Supplementary Material

Tuning the coverage of self-assembled monolayer by introducing bulky substituents onto rigid adamantane tripod

Toshikazu Kitagawa^{*a} Shima Nakanishi,^a Aya Mizuno,^a Yohei Niwa,^a Hiroki Tabata,^a Katsuyuki Hirai,^b and Takao Okazaki^{*a}

^a Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan

^b Organization for the Promotion of Regional Innovation, Mie University, Tsu, Mie 514-8507, Japan Email: <u>kitaqawa@chem.mie-u.ac.jp</u>

Table of Contents

Figure S1. ¹ H NMR spectrum of 7	S2
Figure S2. ¹³ C NMR spectrum of 7	S2
Figure S3. ¹ H NMR spectrum of 8	S3
Figure S4. ¹³ C NMR spectrum of 8	S3
Figure S5. ¹ H NMR spectrum of 9	S4
Figure S6. ¹³ C NMR spectrum of 9	S4
Figure S7. ¹ H NMR spectrum of 4	S5
Figure S8. ¹³ C NMR spectrum of 4	S5
Figure S9. ¹ H NMR spectrum of 2	S6
Figure S10. ¹³ C NMR spectrum of 2	S6
Table S1. Results of DFT calculations for Ad(CH ₂ S) ₃ on the Au ₁₉ , Au ₂₇ , and Au ₃₇ monolayers	S7
Table S2. Results of DFT calculations for Ad(CMe ₂ S) ₃ on the Au ₂₇ monolayer	S10
Table S3. Energies of the Au ₁₉ , Au ₂₇ , and Au ₃₇ monolayers by single-point energy calculations	
by the DFT method	S11
Table S4. Energies of infinite Au monolayers adsorbed with $Ad(CH_2S)_3$ by single-point energy	
calculations by the DFT method under periodic boundary conditions (PBC)	S12
Table S5. Energies of infinite Au monolayers adsorbed with Ad(CMe ₂ S) ₃ by single-point energy	
calculations by the DFT method under periodic boundary conditions (PBC)	S15
Table S6. Energies of unit cells of infinite Au monolayer by single-point energy calculations	
by the DFT method under periodic boundary conditions (PBC)	S18
Table S7. Energy of Ad(CX ₂ S) ₃ (X = H or Me) by single-point energy calculations by the DFT method	S19

Figure S1. ¹H NMR spectrum of 7 (500 MHz, C₆D₆).

Figure S2. ¹³C NMR spectrum of 7 (75.5 MHz, C_6D_6).

Figure S3. ¹H NMR spectrum of 8 (500 MHz, C_6D_6).

Figure S4. 13 C NMR spectrum of 8 (125 MHz, C₆D₆).

Figure S5. ¹H NMR spectrum of 9 (500 MHz, C_6D_6).

Figure S6. 13 C NMR spectrum of 9 (125 MHz, C₆D₆).

Figure S7. ¹H NMR spectrum of **4** (300 MHz, acetone- d_6).

Figure S8. ¹³C NMR spectrum of 4 (75.5 MHz, acetone- d_6).

Figure S9. ¹H NMR spectrum of 2 (500 MHz, C_6D_6).

Figure S10. ¹³C NMR spectrum of 2 (75.5 MHz, CDCl₃).

Optimized Structure	Sym- metry	NI ^b	E, hartree	<i>ZPE,</i> hartree	G, hartree	ΔE , hartree ^c	ΔE _{ads} , kcal/mol ^d
Ad(CH ₂ S) ₃ on Au ₁₉	C _{3v}	4	-4266.9980417	0.300691	-4266.750721	-1692.7326024	24.4
	C_{3v}	1	-4266.9973090	0.300753	-4266.757075	-1692.7318697	24.9
Ad(CH ₂ S) ₃ on Au ₁₉	C ₃	2	-4266.9976442	0.300762	-4266.753389	-1692.7322049	24.7
Ad(CH ₂ S) ₃ on Au ₁₉	C ₃	2	-4267.0014667	0.300951	-4266.756297	-1692.7360274	22.3
Ad(CH ₂ S) ₃ on Au ₂₇	C_{3v}	0	-5350.9763973	0.301249	-5350.734258	-1692.7485788	14.4
Ad(CH ₂ S) ₃ on Au ₂₇	C ₃	0	-5350.9763764	0.301151	-5350.734472	-1692.7485579	14.4

Issue in Honor of Prof. Kenneth K. Laali ARK Table S1. Results of DFT calculations for Ad(CH₂S)₃ on the Au₁₉, Au₂₇, and Au₃₇ monolayers^a

ARKIVOC 2018, ii, S1-S19

Optimized Structure	Sym- metry	NI ^b	E, hartree	ZPE, hartree	G, hartree	ΔE , hartree ^c	$\Delta E_{ads},$ kcal/mol ^d
	C _{3v}	4	-5350.9593510	0.300178	-5350.712997	-1692.7315325	25.1
Ad(CH ₂ S) ₃ on Au ₂₇ Ad(CH ₂ S) ₃ on Au ₂₇	C ₃	0	-5350.9993497	0.301954	-5350.755071	-1692.7715312	(0)
	C ₃	0	-5350.9909429	0.301555	-5350.747930	-1692.7631244	5.3
Ad(CH ₂ S) ₃ on Au ₂₇	C ₁	0	-5350.9886346	0.301353	-5350.746771	-1692.7608161	6.7
Ad(CH ₂ S) ₃ on Au ₂₇	C ₁	0	-5350.9950654	0.301565	-5350.752412	-1692.7672469	2.7
Ad(CH ₂ S) ₃ on Au ₃₇	C_{3v}	2	-6705.9442826	0.300534	-6705.701918	-1692.7482327	14.6

Table S1. Continued

Optimized Structure	Sym- metry	\mathbf{NI}^{b}	E, hartree	ZPE, hartree	G, hartree	ΔE , hartree ^c	$\Delta E_{ads},$ kcal/mol ^d
Ad(CH ₂ S) ₂ on Au ₂₇	C _{3v}	5	-6705.9291976	0.300072	-6705.682324	-1692.7331477	24.1
Ad(CH ₂ S) ₃ on Au ₃₇	C ₃	2	-6705.9370070	0.300870	-6705.695104	-1692.7409571	19.2

^a UB3LYP/3-21G for C, H, and S atoms and LanL2MB for Au atom. The Au-Au distance was fixed at 2.88 Å during structural optimization.

^b Number of imaginary frequencies.

^c $\Delta E = E_{ads} + E[Ad(CH_2S)_3] = E[Ad(CH_2S)_3/Au layer] - E(Au layer)$. The values of E(Au layer) are summarized in Table S3.

^d Values are relative to the smallest E_{ads} .

^e In the lowest-energy structure **X1**, the center of the adamantane fragment lies above the center of three Au atoms. The Ad(CH₂S)₃ unit adopts an axially twisted conformation. Distances between the S atom and its neighboring four Au atoms were 2.70, 3.00, 3.40, and 3.61 Å. The length of CH₂-S bonds was 1.92 Å, the bond angle C(1)-CH₂-S was 118°, and the dihedral angle C(7)-C(1)-CH₂-S was 118°.

Optimized Structure	Sym- metry	NI ^b	E, hartree	ZPE, hartree	G, hartree	ΔE , hartree ^c	$\Delta E_{\rm ads},$ kcal/mol ^d
Ad(CMe ₂ S) ₃ on Au ₂₇	C ₃	0	-5585.5815802	0.473559	-5585.171088	-1927.3537617	1.3
Ad(CMesS)s on Aust	C ₃	0	-5585.5836796	0.472138	-5585.177644	-1927.3558611	(0)

^a UB3LYP/3-21G for C, H, and S atoms and LanL2MB for Au atom. The Au-Au distance was fixed at 2.88 Å during structural optimization.

^b Number of imaginary frequencies.

^c $\Delta E = E_{ads} + E[Ad(CMe_2S)_3] = E[Ad(CMe_2S)_3/Au layer] - E(Au layer)$. The values of E(Au layer) are summarized in Table S3.

^d Values are relative to the smallest ΔE_{ads} .

^e In the lowest-energy structure **X2**, the distances between the S atom and its neighboring four Au atoms were 2.77, 2.90, 3.26, and 3.71 Å. Two of the distances were slightly longer than that in the Ad(CH₂S)₃ system (**X1**), and the other two were slightly shorter. The length of CMe₂-S bonds was 1.96 Å, the bond angle C(1)-CMe₂-S was 108°, and the dihedral angle C(7)-C(1)-CMe₂-S was 166°. The tripod Ad(CMe₂S)₃ stood almost upright in a slightly axially twisted form, due to the steric effect of the Me groups.

Table S3. Energies of the Au_{19} , Au_{27} , and Au_{37} monolayers by single-point energy calculations by the DFT method^a

Structure	Symmetry	E, hartree
	D _{6h}	-2574.2654393
Au ₂₇	D _{3h}	-3658.2278185
Au ₃₇	D _{6h}	-5013.1960499

^a UB3LYP/LanL2MB for Au atom. The Au-Au distance was fixed at 2.88 Å.

ARKIVOC 2018, ii, S1-S19

Table S4. Energies of infinite Au monolayers adsorbed with $Ad(CH_2S)_3$ by single-point energy calculations by the DFT method under periodic boundary conditions (PBC)^a

	Nearest	Number of		$E_{\rm ads}, {\rm kcal/mol}^{\rm b}$		
Structure	molecular distance, Å	Au atoms per unit cell	E, hartree	per unit cell	per Au atom	
$Ad(CH_2S)_3$ (3 × 3)R60°	8.64	9	-2911.0949984	-38.5	-4.28	
Ad(CH ₂ S) ₃ ($3 \times \sqrt{7}$) unit cell	7.62, 8.64, and 10.38	9	-2910.5063241	330.9	36.76	
Ad(CH ₂ S) ₃ $(2\sqrt{3} \times 2\sqrt{3})$ R30°	9.98	12	-3317.3476154	-39.4	-3.28	
Ad(CH ₂ S) ₃ $(\sqrt{13} \times \sqrt{13})$ R46.1°	10.38	13	-3452.7653224	-44.8	-3.45	

Issue in Honor of Prof. Kenneth K. Laali Table S4. Continued

	Nearest	Number of		$E_{\rm ads}, {\rm kcal/mol}^{\rm b}$		
Structure	molecular distance, Å	Au atoms per unit cell	E, hartree	per unit cell	per Au atom	
$Ad(CH_2S)_3$ (4 × 4)R60°	11.52	16	-3859.0056044	-39.5	-2.47	
Ad(CH ₂ S) ₃ $(2\sqrt{7} \times 2\sqrt{7})$ R19.1°	12.55	19	-4265.2532868	-44.6	-2.35	
Ad(CH ₂ S) ₃ $(\sqrt{21} \times \sqrt{21})$ R 10.9°	13.20	21	-4536.0793139	-42.7	-2.03	

	Nearest	Number of	E, hartree	$E_{\rm ads}, {\rm kcal/mol}^{\rm b}$		
Structure	molecular	Au atoms		per	per	
	distance, A	per unit cen		unit cell	Au atom	
Ad(CH ₂ S) ₃ (5 × 5)R60°	14.40	25	-5077.7354420	-41.2	-1.65	

^a UBLYP/3-21G for C, H, and S atoms and LanL2MB for Au atom. The Au-Au distance was fixed at 2.88 Å. The geometry of $Ad(CH_2S)_3$ in **X1** (Table S1) was used.

^b $E_{ads} = E[Ad(CH_2S)_3/Au layer] - E[Ad(CH_2S)_3] - E(Au layer)$. The values of E(Au layer) and $E[Ad(CH_2S)_3]$ are summarized in Tables S6 and S7, respectively.

ARKIVOC 2018, *ii*, S1-S19

Table S5. Energies of infinite Au monolayers adsorbed with $Ad(CMe_2S)_3$ by single-point energy calculations by the DFT method under periodic boundary conditions (PBC)^a

	Nearest	rest Number of		$E_{\rm ads}$, kcal/mol ^b		
Structure	molecular	Au atoms per unit cell	E, hartree	per unit cell	per	
Ad(CMeaS)a (3 × 3)R60°	8.64	9	-3142.6967958	1747.8	194.20	
Ad(CMe ₂ S) ₃ $(2\sqrt{3} \times 2\sqrt{3})$ R30°	9.98	12	-3551.6618885	44.9	3.74	
Ad(CMe ₂ S) ₃	8.64, 9.98, and 13.20	12	-3550.7546656	614.2	51.18	
with a $(2\sqrt{3} \times 3)$ unit cell Ad(CMe ₂ S) ₃ $(\sqrt{13} \times \sqrt{13})$ R46.1°	10.38	13	-3687.1847163	-26.5	-2.04	

Issue in Honor of Prof. Kenneth K. Laali Table S5. Continued

	Nearest	Number of		$E_{\rm ads}$, kcal/mol ^b		
Structure	molecular distance, Å	Au atoms per unit cell	E, hartree	per unit cell	per Au atom	
Ad(CMa S) (4×4) P60°	11.52	16	-4093.4320290	-25.6	-1.60	
Ad(CMe ₂ S) ₃ (4 × 4)K00 Ad(CMe ₂ S) ₃ with a (4 × $\sqrt{13}$) unit cell	10.38, 11.52, and 13.20	16	-4093.4311871	-25.1	-1.57	
Ad(CMe ₂ S) ₃ with a $(4 \times 2\sqrt{3})$ unit cell	9.98, 11.52, and 15.24	16	-4093.4027449	-7.3	-0.45	

Issue in Honor of Prof. Kenneth K. Laali Table S5. Continued

Nearest Number Structure molecular Au ator distance, Å per uni	Nearest	Number of		$E_{\rm ads}$, kcal/mol ^b	
	Au atoms per unit cell	oms <i>E</i> , hartree t cell	per unit cell	per Au atom	
Ad(CMe ₂ S) ₃ $(2\sqrt{7} \times 2\sqrt{7})$ R19.1°	12.55	19	-4499.6755203	-28.1	-1.48
	13.20	25	-4770.5044626	-28.0	-1.33
Ad(CMe ₂ S) ₃ ($\sqrt{21} \times \sqrt{21}$)R10.9°	14.40	25	-5312.1623492	-27.6	-1.10

 $Ad(CMe_2S)_3 (5 \times 5)R60^\circ$

^a UBLYP/3-21G for C, H, and S atoms and LanL2MB for Au atom. The Au-Au distance was fixed at 2.88 Å. The geometry of $Ad(CMe_2S)_3$ in **X2** (Table S2) was used.

^b $E_{ads} = E[Ad(CMe_2S)_3/Au \text{ layer}] - E[Ad(CMe_2S)_3] - E(Au \text{ layer})$. Values of E(Au layer) and $E[Ad(CMe_2S)_3]$ are summarized in Tables S6 and S7, respectively.

ARKIVOC 2018, ii, S1-S19

Table S6. Energies of unit cells of infinite Au monolayer by single-point energy calculations by the DFT method under periodic boundary conditions (PBC)^a

^a UBLYP/LanL2MB was used. The Au-Au distance was fixed at 2.88 Å.

ARKIVOC 2018, *ii*, S1-S19

Compound	Spin multiplicity	E, hartree	ΔE , kcal/mol ^b
$Ad(CH_2S^{\cdot})_3$	2	-1692.3115693	0.02
	4	-1692.3116050 ^c	(0)
$Ad(CMe_2S^{\cdot})_3$	2	-1926.7597718	0.3
	4	-1926.7601828 ^c	(0)

Table S7. Energy of $Ad(CX_2S)_3$ (X = H or Me) by single-point energy calculations by the DFT method^a

^a UBLYP/3-21G level. Geometry of $Ad(CX_2S)_3$ (X = H or Me) in X1 or X2 from Table S1 or S2 was used.

^b Values relative to that of the most stable spin state.

^c Values used for the evaluation of $E_{ads.}$.