Archive for Organic Chemistry

Formation of thiadiazole, thiadiazine, thiadiazepine and pyrazole derivatives in the reaction of 2,4-disubstituted thiosemicarbazides with tetracyanoethylene

Alaa A. Hassan, ${ }^{* a}$ Ashraf A. Aly, ${ }^{\text {a }}$ Sara M. Mostafa, ${ }^{\text {a }}$ and Dietrich Döpp ${ }^{\text {b }}$
${ }^{a}$ Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
${ }^{b}$ Organische Chemie, Universität Duisburg-Essen, D-45117 Essen, Germany
Email: alaahassan2001@mu.edu.eq

Received 10-17-2017
Accepted 12-29-2017
Published on line 03-15-2018

Abstract

The reaction of 2,4-disubstituted thiosemicarbazides with tetracyanoethylene gave mixtures of 1,3,4thiadiazole, 1,3,4-thiadiazine, 1,3,4-thiadiazepine and pyrazolidine derivatives. Rationale mechanisms for these transformations are presented.

Keywords: 2,4-Disubstituted thiosemicarbazides, tetracyanoethylene, 1,3,4-thiadiazoles, 1,3,4-thiadiazines, 1,3,4-thiadiazepines

Introduction

Carbothioamides and their analogues play a significant role among other nitrogen and sulfur containing compounds used in syntheses of different heterocycles as pyrazoles, ${ }^{1} 1,2,4$-triazoles, ${ }^{2}$ and 1,3,4-thiadiazoles ${ }^{1}$ due to their accessibility and ability to act as bifunctional nucleophiles. ${ }^{3-10}$ Metal complexes of thiosemicarbazides display biological activities. ${ }^{11-13}$

Thiosemicarbazides are derivatives of carbothioamides and contain several nucleophilic centers. They are also ideal candidates and valuable building blocks for the synthesis of different families of heterocyclic compounds. ${ }^{14-17}$ Many diseases such as cancer may be treated by using thiosemicarbazides and thus their development is still in progress. ${ }^{18,19}$

It has been reported that 4-substituted thiosemicarbazides 1a-c (Scheme 1) reacted with tetracyanoethylene (TCNE, 2) in ethyl acetate with admission of air to give thiadiazepine and pyrazolothiadiazole derivatives as well as 3-amino-4,5-dicyanopyrazole. ${ }^{20}$

5,6: $\mathbf{a}: \mathrm{R}=\mathrm{Ph} ; \mathbf{b}: \mathrm{R}=4-\mathrm{MeSO}_{2} ; \mathbf{c}: \mathrm{R}=\mathrm{Bn} ; \mathbf{d}: \mathrm{R}=$ allyl; $\mathbf{e}: \mathrm{R}=3-\mathrm{CIC}_{6} \mathrm{H}_{4}$

Scheme 1. Previously reported reactions of TCNE 2 with thiosemicarbazides 1, $\mathbf{3}$ and $\mathbf{5}$.

Upon mixing N-substituted-2-phenylhydrazinecarbothiamides 3a-c with TCNE 2 mesoionic 1,2,4-triazolium-3-thiolate derivatives 4a-c were observed (Scheme 1). ${ }^{21}$ The reaction of 2-substituted hydrazinecarbothioamides 5a-e with TCNE 2 afforded 2\{amino-[5-amino-2-(substituted diazenyl)thiazolyl]methylene\}malonitrile 6a-e (Scheme 1). ${ }^{22}$ This unique and variable reactivity shown in the three aforementioned examples warranted a more detailed investigation.

Results and Discussion

We investigated the behavior of other analogous 2,4-disubstituted thiosemicarbazides 7a-e towards TCNE 2 (Scheme 2). Treatment of 7a-e with two molar equivalents of TCNE 2 in ethyl acetate at room temperature resulted in a green coloration of the solution which later turned to dark brown. This behavior may be due to initial formation of unstable charge-transfer (CT) complexes followed by a chemical reaction. Monitoring of the reaction by visible spectroscopy failed since the reaction was fast and also at lower concentration no significant color changes were observed. Concentration of the preparative runs gave a precipitate which by washing with ethyl acetate yielded a yellowish brown solid of compounds 8 . The remaining soluble materials were subjected to preparative layer chromatography giving numerous colored zones, from which products 9-12 were isolated (Scheme 2).

Scheme 2. The products formed during the reaction of 7a-e with TCNE 2.

From their elemental composition and spectroscopic characteristics, these products can be regarded as resulting from 1:1 combinations of the starting materials 7a-e and TCNE 2 with loss of one or two fragments giving rise to the gross compositions listed in Table 1 together with the eliminated fragments and the structural requirements as delineated from spectroscopic evidence.

Thiadiazepines 8a,b,d,e: The molecular ions in their El-mass spectra support the molecular masses and the gross compositions. Further, the following common features of fragmentation patterns supported the assigned structures: Loss of $\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{~N}_{4}$ giving intense ($\mathrm{M}^{+}-118$) ions, and loss of $\mathrm{RN}=\mathrm{C}=\mathrm{S}$ giving rise to the ion $\mathrm{m} / \mathrm{z} 209$ common in the spectra of compounds $\mathbf{8 a}, \mathbf{d}, \mathbf{e}$. The IR spectra show characteristic absorption for the NH_{2} group in the ranges 3333 to 3170 , and 2210-2220 for cyano groups and $1617-1625 \mathrm{~cm}^{-1}$ for $\mathrm{C}=\mathrm{N}$. The ${ }^{1} \mathrm{H}$ NMR spectra show the presence of a NH_{2} group by broad signals in the range 7.01-7.09 ppm for two protons, and for $8 \mathbf{e}$, the additionally expected signals for the allyl group at $\delta_{H}: 4.21-4.26,5.07-5.16$ and $5.86-5.93 \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR spectra clearly support the absence of a $C=S$ group in $8 \mathbf{a}, \mathbf{b}, \mathbf{d}, \mathbf{e}$ and the presence of an isothiourea carbon in the range from 165.81 to 166.78 ppm . In the ${ }^{13} \mathrm{C}$ NMR spectrum of 8 a , thiadiazepine $\mathrm{C}-6$ and $\mathrm{C}-7$ resonate at $\delta_{\mathrm{C}}=108.12$ and 158.24 ppm , respectively, in accordance with the observed trends in the δ values for C -atoms in push-pull alkenes. ${ }^{23,24}$

Table 1. Composition and essential features of products obtained by 1:1 combination of starting materials 7 ($\mathrm{RR}^{\prime} \mathrm{CH}_{3} \mathrm{~N}_{3} \mathrm{~S}$) and TCNE $2\left(\mathrm{C}_{6} \mathrm{~N}_{4}\right)$ with elimination of low molecular weight fragments. For meanings of R , R^{\prime} see Scheme 2

Case	Gross composition	Fragments eliminated	Essential structural features from spectral data	Products
A	RR'C6 $\mathrm{H}_{2} \mathrm{~N}_{6} \mathrm{~S}$	HCN	No C=S, two CN, no NH, one NH_{2}, one $\mathrm{C}=\mathrm{NR}$	8a,b,d,e
B	RR'C5 ${ }^{\text {HN }}$ 5S	Two HCN	No C=S, two CN, one NH, no NH_{2}, one $\mathrm{C}=\mathrm{NR}$	$9 a, b, d$
C	RR'C4HN ${ }_{5} \mathrm{~S}$	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}$ (malononitrile)	No C=S, two CN, one NH, no NH_{2}, one $\mathrm{C}=\mathrm{NR}$	10b,c,d
D	$\mathrm{RR}^{\prime} \mathrm{C}_{3} \mathrm{~N}_{4} \mathrm{~S}$	$\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}_{3}$ (malononitrile, HCN)	No C=S, one CN, no NH, no NH_{2}, one $\mathrm{C}=\mathrm{NR}$	$11 b, c, d$
E	$\mathrm{RR'C}_{7} \mathrm{HN}_{7}$	$\mathrm{H}_{2} \mathrm{~S}$	No S, four CN, one NH, no NH_{2}, one $\mathrm{C}=\mathrm{NR}$	12a,c,e

Dihydrothiazines 9a,b,d: Sharp IR absorptions are shown for cyano groups at 2212-2220 and a NH group at 3315-3336, a C=N group at 1626-1631 as well as for aryl ring stretchings at 1585-1592 cm^{-1}. The ${ }^{1} \mathrm{H}$ NMR spectrum (DMSO- d_{6}) of 9d clearly shows the presence of thiadiazine NH at $\delta_{\mathrm{H}} 6.99 \mathrm{ppm}$ and benzyl CH_{2} at 4.91 ppm in addition to the phenyl protons ($\delta_{\mathrm{H}} 7.15-7.68 \mathrm{ppm}$). In its ${ }^{13} \mathrm{C}$ NMR spectrum, thiadiazine C-2, C-5 and C6 resonate at δ c $164.91,140.65$ and 101.76 ppm , respectively. Further, peaks at $118.06-118.27 \mathrm{ppm}$ for CN support the assigned structure. The presence of a $\mathrm{Ph}-\mathrm{CH}_{2}$ group is also evident from the ${ }^{13} \mathrm{C}$ DEPT-NMR spectrum exhibiting a negative signal at $\delta \mathrm{C} 53.66 \mathrm{ppm}$. The molecular formulas of compounds $\mathbf{9 a} \mathbf{a}, \mathbf{b}, \mathbf{d}$ were supported by elemental analyses and mass spectra which showed the expected molecular ion peaks. For 9a the El-mass spectrum needs a brief comment: $m / z 91$ represent a $C_{4} H^{H} N_{3}$ fragment formed by release of $\mathrm{RN}=\mathrm{C}=\mathrm{S}+\mathrm{RN}$ from the molecular ion. Alternative structures could be ruled out according to the ${ }^{13} \mathrm{C}$ NMR spectra of $9 a, b, d$ since the thiadiazine C-5, C-6 are regularly downfield shifted [9a (C-5: 140.22, C-6: 101.16), 9b (C-5: 140.56, C-6: 100.83), 9d (C-5: 140.65, C-6: 100.76) $]^{25}$ compared to $=C(C N)_{2}$ (which would resonate in the range 61-74 ppm. 26-29

1,3,4-Thiadiazolidines $10 b, c, d$: These compounds show a characteristically yellow color. The molecular structure of $\mathbf{1 0 b}$ was supported by the following findings: The gross formula $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{~S}$ represented a product from one molecule of thiosemicarbazide and one molecule of TCNE 2 with loss one molecule of malononitrile $\mathrm{CH}_{2}(\mathrm{CN})_{2}$. The presence of two cyano groups at $\delta \mathrm{C} 117.92$ and 118.48 ppm is documented, and a signal for thiadiazolidine $\mathrm{C}-5$ at $\delta_{\mathrm{C}} 162.92$ as well as the absence of $\mathrm{C}=\mathrm{S}$ favor structure 10 b . The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0 b}$ showed the presence of thiadiazolidine NH ($\delta_{H} 10.81 \mathrm{ppm}$) being due to conjugation with a π system or adjacent to a $\mathrm{C}=\mathrm{N}$ double bond, whereas an isolated NH in a five membered ring like 18 has been reported to resonate at $4.5 \mathrm{pm} .{ }^{30}$

18
In the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 0 b}$ the thiadiazolidine $\mathrm{C}-2$ bearing two carbonitrile groups was observed at $\delta_{\mathrm{c}} 66.17$ ppm. The mass spectra of $\mathbf{1 0 b}, \mathbf{d}$ show a fragment at $\mathrm{m} / \mathrm{z} 292$ (representing the release of HCN from the molecular ions) whereas loss of $\mathrm{RN}=\mathrm{C}=\mathrm{S}$ gives rise to fragments with $\mathrm{m} / \mathrm{z} 157$. Furthermore, treatment of $\mathbf{1 0 b}, \mathbf{c}, \mathbf{d}$ with diluted alcoholic KOH followed by neutralization did not change the compounds to $\mathbf{1 1 b}, \mathbf{c}, \mathrm{d}$ (see below) as expected. Therefore compounds $\mathbf{1 0}$ carry the R'-group at $\mathrm{N}-3$ and not at $\mathrm{N}-4$. This can be explained in the following way: 2,4-diarylthiosemicarbazides are known for their thermal instability relative to their constitutionally isomeric 1,4 -diarylthiosemicarbazides ${ }^{31}$ and therefore it is likely that products $\mathbf{1 0}$ result from the latter rearranged starting materials. In addition, the rearrangement of 7 may be facilitated in the radical cationic stage of $\mathbf{7}$ inside the initial charge transfer complexes formed upon mixing the reactants $\mathbf{7}$ and TCNE $\mathbf{2}$ (see Scheme 3).

1,3,4-Thiadiazoles 11b,c,d: The ${ }^{1} \mathrm{H}$ NMR spectrum of 11b clearly does not show any thiadiazole NH (neither isolated nor in conjugation with a $\mathrm{C}=\mathrm{N}$ bond). The ${ }^{13} \mathrm{C}$ NMR gave signals at 153.38 and 165.11 assigned to thiadiazole C-2 and C-5, respectively. The mass spectrum of compound 11b exhibits a molecular ion peak at m / z 292 (28\%). Analogous data was found for $\mathbf{1 1 c}$, d. There was no ${ }^{13} \mathrm{C}$ signal to indicate a $\mathrm{C}=\mathrm{S}$ bond.

Pyrazolidines 12a,c,e: These compounds do not contain sulfur but each one contains seven N atoms, thus the molecular mass of 12e represents a gross composition $\left(\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{7}\right)$ reached from the rearranged 1,4-disubstituted isomer 17e (see Scheme 3) and $\mathbf{2}$ after loss of H_{2} S. This was confirmed by the mass spectrometry ($\mathrm{m} / \mathrm{z} 301$, $100 \%, \mathrm{M}^{+}$). The IR spectrum showed bands at 2212 and $2215 \mathrm{~cm}^{-1}$ due to cyano groups, 3336 (NH) as well as 1627 ($\mathrm{C}=\mathrm{N}$). The ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of broad band at ($\delta_{H} 11.32 \mathrm{ppm}$) due to the pyrazolidine NH conjugated to a $\mathrm{C}=\mathrm{N}$ bond. The ${ }^{1} \mathrm{H}$ NMR showed also the presence of an allyl group which gave rise to three multiplets centered at $4.25,5.22-5.35$ and $5.92-5.97$ ppm due to allyl $\mathrm{CH}_{2} \mathrm{~N}$, allyl $\mathrm{CH}_{2}=$ and allyl $\mathrm{CH}=$, respectively. The presence of allyl group was also evident from the ${ }^{13} \mathrm{C}$ DEPT NMR spectrum exhibiting a positive signal at $\delta_{C} 135.13$ (allyl $\mathrm{CH}=$) and negative signals at 43.08 and 115.37 ppm due to allyl $\mathrm{CH}_{2} \mathrm{~N}$ and allyl $\mathrm{CH}_{2}=$, respectively, further peaks at $116.85,116.96,117.08,117.33\left[\mathrm{C}(\mathrm{CN})_{2}\right] .{ }^{32-34}$ For data of the analogous compounds 12a,c see the Experimental part.

Overview of product formation: A rationale for the formation of products $\mathbf{8 - 1 2}$ is presented in Scheme 3 . Disubstituted thiosemicarbazides 7a-e and TCNE 2 give the neutral adduct 13. Elimination of a molecule of HCN from the adduct 13 generates the tricyanovinylation intermediate 14 which cyclizes to thiadiazepine derivatives 8. Also the products $\mathbf{9}$ and $\mathbf{1 1}$ require the intermediate formation of $\mathbf{1 4}$. Elimination of another molecule of HCN from the latter affords the thiadiazine derivatives 9 , whereas elimination of malononitrile from $\mathbf{1 4}$ gives rise to thiadiazole derivatives 11.

Scheme 3. Rationale for formation of products 8-12. For meanings of R and R^{\prime} see Scheme 2.

In principle, one can discuss initial tricyanovinylation products 20 and 22 originating from the primary adducts $\mathbf{1 9}$ and $\mathbf{2 1}$ from thiosemicarbazide $\mathbf{7}$ and TCNE $\mathbf{2}$ (Scheme 4) since products $\mathbf{1 1}$ may also be formed from 20 with loss of malononitrile, and adducts of 2 to $\mathrm{N}-4$ of 1,4-disubstituted thiosemicarbazides have been discussed before. ${ }^{21}$

Scheme 4. Conceivable alternative adducts from the reaction of thiosemicarbazides 7a-e with TCNE 2. For meanings of R and R^{\prime} see Scheme 2.

It has also been reported earlier in an investigation of the interaction of TCNE 2 with two 4 -substituted thiosemicarbazides that the - SH group is the reactive center, ${ }^{35}$ but the formation of the products $\mathbf{8 , 9}$ and $\mathbf{1 1}$ supported our rationalization via the involvement of the tricyanovinylation product $\mathbf{1 4}$ for at least these three compounds (Scheme 3).

As outlined there, the NH_{2} group first attacks the double bond of $\mathbf{2}$ forming the products. Since, the reaction required multiple steps and by necessity moderate yields (see Table 2) have to be accepted and it will not be possible to clarify every detail. This needs to be taken into account when determining and evaluating yields (see Table 2).

Table 2. Yields of products formed according to Scheme 3

	Starting materials		Products and yields (\%)					\|Total yield (\%)
	R	R'	8	9	10	11	12	
7 a	Ph	Ph	8a: 45	9a: 21			12a: 22	88
7b	Ph	4-Tol	8b: 39	9b: 22	10b: 14	11b: 16		91
7c	Ph	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$			10c: 38	11c: 20	12c: 24	82
7d	Bn	Ph	8d: 41	9d: 21	10d: 16	11d: 15		93
7 P	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}$	Ph	8e: 51				12e: 28	79

Conclusions

The reactions and products presented provide insight into the spontaneous reactions between the electrondonating 2,4-disubstituted thiosemicarbazides 7a-e and TCNE 2. In fairly complex and multistep processes five types of heterocyclic products 8-12 are formed from 7a-e and TCNE 2. Consequently, TCNE $\mathbf{2}$ acts as a building block in heterocyclization of 2,4-disubstituted thiosemicarbazides.

Experimental Section

General. Melting points were determined using open glass capillaries on a Gallenkamp melting point apparatus and are uncorrected .The IR spectra were recorded with a Shimadzu 408 or a Bruker Vector 22 spectrometer using KBr pellets. ${ }^{1} \mathrm{H} 300 \mathrm{MHz}$ and ${ }^{13} \mathrm{C}$ NMR 75 MHz spectra, all in DMSO- d_{6}, have been registered using a Bruker WM 300 instrument, $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectra on a Bruker DRX 500 spectrometer. Chemical shifts are expressed as $\delta[\mathrm{ppm}]$ with reference to tetramethylsilane as an internal standard, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad, ${ }^{13} \mathrm{C}$ assignments were made with the aid of DEPT 135/90 spectra. Mass spectra were obtained with an AMD 604 doubly focusing instrument using electron-impact ionization (70 eV). Elemental analyses were run by the microanalytical center, Cairo university. Preparative layer chromatography (plc) was made on 1.0 mm thick air-dried layers of slurry applied silica gel Merck PF_{254} on 48 cm wide and 20 cm high glass plates, zones were detected by their color and indicator fluorescence quenching upon exposure to 254 nm light and extracted with acetone. Starting materials: 2,4-disubstituted thiosemicarbazides 7a-e were prepared according to the literature ${ }^{36}$ adapting Noto's pocedure. ${ }^{31}$

Reaction of 2,4-disubstituted thiosemicarbazides 7a-e with 2. General procedure. A solution of 2,4disubstituted thiosemicarbazide 7a-e (1.0 mmol) in dry ethyl acetate $(30 \mathrm{~mL})$ was added dropwise with stirring at room temperature to a solution of $\mathbf{2}(2.0 \mathrm{mmol})$ in ethyl acetate $(20 \mathrm{~mL})$. The color changed gradually from green to brown. Stirring was continued for 48 h with admission of air to complete the reaction. The reaction mixture was filtered and the precipitate was washed several times with cold ethyl acetate until the washing remained colorless. The precipitate was dried and recrystallized from ethanol to give thiadiazepine derivatives $\mathbf{8 a}, \mathbf{b}, \mathbf{d}, \mathbf{e}$. The filtrate was concentrated to dryness and the residue was kept at $80^{\circ} \mathrm{C}$ under vacuum to sublime off all unreacted TCNE 2. The residue was then separated by plc (100 mg per plate) using a suitable solvent mixture as eluent (c-hexane/ethyl acetate 5:1 for the reactions of $\mathbf{2}$ with $\mathbf{7 a}, \mathbf{7 c}$ and $\mathbf{7 e}, c$-hexane/ethyl acetate 3:1 for the reactions of $\mathbf{2}$ with $\mathbf{7 b}$ and $\mathbf{7 d}$) to give numerous colored zones, the intense of which were removed and extracted. The fastest migrating zone contained the thiadiazoles $\mathbf{1 1 b}, \mathbf{c}, \mathrm{d}$, the second zone contained the thiadiazolidines $\mathbf{1 0 b} \mathbf{b} \mathbf{c} \mathbf{d}$, the third characteristically yellow zone contained the thiadiazine derivatives $\mathbf{9 a , b}, \mathbf{d}$, and finally the slowest migrating zone contained the pyrazolidine derivatives $\mathbf{1 2 a}, \mathbf{c}, \mathbf{e}$. Extraction of zones with acetone gave residues, which were rechromatographed to separate the pure compounds.

7-Amino-3-phenyl-2-(phenylimino)-2,3-dihydro-1,3,4-thiadiazepine-5,6-dicarbonitrile (8a). Yellow crystals ($310 \mathrm{mg}, 45 \%$), mp 274-276 ${ }^{\circ} \mathrm{C}$ (EtOH). IR ($\mathrm{v}^{2} \mathrm{~cm}^{-1}$): 3310-3170 (NH_{2}), 2215 ($\mathrm{C} \equiv \mathrm{N}$), 1617 ($\mathrm{C}=\mathrm{N}$), 1590 (phenyl ring stretching). ${ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta_{\mathrm{H}} 7.05\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 7.12-7.68(10 \mathrm{H}, \mathrm{m}, 2 \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta_{c} 108.12$ (thiadiazepine C_{6}), 116.69, 117.22 (C=N), 127, 37, 128.12, 128.62, 129.00, 129.48 (Ar CH), 138.16, 144.55 (Ar C), 151.52 (C-5), 158.29 (C-7), 166.78 (C-2). MS: m / z (\%) 344 ($\mathrm{M}^{+}, 100$), 209 ($\mathrm{M}^{+}-\mathrm{PhN}=\mathrm{C}=\mathrm{S}, 16$), 118 (34), 91 (26), 77 (47), 66 (21). Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{~S}$ (344.39): C, 62.77; H, 3.51; N, 24.40; S, 9.31. Found: C, 62.59; H, 3.67, N, 24.33; S, 9.19.

7-Amino-2-(phenylimino)-3-p-tolyl-2,3-dihydro-1,3,4-thiadiazepine-5,6-dicarbonitrile (8b). Yellow crystals ($280 \mathrm{mg}, 39 \%$), mp 282-284 ${ }^{\circ} \mathrm{C}(\mathrm{MeCN})$. IR ($\tilde{\mathrm{V}} / \mathrm{cm}^{-1}$): 3333-3185 (NH_{2}), $2220(\mathrm{C} \equiv \mathrm{N}), 1622(\mathrm{C}=\mathrm{N}), 1605$ (phenyl ring stretching). ${ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta_{\mathrm{H}} 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 70.01\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 7.22-7.76(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}): \delta \mathrm{C} 22.41\left(\mathrm{CH}_{3}\right) 106.94$ (thiadiazepine C6), 117.18, $117.39(\mathrm{C} \equiv \mathrm{N}), 126.83,127.57,127.88,128.82,129.65$ (ArCH), 137.25, 146.22 (ArC), 150.96 (C-5), 159.12 (C-7), 166.66 (C-2). MS: m/z (\%) 358 ($\mathrm{M}^{+}, 100$), 223 (24), 118 (29), 91 (37), 77 (32), 66(41). Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{~S}$ (358.42): C, 63.67; H, 3.94; N, 23.45; S, 8.95. Found: C, 63.79; H, 4.12; N, 23.28; S, 9.14.

7-Amino-2-(benzylimino)-3-phenyl-2,3-dihydro-1,3,4-thiadiazepine-5,6-dicarbonitrile (8d). Dark yellow crystals ($294 \mathrm{mg}, 41 \%$), mp 227-229 ${ }^{\circ} \mathrm{C}(\mathrm{MeCN})$. IR ($\tilde{\mathrm{v}} / \mathrm{cm}^{-1}$): 3325-3210 (NH_{2}), $2210(\mathrm{C} \equiv \mathrm{N}), 1625$ (C=N), 1590 (phenyl ring stretching). ${ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta_{\mathrm{H}} 4.92\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.09\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 7.17-7.58(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta_{\mathrm{C}} 51.12\left(\mathrm{CH}_{2}\right), 107.86(\mathrm{C}-6), 116.84,117.05(\mathrm{C} \equiv \mathrm{N}), 127.17,127.63,128.12,129.22,129.76(\mathrm{Ar}$ CH), 134.12, 139.16 (Ar C), 152.11 (C-5), 158.73 (C-7), 165.94 (C-2). MS: m/z (\%) 358 ($\mathrm{M}^{+}, 64$), 209 (22), 118 (15), 91 (100), 77 (57), 66 (51). Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{~S}$ (358.42): C, 63.67 ; H, 3.94; $\mathrm{N}, 23.45 ; \mathrm{S}, 8.95$. Found: $\mathrm{C}, 63.51$; H, 3.86; N, 23.62; S, 8.77.
2-(Allylimino)-7-amino-3-phenyl-2,3-dihydro-1,3,4-thiadiazepine-5,6-dicarbonitrile (8e). Pale yellow crystals ($314 \mathrm{mg}, 51 \%$). mp $174-176^{\circ} \mathrm{C}(\mathrm{EtOH}) . \operatorname{IR}\left(\tilde{v} / \mathrm{cm}^{-1}\right): 3310-3240\left(\mathrm{NH}_{2}\right), 2215(\mathrm{C} \equiv \mathrm{N}), 1620(\mathrm{C}=\mathrm{N}), 1585$ (phenyl ring
 allyl $\mathrm{CH}=$), $7.05\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 7.32-7.51(\mathrm{~m}, \mathrm{SH}, \mathrm{Ar} \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}): \delta_{c} 44.17$ (allyl CH 2 N$), 108.12$ (C-6), 115.76 (allyl $\mathrm{CH}_{2}=$), $116.91,117.53(\mathrm{C} \equiv \mathrm{N}), 127.63,128.56,129.16(\mathrm{Ar} \mathrm{CH}), 135.26$ (allyl CH=), $137.65(\mathrm{Ar} \mathrm{C})$, 151.82 (C-2), 159.12 (C-7), 165.81 (C-2). MS: m/z (\%) 308 (M+, 57), 209 (29), 118 (36), 91 (74), 77 (100), 66 (46). Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{~S}$ (308.36): C, 58.43; H, 3.92; $\mathrm{N}, 27.25$; $\mathrm{S}, 10.40$. Found: $\mathrm{C}, 58.61 ; \mathrm{H}, 4.09 ; \mathrm{N}, 27.11 ; \mathrm{S}$, 10.23.

3-Phenyl-2-(phenylimino)-3,4-dihydro-2H-1,3,4-thiadiazine-5,6-dicarbonitrile (9a). Orange crystals (133 mg, 21%), mp 210-212 ${ }^{\circ} \mathrm{C}(\mathrm{MeCN}) . \operatorname{IR}\left(\tilde{\mathrm{v}} / \mathrm{cm}^{-1}\right): 3326(\mathrm{NH}), 2216,2220(\mathrm{C} \equiv \mathrm{N}), 1625(\mathrm{C}=\mathrm{N}), 1585$ (phenyl ring stretching). ${ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta_{H} 6.98(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 7.26-7.82(10 \mathrm{H}, \mathrm{m}, \operatorname{Ar~H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta_{\mathrm{C}} 101.16$ (C6), 118.12, 118.43 ($\mathrm{C} \equiv \mathrm{N}$), 127.51, 127.82, 128.11, 129.37, 129.75, 129.94 (Ar CH), 134.89, 147.88 (Ar C), 140.22 (C-5), 165.33 (C-2). MS: m/z (\%) 317 (M+18), 226 (11), 211 (83), 182 (67), 135 (35), 105 (41), 77 (100), 76 (71), 65 (31). Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{~S}$ (317.37): C, 64.34; H, 3.49; N, 22.07; S, 10.10. Found: C, 64.16; H, 3.64; N, 21.93; S, 9.94.

2-(Phenylimino)-3-p-tolyl-3,4-dihydro-2H-1,3,4-thiadiazine-5,6-dicarbonitrile (9b). Reddish orange crystals ($139 \mathrm{mg}, 22 \%$), mp $235-237^{\circ} \mathrm{C}(\mathrm{MeCN}) . \operatorname{IR}\left(\tilde{v} / \mathrm{cm}^{-1}\right): 3315$ (NH), 2218 ($\mathrm{C} \equiv \mathrm{N}$), 1631 ($\mathrm{C}=\mathrm{N}$), 1592 (phenyl ring stretching). ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}): \delta_{H} 2.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.0(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 7.22-7.75(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta_{\mathrm{C}} 20.75\left(\mathrm{CH}_{3}\right), 100.83(\mathrm{C}-6), 117.97,118.73(\mathrm{C} \equiv \mathrm{N}), 127.36,128.21,129.64,129.97,130.12(\mathrm{Ar} \mathrm{CH}), 134.2,135.27$, 147.67 (Ar C), 140.56 (C-5), 165.11 (C-2). MS: m/z (\%) 331 (M+, 12), 226 (26), 196 (57), 135 (46), 119 (64), 91 (100), 77 (72), 76 (65). Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{~S}$ (331.39): C, 65.24; H, 3.95; N, 21.13, S, 9.68. Found: C, 65.24; H, 4.11; N, 20.95; S, 9.84.

2-(Benzylimino)-3-phenyl-3,4-dihydro-2H-1,3,4-thiadiazine-5,6-dicarbonitrile (9d). Pale orange crystals (140 $\mathrm{mg}, 21 \%$), mp 201-202 ${ }^{\circ} \mathrm{C}(\mathrm{MeCN}) . \mathrm{IR}\left(\tilde{/} / \mathrm{cm}^{-1}\right): 3336(\mathrm{NH}), 2212$ ($\mathrm{C} \equiv \mathrm{N}$), 1628 ($\mathrm{C}=\mathrm{N}$), 1590 (phenyl ring stretching). ${ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta_{H} 4.91(2 \mathrm{H}, \mathrm{s}, \mathrm{CH} 2), 6.99(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 7.15-7.68(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta_{\mathrm{C}} 53.66\left(\mathrm{CH}_{2}\right), 100.76(\mathrm{C}-6), 118.06,118.27(\mathrm{C} \equiv \mathrm{N}), 127.43,127.77,128.06,128.84,129.25,129.82(\mathrm{Ar} \mathrm{CH})$, $135.71,137.77$ (Ar C), 140.65 (C-5), 164.91 (C-2). MS: $m / z(\%) 331$ ($\mathrm{M}^{+}, 29$), 226 (17), 182 (41), 149 (66), 91 (100), 77 (75), 76 (84). Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{~S}$ (331.39): C, $65.24 ; \mathrm{H}, 3.95$; N, 21.13; S, 9.68. Found C, 65.39; H, 4.09; N, 21.28; S, 9.52.
5-(Phenylimino)-4-p-tolyl-1,3,4-thiadiazolidine-2,2-dicarbonitrile (10b). Yellow crystals ($89 \mathrm{mg}, 14 \%$), mp 177$178{ }^{\circ} \mathrm{C}(\mathrm{MeOH}) . \operatorname{IR}\left(\tilde{v} / \mathrm{cm}^{-1}\right): 3423(\mathrm{NH}), 2210(\mathrm{C} \equiv \mathrm{N}), 1625(\mathrm{C}=\mathrm{N}), 1580$ (phenyl ring stretching). ${ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta_{\mathrm{H}} 2.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ 6.95-7.63 ($\left.9 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \mathrm{H}\right), 10.81(1 \mathrm{H}$, br, thiadiazolidine NH$) .{ }^{13} \mathrm{C} \mathrm{NMR}(125 \mathrm{MHz}): \delta_{\mathrm{C}} 21.46$ $\left(\mathrm{CH}_{3}\right), 66.17$ (C-2), 117.92, 118.48 (C=N), 127.86, 128.21, 128.65, 129.43, 130.12 (ArCH), 136.02, 138.12, 148.50 (ArC), 162.92 (C-5). MS: m/z (\%) 319 ($\mathrm{M}^{+}, 17$), 292 (61), 184 (42), 157 (38), 135 (39), 105 (100), 77 (83), 66 (69). Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{~S}$ (319.38): C, 63.93; H, 4.10; N, 21.93; S, 10.04.
Found: C, 64.14, H, 3.96, N, 22.12, S, 9.89.
4- (4-Chlorophenyl)-5-(phenylimino)-1,3,4-thiadiazolidine-2,2-dicarbonitrile (10c). Pale yellow crystals (264 $\mathrm{mg}, 38 \%$), mp 185-186 ${ }^{\circ} \mathrm{C}(\mathrm{MeCN}) . \mathrm{IR}\left(\tilde{\mathrm{c}} / \mathrm{cm}^{-1}\right): 3394$ (NH), 2216 ($\mathrm{C} \equiv \mathrm{N}$), 1615 ($\mathrm{C}=\mathrm{N}$), 1588 (phenyl ring stretching). ${ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta_{H} 7.06-7.65(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \mathrm{H}), 10.85(1 \mathrm{H}$, br, thiadiazolidine NH$) .{ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta_{C} 65.64$ (C-2), 117.84, 118.26 (C $\equiv \mathrm{N}$), 127.79, 128.06, 128.45, 129.48, 129.93 (Ar CH), 134.86, 137.92, 148.38 (Ar C), 163.12 (C-5). MS: $m / z(\%) 339 / 341\left(\mathrm{M}^{+}, 51\right), 312(36), 204(16), 177(21), 135(56), 112$ (38), 77 (100). Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{Cl} \mathrm{N}_{5} \mathrm{~S}$ (339.80): C, 56.55; H, 2.97; Cl, 10.43; N, 20.6; S, 9.44. Found: C, 56.73; H, 3.12; Cl, 10.26; N, 20.78; S, 9.61.

5-(Benzylimino)-4-phenyl-1,3,4-thiadiazolidine-2,2-dicarbonitrile (10d). Yellow crystals (102 mg, 16\%), mp $160-161^{\circ} \mathrm{C}(\mathrm{MeCN})$. IR ($\tilde{\mathrm{v}} / \mathrm{cm}^{-1}$): $3418(\mathrm{NH}), 2210(\mathrm{C}=\mathrm{N}), 1625(\mathrm{C}=\mathrm{N}), 1595$ (phenyl ring stretching). ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}): \delta_{H} 4.95\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.98-7.61(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \mathrm{H}), 10.90(1 \mathrm{H}$, br, thiadiazolidine NH$) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}): \delta_{\mathrm{c}}$ $54.83\left(\mathrm{CH}_{2}\right), 66.14(\mathrm{C}-2), 117.92,118.37(\mathrm{C} \equiv \mathrm{N}), 127.86,128.12,128.53,129.51,130.07$ (Ar CH), 135.12, 138.11, 148.26 (Ar C), 162.95 (C-5). MS: m / z (\%) 319 ($\mathrm{M}^{+}, 46$), 292 (23), 157 (31), 170 (36), 149 (44), 91 (100), 77(81), 66 (46). Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{~S}$ (319.38): C, 63.93; H, 4.10; $\mathrm{N}, 21.93 ; \mathrm{S}, 10.04$. Found: C, 64.14; H, 3.97; $\mathrm{N}, 22.14$; S, 9.89.
5-(Phenylimino)-4-p-tolyl-4,5-dihydro-1,3,4-thiadiazole-2-carbonitrile (11b). Yellowish orange crystals (93 mg , 16%), mp 155-156 ${ }^{\circ} \mathrm{C}$ (MeCN). IR ($\tilde{\mathrm{v}} / \mathrm{cm}^{-1}$): 3095 (Ar CH), 2925 (aliph CH), 2215 ($\mathrm{C} \equiv \mathrm{N}$), 1630 ($\mathrm{C}=\mathrm{N}$), 1590 (phenyl
ring stretching). ${ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta_{\mathrm{H}} 2.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$), 7.35-7.95 (9H, m, Ar H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz):} \delta_{\mathrm{C}} 21.23$ $\left(\mathrm{CH}_{3}\right), 117.87(\mathrm{C} \equiv \mathrm{N}), 127.12,128.36,128.57,129.00,129.98(\mathrm{ArCH}), 136.17,147.77(\mathrm{Ar} \mathrm{C}), 153.38(\mathrm{C}-2), 165.11$ (C-5). MS: $m / z(\%) 292\left(\mathrm{M}^{+}, 28\right), 240(10), 105$ (27), 91 (100), 77 (38), 65 (41), 52 (16). Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{~S}$ (292.36): C, 65.73; H, 4.14; N, 19.16; S, 10.97. Found C, 65.57, H, 4.03, N, 18.98; S, 11.11.

4-(4-Chlorophenyl)-5-(phenylimino)-4,5-dihydro-1,3,4-thiadiazole-2-carbonitrile (11c). Yellowish brown crystals (125 mg, 20\%), mp 162-163 ${ }^{\circ} \mathrm{C}(\mathrm{EtOH}) . \mathrm{IR}\left(\tilde{\mathrm{v}} / \mathrm{cm}^{-1}\right)$: $3105(\mathrm{ArCH}), 2220(\mathrm{C} \equiv \mathrm{N}), 1620(\mathrm{C}=\mathrm{N}), 1593$ (phenyl ring stretching). ${ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta_{\mathrm{H}} 7.45-8.10(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta_{\mathrm{c}} 118.11(\mathrm{C} \equiv \mathrm{N}), 126.94$, 127.67, 128.42, 128.96, 129.66 (ArCH), 136.89, 148.12 ($\mathrm{Ar}-\mathrm{Cl}$), 153.56 (C-2), 164.82 (C-5). MS: m/z (\%) 314/312 ($\mathrm{M}^{+}, 100$), 260 (9), 125 (34), 91 (18), 77 (28), 51 (19). Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{ClN}_{4} \mathrm{~S}$ (312.78): C, 57.60; H, 2.90; Cl, 11.33; N, 17.91; S, 10.25. Found C, 57.42; H, 3.06; Cl, 11.49; N, 18.10; S, 10.12.

5-(Benzylimino)-4-phenyl-4,5-dihydro-1,3,4-thiadiazol-2-carbonitrile (11d). Yellowish brown crystals (88 mg, 15%), mp 144-145 ${ }^{\circ} \mathrm{C}(\mathrm{EtOH})$. IR ($\tilde{\mathrm{v}} / \mathrm{cm}^{-1}$): 3125 (ArCH), 2218 ($\mathrm{C} \equiv \mathrm{N}$), 1633 ($\mathrm{C}=\mathrm{N}$), 1587 (phenyl ring stretching). ${ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta_{\mathrm{H}} 4.95\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.25-8.0(10 \mathrm{H}, \mathrm{m}, \operatorname{Ar} \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta_{\mathrm{C}} 53.69\left(\mathrm{CH}_{2}\right), 118.24(\mathrm{C} \equiv \mathrm{N})$, 127.13, 127.81, 128.36, 128.86, 129.46, 129.73 (ArCH), 136.66, 138.84 (Ar C), 153.39 (C-2), 155.36 (C-5). MS: $m / z(\%) 292\left(\mathrm{M}^{+}, 29\right), 240(8), 115$ (24), 91 (83), 77 (100), 65 (41), 52 (27). Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{~S}$ (292.36): C, 65.73; H, 4.14; N, 19.16; S, 10.97. Found: C, 65.88; H, 4.04; N, 18.97; S, 11.14.

1-Phenyl-S-(phenylimino) pyrazolidine-3,3,4,4-tetracarbonitrile (12a). Pale brown crystals (148 mg, 22\%), mp $294-296{ }^{\circ} \mathrm{C}(\mathrm{MeOH}) . \operatorname{IR}\left(\tilde{v} / \mathrm{cm}^{-1}\right): 3311(\mathrm{NH}), 2218(\mathrm{C}=\mathrm{N}), 1615(\mathrm{C}=\mathrm{N}), 1590$ (phenyl ring stretching). ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}): \delta_{\mathrm{H}} 7.22-7.83(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 11-12(1 \mathrm{H}, \mathrm{br}$, pyrazolidine NH$) .{ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta_{\mathrm{C}} 31.41(\mathrm{C}-4), 55.12(\mathrm{C}-$ 3), 116.81, 116.94, 117.12, 117.39 ($\mathrm{C} \equiv \mathrm{N}$), 126.93, 128.18, 128.34, 129.21, 129.54, 129.91 (Ar CH), 137.14, 149.12 (Ar C), 161.16 (C-5). MS: m/z (\%) 337 ($\mathrm{M}^{+}, 41$), 285 (100), 258 (24), 232 (8), 91 (74), 77 (85), 52 (43). Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{~N}_{7}$ (337.34): C, 67.65; H, 3.29; N, 29.06. Found, C, 67.86; H, 3.14; N, 28.89.
1-(4-Chlorophenyl)-5-(phenylimino)pyrazolidine-3,3,4,4-tetracarbonitrile (12c). Yellowish brown crystals (178 $\mathrm{mg}, 24 \%$), $\mathrm{mp} 314-316^{\circ} \mathrm{C}(\mathrm{MeCN})$. IR ($\tilde{\mathrm{V}} / \mathrm{cm}^{-1}$): 3325 (NH), 2220 ($\mathrm{C}=\mathrm{N}$), 1620 ($\mathrm{C}=\mathrm{N}$), 1588 (phenyl ring stretching). ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}): \delta_{\mathrm{H}} 7.19-7.72(9 \mathrm{H}, \mathrm{m}, 9 \mathrm{H}, \mathrm{ArH}), 11.37\left(1 \mathrm{H}, \mathrm{br}\right.$, pyrazolidine NH). ${ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}): \delta \mathrm{C} 31.56(\mathrm{C}-4), 54.87(\mathrm{C}-3), 116.87,116.97,117.09,117.28(\mathrm{C}=\mathrm{N}), 126.88,127.91,128.42,129.18,129.86$ (Ar CH), 130.12, 135.16, 149.22 (Ar C), 161.55 (C-5). MS: $m / z(\%) 371 / 373$ ($\mathrm{M}^{+}, 26$), 319 (47), 292 (17), 266 (6), 91 (100), 77 (87), 65 (63). Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{10} \mathrm{ClN}_{7}(371,78)$: C, 61.38; H, 2.71; Cl, 9.54; N, 26.37. Found C, 61.55; H, 2.63; Cl, 9.41; N, 26.54 .
5-(Allyimino)-1-phenylpyrazolidine-3,3,4,4-tetracarbonitrile (12e). Yellowish brown crystals (169 mg, 28\%), mp $281-283^{\circ} \mathrm{C}(\mathrm{EtOH}) . \operatorname{IR}\left(\tilde{v} / \mathrm{cm}^{-1}\right): 3336(\mathrm{NH}), 3086$ (Ar CH), 2985 (aliph. CH), 2212,-2215 (C=N), 1677 (C=N), 1580 (phenyl ring stretching). ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}): \delta_{\mathrm{H}} 4.28\left(2 \mathrm{H}\right.$, br, allyl $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 5.22-5.35\left(2 \mathrm{H}, \mathrm{m}\right.$, allyl $\mathrm{CH}_{2}=$), 5.92-5.97 ($1 \mathrm{H}, \mathrm{m}$, allyl $\mathrm{CH}=$), $7.21-7.82(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \mathrm{H}), 11.32(1 \mathrm{H}$, br, pyrazolidine NH$) .{ }^{13} \mathrm{C}$ NMR (125 MHz): $\delta \mathrm{C} 31.58(\mathrm{C}-4)$, 43.08 (allyl $\mathrm{CH}_{2} \mathrm{~N}$), 54-75 (C-3), 115.37 (allyl $\mathrm{CH}_{2}=$), 116.85, 116.96, 117.08, 117.33 ($\mathrm{C} \equiv \mathrm{N}$), 127.16, 127.96, 129.57 (Ar CH) 135.13 (allyl CH=), 135.98 (Ar C), 161.63 (C-5). MS: m/z (\%) 301 ($\mathrm{M}^{+}, 100$), 249 (97), 158 (31), 77 (36), 41 (90). Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{7}$ (301.31): C, 63.78; H, 3.66; N, 32.54. Found C, 63.92; H, 3.53; N, 32.42.

Acknowledgements

Alaa A. Hassan is indebted to AvH foundation for the donation of a Shimadzu 408 IR instrument.

References

1. Zelenin, K. N.; Solod, O. V.; Alekssev, V. V.; Pekhk, T. I.; Kuznetsova, O. B.; Terent'ev, P. B.; Kalandarishvili, A. G. Chem. Heterocycl. Comp. 1990, 26, 1051. http://dx.doi.org/10.1007/BF00472492
2. El-Essawy, F. A.; Khattabi, A. F.; Abdel-Rahman, A. A.-H. Monatsh Chem. 2007, 138, 777. http://dx.doi.org/10.1007/s00-706-007-0649-7
3. Aanandhi, V. M.; George, S.; Vaidhyalingam, V. ARKIVOC 2008, xi, 187.
4. Hassan, A. A.; Ibrahim, Y. R.; Shawky, A. M. J. Sulfur Chem. 2007, 28, 211. DOI: http://dx.doi.org/10.1080/17415990701230596
5. Hassan, A. A.; Mourad, A. E.; El-Shaieb, K. M.; Abou-Zied, A. H.; Döpp, D. Heteroatom Chem. 2003, 14, 535. http://dx.doi.org/10.1002/hc. 10188
6. Suni, M. M; Nair, V. A.; Joshua, C. P. Tetrahedron 2001, 57, 2003. https://doi.org/10.1016/S0040-4020(01)00018-7
7. Hassan, A. A.; Döpp, D. J. Heterocycl. Chem. 2006, 43, 593. http://dx.doi.org/10.1002/jhet. 5570430311
8. Katritzky, A. R.; Khashab, N. M.; Gramova, A. V. ARKIVOC 2006, iii, 226. http://dx.doi.org/10.3998/ark.5550190.p009.872
9. Hassan, A. A.; Shawky, A. M. J. Heterocycl. Chem. 2011, 48, 495. http://dx.doi.org/10.1002/ihet. 553
10. Hassan, A. A.; Shawky, A. M.; Shehatta, M. S. J. Heterocycl. Chem. 2012, 49, 21. http://dx.doi.org/10.1002/jhet. 677
11. Sau, D. K.; Butcher, R. J.; Chaudhuri, S.; Saha, N. Mol. Cell. Biochem. 2003, 253, 21. https://doi.org/10.1023/A:1026041032078
12. Afrasiabi, Z.; Sinn, E.; Padhye, S.; Dutta, S.; Padhye, S.; Newton, C.; Anson, C. E.; Powell, A. K. J. Inorg. Biochem. 2003, 95, 306. https://doi.org/10.1016/S0162-0134(03)00131-4
13. Cukurovali, A.; Yilmaz, I.; Gur, S.; Kazaz, C. Eur. J. Med. Chem. 2006, 41, 201.
14. Patel, V. M.; Desai, K. R. ARKIVOC 2004, i, 123. http://dx.doi.org/10.3998/ark.5550190.0005.111
15. Matysiak, J.; Niewiadomy, A. Synth. Commun. 2006, 36, 1621. http://dx.doi.org/10.1080/00397910600591896
16. Aly, A. A.; Hassan, A. A.; Gomaa, M. A.-M.; El-Sheref, E. M. ARKIVOC 2007, xiv, 1. http://dx.doi.org/10.3998/ark.5550190.0008.e01
17. Aly, A. A.; Brown, A. B.; El-Emary, T. I.; Ewas, A. M. M.; Ramadan, M. ARKIVOC 2009, i, 150. http://dx.doi.org/10.3998/ark.5550190.0010.106
18. Jung, K.-Y.; Kim, S.-K.; Gao, Z.-G.; Gross, A. S.; Melman, N.; Jacobson, K. A.; Kim, Y.-C. Bioorg. Med. Chem. 2004, 12, 613.
https://doi.org/10.1016/j.bmc.2003.10.041
19. Belicchi-Ferrari, M.; Bisceglie, F.; Casoli, C.; Durot, S.; Morgenstern-Badarau, I.; Pelosi, G.; Pilotti, E.; Pinelli, S.; Tarasconi, P. J. Med. Chem. 2005, 48, 1671. http://dx.doi.org/10.1021/jm049529n
20. Hassan, A. A.; Mohamed. N. K.; Shawky, A. M.; Döpp, D. ARKIVOC 2003, i, 118. http://dx.doi.org/10.3998/ark.5550190.0004.114
21. Hassan, A. A.; El-Shaieb, K. M. A.; Mohamed, N. K.; Tawfeek, H. N.; Bräse, S.; Nieger, N. Tetrahedron Lett. 2014, 55, 2385.
https://doi.org/10.1016/j.tetlet.2014.02.107
22. Hassan, A. A.; Mohamed, N. K.; El-Shaieb, K. M. A.; Tawfeek, H. N.; Bräse, S.; Nieger M. ARKIVOC 2016, vi, 163.
http://dx.doi.org/10.3998/ark.5550190.p009.872
23. Kalinowski, H.-O.; Berger, S.; Braun, S. ${ }^{13}$ C NMR Spektroskopie; Thieme; Stuttgart, 1984, P. 121.
24. Gewald, K.; Schindler, R. J. Prakt. Chem. 1990, 332, 223.
http://dx.doi.org/10.1002/prac. 19903320213
25. Moore, J. A.; Kim, J.-H., Tetrahedron Lett. 1991, 32, 3449.
26. Hassan, A. A.; Mourad, A. E.; Abou-Zaid, A. H. J. Heterocycl. Chem. 2008, 45, 323. http://dx.doi.org/10.1002/ihet.-5570450205
27. Inoue, S.; Mikami, S.; Takimiya, K.; Otsubo, T.; Aso, Y. Heterocycles 2007, 71, 253. https://doi.org/10.3987/COM-06-10848
28. Kawase, T.; Okada, T.; Enomoto, T.; Kikuchi, T.; Miyaki, Y.; Oda, M. Bull. Chem. Soc. Jpn. 2003, 76, 1793. https://doi.org/10.1246/bcsj.76.1793
29. Döpp, D.; Hassan, A. A.; Mourad, A. E.; Nour El-Din, A. M.; Angermund, K.; Krüger, C.; Lehmann, C. W.; Rust, J. Tetrahedron 2003, 59, 5073.
https://doi.org/10.1016/S0040-4020(03)00735-X
30. Schulze, K.; Richter, C.; Ludwig, R.; Klatt, K. Z. Chem. 1988, 288, 28. C. A., 1989, 110, 154304d.
31. Noto, R.; Meo, P. L.; Gruttadauria, M.; Werber, G. J. Heterocycl. Chem. 1999, 36, 667. http://dx.doi.org/10.1002/jhet.-5570360315
32. Mloston, G.; Huisgen, R.; Giera, H. Tetrahedron 2002, 58, 4185. https://doi.org/10.1016/S0040-4020(02)00384-8
33. Pindur, U.; Haber, M. J. Prakt. Chem. 1993, 335, 12. http://dx.doi.org/10.1002/prac. 19933350103
34. Pizem, H.; Sharon, O.; Frimer, A. A. Tetrahedron 2002, 58, 3199. https://doi.org/10.1016/S0040-4020(02)00267-3
35. Mohamed, N. K. Pharmazie 1998, 53, 529.
36. Hassan, A. A.; Ashraf, A. A.; Mohamed, M. A. J. Chem. Res. 2010, 435. https://doi.org/10.3184/030823410X12797029344957
