## Supplementary Material

# Tuning the coverage of self-assembled monolayer by introducing bulky substituents onto rigid adamantane tripod 

Toshikazu Kitagawa*a Shima Nakanishi, ${ }^{\text {a }}$ Aya Mizuno, ${ }^{a}$ Yohei Niwa, ${ }^{a}$ Hiroki Tabata, ${ }^{\text {a }}$ Katsuyuki Hirai, ${ }^{\text {b }}$ and Takao Okazaki* ${ }^{\text {a }}$<br>${ }^{a}$ Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan<br>${ }^{b}$ Organization for the Promotion of Regional Innovation, Mie University, Tsu, Mie 514-8507, Japan<br>Email: kitagawa@chem.mie-u.ac.jp

## Table of Contents

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of 7 ..... S2
Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of 7 ..... S2
Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of 8 ..... S3
Figure S4. ${ }^{13} \mathrm{C}$ NMR spectrum of 8 ..... S3
Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of 9 ..... S4
Figure S6. ${ }^{13} \mathrm{C}$ NMR spectrum of 9 ..... S4
Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of 4 ..... S5
Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum of 4 ..... S5
Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of 2 ..... S6
Figure S10. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}$ ..... S6
Table S1. Results of DFT calculations for $\mathrm{Ad}\left(\mathrm{CH}_{2} \mathrm{~S}\right)_{3}$ on the $\mathrm{Au}_{19}, \mathrm{Au}_{27}$, and $\mathrm{Au}_{37}$ monolayers ..... S7
Table S2. Results of DFT calculations for $\mathrm{Ad}\left(\mathrm{CMe}_{2} \mathrm{~S}\right)_{3}$ on the $\mathrm{Au}_{27}$ monolayer ..... S10
Table S3. Energies of the $A u_{19}, A u_{27}$, and $A u_{37}$ monolayers by single-point energy calculations by the DFT method ..... S11
Table S4. Energies of infinite Au monolayers adsorbed with $\mathrm{Ad}\left(\mathrm{CH}_{2} \mathrm{~S}\right)_{3}$ by single-point energy calculations by the DFT method under periodic boundary conditions (PBC) ..... S12
Table S5. Energies of infinite Au monolayers adsorbed with $\mathrm{Ad}\left(\mathrm{CMe}_{2} \mathrm{~S}\right)_{3}$ by single-point energy calculations by the DFT method under periodic boundary conditions (PBC) ..... S15
Table S6. Energies of unit cells of infinite Au monolayer by single-point energy calculations by the DFT method under periodic boundary conditions (PBC) ..... S18
Table S7. Energy of $\mathrm{Ad}\left(\mathrm{CX}_{2} \mathrm{~S}\right)_{3}(\mathrm{X}=\mathrm{H}$ or Me) by single-point energy calculations by the DFT method ..... S19


Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $7\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$.


Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of $7\left(75.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$.


Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$.


Figure S4. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8}\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$.


Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of $9\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$.


Figure S6. ${ }^{13} \mathrm{C}$ NMR spectrum of $9\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$.


Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}\left(300 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right)$.


Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum of $4\left(75.5 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right)$.


Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of $2\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$.


Figure S10. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Table S1. Results of DFT calculations for $\operatorname{Ad}\left(\mathrm{CH}_{2} S\right)_{3}$ on the $\mathrm{Au}_{19}, \mathrm{Au}_{27}$, and $A u_{37}$ monolayers ${ }^{\text {a }}$


Table S1. Continued


Table S1. Continued



$\mathrm{Ad}\left(\mathrm{CH}_{2} \mathrm{~S}^{\circ}\right)_{3}$


X1

Table S2. Results of DFT calculations for $\operatorname{Ad}\left(\mathrm{CMe}_{2} \mathrm{~S}\right)_{3}$ on the $\mathrm{Au}_{27}$ monolayer ${ }^{\text {a }}$

$\mathrm{Ad}\left(\mathrm{CMe}_{2} \mathrm{~S}\right)_{3}$ on $\mathrm{Au}_{27}$
${ }^{a}$ UB3LYP/3-21G for C, $H$, and $S$ atoms and LanL2MB for Au atom. The Au-Au distance was fixed at $2.88 \AA$ during structural optimization.
${ }^{\mathrm{b}}$ Number of imaginary frequencies.
${ }^{\text {c }} \Delta E=E_{\text {ads }}+E\left[\operatorname{Ad}\left(\mathrm{CMe}_{2} \mathrm{~S}\right)_{3}\right]=E\left[\mathrm{Ad}\left(\mathrm{CMe}_{2} \mathrm{~S}\right)_{3} / \mathrm{Au}\right.$ layer $]-E(\mathrm{Au}$ layer $)$. The values of $E(\mathrm{Au}$ layer $)$ are summarized in Table S3.
${ }^{\mathrm{d}}$ Values are relative to the smallest $\Delta E_{\text {ads }}$.
${ }^{\mathrm{e}}$ In the lowest-energy structure $\mathbf{X 2}$, the distances between the S atom and its neighboring four Au atoms were $2.77,2.90,3.26$, and $3.71 \AA$. Two of the distances were slightly longer than that in the $\operatorname{Ad}\left(\mathrm{CH}_{2} \mathrm{~S}\right)_{3}$ system ( $\mathbf{X 1}$ ), and the other two were slightly shorter. The length of $\mathrm{CMe}_{2}-\mathrm{S}$ bonds was $1.96 \AA$, the bond angle $\mathrm{C}(1)-\mathrm{CMe}_{2}-\mathrm{S}$ was $108^{\circ}$, and the dihedral angle $\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{CMe}_{2}-\mathrm{S}$ was $166^{\circ}$. The tripod $\mathrm{Ad}\left(\mathrm{CMe}_{2} \mathrm{~S}\right)_{3}$ stood almost upright in a slightly axially twisted form, due to the steric effect of the Me groups.


Table S3. Energies of the $\mathrm{Au}_{19}, \mathrm{Au}_{27}$, and $\mathrm{Au}_{37}$ monolayers by single-point energy calculations by the DFT method ${ }^{\text {a }}$

| Structure | Symmetry | $E$, hartree |
| :---: | :---: | :---: |
| $0 \quad 0 \quad 0$ |  |  |
| $\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$ | $\mathrm{D}_{6 \mathrm{~h}}$ | -2574.2654393 |
| $\mathrm{Au}_{19} 0 \text { ○ }$ |  |  |
| $\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$ | $\mathrm{D}_{3 \mathrm{~h}}$ | -3658.2278185 |
| $\mathrm{Au}_{27}, \ldots$ |  |  |
| 0, 0 0 0 0 0 0 | $\mathrm{D}_{6 \mathrm{~h}}$ | -5013.1960499 |
| $\mathrm{Au}_{37}$ |  |  |

[^0]Table S4. Energies of infinite Au monolayers adsorbed with $\operatorname{Ad}\left(\mathrm{CH}_{2} \mathrm{~S}\right)_{3}$ by single-point energy calculations by the DFT method under periodic boundary conditions (PBC) ${ }^{\text {a }}$


Table S4. Continued


Table S4. Continued

| Structure | Nearest <br> molecular <br> distance, $\AA$ | Number of <br> Au atoms <br> per unit cell | $E$, hartree | per <br> unit cell | per <br> au atom |
| :---: | :---: | :---: | :---: | :---: | :---: |

${ }^{a}$ UBLYP/3-21G for $\mathrm{C}, \mathrm{H}$, and S atoms and LanL2MB for Au atom. The $\mathrm{Au}-\mathrm{Au}$ distance was fixed at $2.88 \AA$. The geometry of $\mathrm{Ad}\left(\mathrm{CH}_{2} \mathrm{~S}\right)_{3}$ in $\mathbf{X 1}$ (Table S1) was used.
${ }^{\mathrm{b}} E_{\text {ads }}=E\left[\mathrm{Ad}\left(\mathrm{CH}_{2} \mathrm{~S}\right)_{3} / \mathrm{Au}\right.$ layer $]-E\left[\mathrm{Ad}\left(\mathrm{CH}_{2} \mathrm{~S}\right)_{3}\right]-E($ Au layer $)$. The values of $E($ Au layer $)$ and $E\left[\mathrm{Ad}\left(\mathrm{CH}_{2} \mathrm{~S}\right)_{3}\right]$ are summarized in Tables S6 and S7, respectively.

Table S5. Energies of infinite Au monolayers adsorbed with $\mathrm{Ad}\left(\mathrm{CMe}_{2} \mathrm{~S}\right)_{3}$ by single-point energy calculations by the DFT method under periodic boundary conditions (PBC) ${ }^{\text {a }}$


Table S5. Continued


Table S5. Continued


[^1]Table S6. Energies of unit cells of infinite Au monolayer by single-point energy calculations by the DFT method under periodic boundary conditions (PBC) ${ }^{\text {a }}$


[^2]Table S7. Energy of $\operatorname{Ad}\left(\mathrm{CX}_{2} \mathrm{~S}\right)_{3}\left(X=\mathrm{H}\right.$ or Me) by single-point energy calculations by the DFT method ${ }^{\mathrm{a}}$

| Compound | Spin multiplicity | $E$, hartree | $\Delta E, \mathrm{kcal} / \mathrm{mol}{ }^{\mathrm{b}}$ |
| :---: | :---: | :---: | :---: |
| $\operatorname{Ad}\left(\mathrm{CH}_{2} \mathrm{~S} \cdot\right)_{3}$ | 2 | -1692.3115693 | 0.02 |
|  | 4 | $-1692.3116050^{\mathrm{c}}$ | $(0)$ |
| $\operatorname{Ad}\left(\mathrm{CMe}_{2} \mathrm{~S}^{*}\right)_{3}$ | 2 | -1926.7597718 | 0.3 |

${ }^{\text {a }}$ UBLYP/3-21G level. Geometry of $\operatorname{Ad}\left(\mathrm{CX}_{2} \mathrm{~S}\right)_{3}(\mathrm{X}=\mathrm{H}$ or Me$)$ in $\mathbf{X 1}$ or $\mathbf{X 2}$ from Table S 1 or S 2 was used.
${ }^{\mathrm{b}}$ Values relative to that of the most stable spin state.
${ }^{c}$ Values used for the evaluation of $E_{\text {ads. }}$.


[^0]:    ${ }^{\mathrm{a}}$ UB3LYP/LanL2MB for Au atom. The $\mathrm{Au}-\mathrm{Au}$ distance was fixed at $2.88 \AA$.

[^1]:    ${ }^{a}$ UBLYP/3-21G for $\mathrm{C}, \mathrm{H}$, and S atoms and LanL2MB for Au atom. The $\mathrm{Au}-\mathrm{Au}$ distance was fixed at $2.88 \AA$. The geometry of $\mathrm{Ad}\left(\mathrm{CMe}_{2} \mathrm{~S}\right)_{3}$ in $\mathbf{X 2}$ (Table S2) was used.
    ${ }^{\mathrm{b}} E_{\text {ads }}=E\left[\mathrm{Ad}\left(\mathrm{CMe}_{2} \mathrm{~S}\right)_{3} / \mathrm{Au}\right.$ layer $]-E\left[\mathrm{Ad}\left(\mathrm{CMe}_{2} \mathrm{~S}\right)_{3}\right]-E(\mathrm{Au}$ layer $)$. Values of $E(\mathrm{Au}$ layer $)$ and $E\left[\operatorname{Ad}\left(\mathrm{CMe}_{2} \mathrm{~S}\right)_{3}\right]$ are summarized in Tables S6 and S7, respectively.

[^2]:    ${ }^{\mathrm{a}}$ UBLYP/LanL2MB was used. The Au-Au distance was fixed at $2.88 \AA$.

