Supplementary Material

Synthesis of Quinazolindionyl Amino Acid and Hydrazone Derivatives as Possible Antitumour Agents

A. Aboelmagd,*a Ezzeldin M. S. Salem,a Ibrahim A. I. Ali,a and Mohamed S. Gomaa b

aDepartment of Chemistry, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
bDepartment of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
Email: ahmedaelmagd@gmail.com

Table of Contents

1. Synthesis of the starting compound 1 S2
2. 1H NMR spectra of the starting compound 1 S2
3. Synthesis of the starting compound 2 S3
4. 1H NMR spectra of the starting compound 2 S3
5. 1H and 13C NMR spectra of the new compounds S4

Synthesis of 3-(2-hydroxyethyl)-2,4-di-oxo-(1H,3H)-quinazoline (1)

To a solution of methyl anthranilate (12.90 ml, 0.1 mol) in dry toluene (50 ml) Ethyl chloroformate (19.00 ml, 0.2 mol) was added and refluxed for 8 h. Solvent was distilled off under reduced pressure and the residue was crystallized from hexane to give ethyl 2-(Methoxycarbonylamino)benzoate

A mixture of ethyl 2-(ethoxycarbonylamino)benzoate (5.0 g, 0.02 mol) and 2-aminoethanol (1.48 ml, 0.022 mol) was fused together and held for 30 min in an oil bath at 140 ºC. The reaction mixture was treated with water and acidified with HCl to pH 4. The precipitate was filtered off, washed with water, dried and crystallized from ethanol to give 3-(2-hydroxyethyl)-2,4-di-oxo-(1H,3H)-quinazoline (1) (3.29 g, 71.21 %), m.p.: 242-244 ºC (Ref. [23] 239-241 ºC).

[2]

1H NMR (300 MHz, DMSO) of compound 1
[3] Synthesis of 1-ethyl-3-(2-hydroxyethyl)-2,4-dioxo-(1H,3H)-quinazoline (2)

To a solution of 3-(2-hydroxyethyl)-2,4-di-oxo-(1H,3H)-quinazoline (1) (3.00 g, 0.015 mol) in DMSO (30 ml) anhydrous K$_2$CO$_3$ (4.14 g, 0.02 mol) and ethyl iodide (1.40 ml, 0.017 mol) were added. The reaction mixture stirred at 90ºC for 4 h. afterward cooled and diluted with cold water. The precipitate was filtered off, washed with cold water, dried, and crystallized from ethanol to give 1-ethyl-3-(2-hydroxyethyl)-2,4-dioxo-(1H,3H)-quinazoline (2) (2.84 g, 83.28 %), m.p.: 122-125 °C (Ref. [23] 121-123 °C), R$_f$ = 0.23 (ethyl acetate/ petroleum ether 1:1).

[4]

1H NMR (300 MHz, CDCl$_3$) of compound 2
[5] 1H and 13C NMR spectra of the new compounds

1H NMR (300 MHz, DMSO) of compound 3

13C NMR (75 MHz, DMSO) of compound 3
1H NMR (300 MHz, CDCl$_3$) of compound 4

13C NMR (75 MHz, CDCl$_3$) of compound 4
1H NMR (300 MHz, DMSO) of compound 5

13C NMR (75 MHz, DMSO) of compound 5
1H NMR (300 MHz, CDCl$_3$) of compound 6a

13C NMR (75 MHz, CDCl$_3$) of compound 6a
1H NMR (300 MHz, CDCl$_3$) of compound 6b

13C NMR (75 MHz, CDCl$_3$) of compound 6b
1H NMR (300 MHz, CDCl$_3$) of compound 6c

13C NMR (75 MHz, CDCl$_3$) of compound 6c
1H NMR (300 MHz, CDCl$_3$) of compound 6d

13C NMR (75 MHz, CDCl$_3$) of compound 6d
1H NMR (300 MHz, CDCl$_3$) of compound 6e

13C NMR (75 MHz, CDCl$_3$) of compound 6e
1H NMR (300 MHz, CDCl$_3$) of compound 6f

13C NMR (75 MHz, CDCl$_3$) of compound 6f
$\text{\textbf{1H NMR (300 MHz, CDCl$_3$) of compound 7}}$

$\text{\textbf{13C NMR (75 MHz, CDCl$_3$) of compound 7}}$
1H NMR (300 MHz, DMSO) of compound 9

13C NMR (75 MHz, CDCl$_3$) of compound 9
1H NMR (300 MHz, DMSO) of compound 8a

13C NMR (75 MHz, CDCl$_3$) of compound 8a
1H NMR (300 MHz, DMSO) of compound 8b

13C NMR (75 MHz, CDCl₃) of compound 8b
1H NMR (300 MHz, DMSO) of compound 8c

13C NMR (75 MHz, CDCl$_3$) of compound 8c
\(^1\text{H NMR (300 MHz, DMSO)} \) of compound 8d

\(^{13}\text{C NMR (75 MHz, CDCl}_3\text{)} \) of compound 8d
1H NMR (300 MHz, DMSO) of compound 10a

13C NMR (75 MHz, CDCl$_3$) of compound 10a
1H NMR (300 MHz, DMSO) of compound 10b

13C NMR (75 MHz, CDCl$_3$) of compound 10b
1H NMR (300 MHz, DMSO) of compound 10c

13C NMR (75 MHz, CDCl$_3$) of compound 10c
1H NMR (300 MHz, DMSO) compound 10d

13C NMR (75 MHz, CDCl$_3$) of compound 10d
1H NMR (300 MHz, CDCl$_3$) of compound 12

13C NMR (75 MHz, CDCl$_3$) of compound 12
1H NMR (300 MHz, DMSO) of compound 11
1H NMR (300 MHz, CDCl$_3$) of compound 13a

13C NMR (75 MHz, CDCl$_3$) of compound 13a
^{1}H NMR (300 MHz, CDCl$_3$) of compound 13b

^{13}C NMR (75 MHz, CDCl$_3$) of compound 13b
^{1}H NMR (300 MHz, CDCl$_3$) of compound 14a

^{13}C NMR (75 MHz, CDCl$_3$) of compound 14a
1H NMR (300 MHz, CDCl$_3$) of compound 14b

13C NMR (75 MHz, CDCl$_3$) of compound 14b
\(^1H \) NMR (300 MHz, CDCl₃) of compound 14c

\(^{13}C \) NMR (75 MHz, CDCl₃) of compound 14c
1H NMR (300 MHz, DMSO) of compound 15a

13C NMR (75 MHz, DMSO) of compound 15a
^{1}H NMR (300 MHz, CDCl$_3$) of compound 15b

^{13}C NMR (75 MHz, CDCl$_3$) compound 15b
1H NMR (300 MHz, CDCl$_3$) of compound 15c

13C NMR (75 MHz, CDCl$_3$) of compound 15c