 462.0432.

2-(3-Bromo-4-oxo-4'H-chromen-2-yl)-3-(phenylamino)-2,3-dihydroquinazolin-4(1H)-one (19c). Yellow crystalline solid (284 mg, 60%). mp 225-227 °C. IR (solid, KBr, cm−1): 3372 (NH, sec amine), 1683 (C=O, ketone), 1639 (C=O, amide). 1H NMR (400 MHz, DMSO-d6) δH 8.34 (s, 1H, H-3'a, NH), 7.83 (s, 2H, H-5, H-1'), NH), 7.75 (d, J = 7.6 Hz, 1H, H-7), 7.62 (d, J = 8.4 Hz, 1H, H-5), 7.33 (t, J = 7.2 Hz, 1H, H-7'), 7.15 (t, J = 7.6 Hz, 2H, H-3', H-5'), 6.97 (d, J = 8.4 Hz, 1H, H-8), 6.80 (m, 5H, CH aromatic), 6.38 (d, J = 2.8 Hz, 1H, H-2') and 2.41 ppm (s, 3H, H-6'a). 13C NMR (100 Hz, DMSO-d6): δC 171.5 (C-4, C=O), 163.0 (C-2), 161.3 (C=O, C-4', amide), 152.6 (C-8'a), 147.2 (C-8'a), 145.9 (C aromatic), 136.2 (C-6), 136.0 (C aromatic), 133.9 (C aromatic), 128.9 (C-3', 5'), 127.3 (C aromatic), 124.6 (C aromatic), 121.0 (C aromatic), 119.5 (C aromatic), 118.1 (C-8), 117.8 (C aromatic), 114.3 (C aromatic), 113.9 (C aromatic), 112.3 (C-2' and C-6'), 107.2 (C-3), 71.9 (C-2') and 20.4 ppm (C-6'a). ESI-MS m/z: 476.05 [M+H]+, 478.05 [M+2+H]+, HRMS (ESI): m/z calcd for C24H19N3O3Br [M+H]+: 476.0610; found: 476.0591.

2-(6-Chloro-4-oxo-4'H-chromen-2-yl)-3-(phenylamino)-2,3-dihydroquinazolin-4(1H)-one (19d). Yellow crystalline solid (258 mg, 62%). mp 198-200 °C. IR (solid, KBr, cm−1): 3289 (NH, sec amine), 1645 (C=O, ketone), 1602 (C=O, amide). 1H NMR (400 MHz, DMSO-d6): δH 8.59 (s, 1H, H-3'a), 7.89 (d, J = 2.8 Hz, 1H, H-5),
Synthesis of 3-[(1H-1,2,4-triazol-1-yl)methyl][phenyl]amino]-2-(4-oxo-4H-chromen-2-yl)-2,3-dihydroquinazolin-4(1H)-ones (20a-d)

4-Oxo-4H-chromene-2-carbaldehyde (9a-d) (1.0 mmol), ethanol (10 volumes) were placed in a three-necked flask and N'-(4-[[1H-1,2,4-triazol-1-yl]methyl][phenyl]-2-aminobenzohydrazide (14c) (1.2 mmol) was added under stirring and heated to 75-80 °C. After completion of the reaction (3 h. TLC monitoring), the reaction mass was cooled to 20-25 °C and filtered. The crude compound was purified by silica gel column chromatography. Elution of the column with ethyl acetate/petroleum ether 20:80 gave compounds 20a-d.

3-[(1H-1,2,4-Triazo1-1-yl)methyl][phenyl]amino)-2-(4-oxo-4H-chromen-2-yl)-2,3-dihydroquinazolin-4(1H)-one (20a). Pale yellow crystalline solid (255 mg, 55%). mp 160-163 °C. IR (solid, KBr, v_max cm⁻¹): 3259 (NH, sec amine), 1741 (C=O, ketone), 1615 (C=O, amide). ¹H NMR (400 MHz, DMSO-d₆): δ_H 8.66 (s, 1H, H-3’, a), 8.57 (s, 1H, H-3’, b), 7.99 (dd, J = 8.4 Hz, J = 1.6 Hz, 1H, H-5’), 7.92 (s, 1H, H-3”), 7.84 (d, J = 2.4 Hz, 1H, H-1’, NH), 7.77 (m, 1H, H-7), 7.69 (dd, J = 7.6 Hz, J = 1.2 Hz, 1H, H-5”), 7.48 (dt, J = 7.6 Hz, J = 0.8 Hz, 1H, H-6), 7.40 (d, J = 8.4 Hz, 1H, H-8), 7.34 (dt, J = 8.4 Hz, J = 1.6 Hz, 1H, H-7”), 7.17 (dd, J = 8.4 Hz, 2H, H-3’, H-5’), 6.80 (m, 4H), 6.40 (s, 1H, H-3), 5.93 (d, J = 3.2 Hz, 1H, H-2”) and 5.26 ppm (s, 2H, H-4). ¹³C NMR (100 MHz, DMSO-d₆): δC 176.8 (C-4, C=O), 165.1 (C-2), 162.1 (C-4’, C-5”), 155.6 (C-8a), 147.4 (C-8’a), 146.3 (C aromatic), 143.7 (C-5”), 134.5 (C aromatic), 134.0 (C-7”), 129.1 (C-3’, C-5”), 127.5 (C aromatic), 127.0 (C aromatic), 125.7 (C aromatic), 124.9 (C aromatic), 123.8 (C aromatic), 121.3 (C aromatic), 118.0 (C aromatic), 114.8 (C aromatic), 114.3 (C aromatic), 112.7 (C aromatic), 112.0 (C aromatic), 110.9 (C aromatic), 109.6 (C aromatic), 108.4 (C aromatic), 107.7 (C aromatic), 106.6 (C aromatic), 103.0 (C aromatic), 101.9 (C aromatic), 101.4 (C aromatic), 100.0 (C aromatic), 99.3 (C aromatic), 98.3 (C aromatic), 97.6 (C aromatic), 92.7 (C aromatic), 92.1 (C aromatic), 91.2 (C aromatic), 89.3 (C aromatic), 84.3 (C aromatic), 81.8 (C aromatic), 79.3 (C aromatic), 78.4 (C aromatic), 76.7 (C aromatic), 76.4 (C aromatic), 63.8 (C aromatic), 62.8 (C aromatic), 60.8 (C aromatic), 59.7 (C aromatic), 58.6 (C aromatic), 57.6 (C aromatic), 56.7 (C aromatic), 55.6 (C aromatic), 54.6 (C aromatic), 53.6 (C aromatic), 52.5 (C aromatic), 51.5 (C aromatic), 50.5 (C aromatic), 49.5 (C aromatic), 48.5 (C aromatic), 47.5 (C aromatic), 46.5 (C aromatic), 45.5 (C aromatic), 44.5 (C aromatic), 43.5 (C aromatic), 42.5 (C aromatic), 41.5 (C aromatic), 40.5 (C aromatic), 39.5 (C aromatic), 38.5 (C aromatic), 37.5 (C aromatic), 36.5 (C aromatic), 35.5 (C aromatic), 34.5 (C aromatic), 33.5 (C aromatic), 32.5 (C aromatic), 31.5 (C aromatic), 30.5 (C aromatic), 29.5 (C aromatic), 28.5 (C aromatic), 27.5 (C aromatic), 26.5 (C aromatic), 25.5 (C aromatic), 24.5 (C aromatic), 23.5 (C aromatic), 22.5 (C aromatic), 21.5 (C aromatic), 20.5 (C aromatic), 19.5 (C aromatic), 18.5 (C aromatic), 17.5 (C aromatic), 16.5 (C aromatic), 15.5 (C aromatic), 14.5 (C aromatic), 13.5 (C aromatic), 12.5 (C aromatic), 11.5 (C aromatic), 10.5 (C aromatic), 9.5 (C aromatic), 8.5 (C aromatic), 7.5 (C aromatic), 6.5 (C aromatic), 5.5 (C aromatic), 4.5 (C aromatic), 3.5 (C aromatic), 2.5 (C aromatic), 1.5 (C aromatic), 0.5 (C aromatic).
aromatic), 123.2 (C-5), 123.9 (C aromatic), 120.9 (C aromatic), 118.4 (C aromatic), 118.2 (C aromatic), 114.7 (C aromatic), 114.2 (C aromatic), 112.3 (C aromatic). 118.0 (C aromatic), 114.3 (C aromatic), 113.8 (C aromatic), 112.2 (C aromatic), 108.0 (C aromatic), 72.0 (C aromatic) and C-6 (C aromatic).

ESI-MS m/z: 543.07 [M+H]+, HRMS (ESI): m/z calcd for C_{26}H_{20}BrN_{6}O_{3} [M+H]+: 543.0780; found: 543.0799.

3-[[4-[(1H-1,2,4-Triazol-1-yl)methyl]phenyl]amino]-2-(3-bromo-4-oxo-4H-chromen-2-yl)-2,3-dihydroquinazolin-4(1H)-one (20b). Green crystalline solid (224 mg, 45%). mp 255-260 °C. IR (solid, KBr, \nu_{max}, cm^{-1}): 3323 (NH, sec amine), 1736 (C=O, ketone), 1668 (C=O, amidie). 1H NMR (400 MHz, DMSO-d6): δH 8.59 (s, 1H, H-3a', NH), 8.41 (s, 1H, H-5a'), 8.06 (s, 1H, H-5), 7.90 (s, 1H, H-3'), 7.77 (d, J 2.8 Hz, 1H, H-1'), NH), 7.71 (d, J 7.6 Hz, 1H, H-7), 7.65 (d, J 8.4 Hz, 1H, H-5'), 7.31 (dt, J 8.8 Hz, J 2.0 Hz, 1H, H-7), 7.15 (d, J 8.0 Hz, 2H, H-2'), 7.06 (d, J 8.4 Hz, 1H, H-8), 6.80 (m, 4H, CH aromatic), 6.40 (d, J 2.4 Hz, 1H, H-2'), 5.25 ppm (s, 2H, H-4'a) and 2.49 ppm (s, 3H, H-6a).

\[\text{ESI-MS m/z: 557.09 [M+H]+, m/z 559.09 [M+2+H]+, HRMS (ESI): m/z calcd for C}_{27}\text{H}_{22}\text{BrN}_{6} \text{O}_{3} \text{ [M+H]+: 557.0937; found: 557.0944.} \]

3-[[4-[(1H-1,2,4-Triazol-1-yl)methyl]phenyl]amino]-2-(6-chloro-4-oxo-4H-chromen-2-yl)-2,3-dihydroquinazolin-4(1H)-one (20d). Yellow crystalline solid (224 mg, 45%). mp 255-260 °C. IR (solid, KBr, \nu_{max}, cm^{-1}): 3269 (NH, sec amine), 1741 (C=O, ketone), 1647 (C=O, amidie). 1H NMR (400 MHz, DMSO-d6): δH 8.66 (s, 1H, H-3'a, NH), 8.57 (s, 1H, H-5'), 7.92 (s, 1H, H-5), 7.91 (s, 1H, H-3'), 7.84 (s, 1H, H-1', NH), 7.82 (d, J 2.0 Hz, 1H, H-7), 7.69 (d, J 4.8 Hz, 1H, H-5'), 7.48 (d, J 7.2 Hz, 1H, H-8), 7.34 (t, 1H, H-7'), 7.17 (d, J 6.8 Hz, 2H, H-3', H-5'), 6.80 (m, 4H), 6.40 (s, 1H, H-3), 5.93 (d, J 2.4 Hz, 1H, H-2') and 5.26 ppm (s, 2H, H-4'a). 13C NMR (100 MHz, DMSO-d6): δC 175.8 (C-4', C=O), 165.8 (C-2'), 162.4 (C-4', C=O amidie), 154.2 (C aromatic), 151.5 (C-3'), 147.4 (C aromatic), 146.3 (C aromatic), 143.7 (C-5'), 134.5 (C aromatic), 134.1 (C-7'), 130.1 (C-6) 129.2 (C-3'), 127.3 (C aromatic), 127.1 (C-7), 126.3 (C-6), 125.6 (C aromatic), 121.2 (C-5), 118.1 (C aromatic), 118.0 (C aromatic), 113.8 (C aromatic), 112.2 (C-2' and C-6'), 108.9 (C-3), 71.4 (C-2'), 51.8 (C-4'a) and 29.9 ppm (C-6a).

\[\text{ESI-MS m/z: 557.09 [M+H]+, m/z 559.09 [M+2+H]+, HRMS (ESI): m/z calcd for C}_{27}\text{H}_{22}\text{ClN}_{6} \text{O}_{3} \text{ [M+H]+: 557.0937; found: 557.0944.} \]
Acknowledgements

The authors are thankful to the management of Dr. Reddy’s laboratories and Department of Chemistry, Osmania University for facilitating the research work.

Supplementary Material

Supplementary material (1H NMR, 13C NMR and HRMS spectrum for the compounds 11a, 15a, 19a and 20a) associated with this article can be found in the website.

References

27. Caldwell, E. Medical Express 2013.
https://doi.org/10.1093/jac/33.4.685

https://doi.org/10.1016/j.ejmech.2015.08.015

https://doi.org/10.1016/j.bmcl.2012.07.064

https://doi.org/10.1021/jm301650g

https://doi.org/10.2174/138955706776361493

https://doi.org/10.2174/138955710791608280

https://doi.org/10.1038/s41598-017-17261-w

https://doi.org/10.1021/cr400265z

https://doi.org/10.1007/BF00522119

https://doi.org/10.1007/s12039-017-1328-9

http://dx.doi.org/10.3998/ark.5550190.p009.020

https://doi.org/10.1080/00397919808004936

