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Abstract

Structures of octahydrido silconium dication (SiHg?*) and nonahydrido silconium trication (SiHs3*) were found
to be calculationally viable minima at the MP2/cc-pVTZ level and CCSD(T)/cc-pVTZ levels. Their structure has
three and four two-electron three-center (2e-3c) bonds, respectively. The protonation of SiH;* to form the
dication was found to be slightly endothermic by 4.1 kcal/mol at the CCSD(T)/cc-PVTZ//CCSD(T)/cc-PVTZ + ZPE
level. Further protonation to form the trication was found to be highly endothermic by 162.2 kcal/mol. The
deprotonation barriers of the ions were also computed.
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Introduction

Higher coordinate® multicharged main group compounds are of substantial interest both theoretically>® and
experimentally.” Schmidbaur et al. have prepared a variety of monopositively charged higher coordinate gold
complexes of main group elements.” They have also prepared dipositively charged carbon {[(CsHs)sPAu]sC}?**,2
nitrogen {[(CeHs)sPAulsN}?*,° phosphorus {[(CeHs)sPAulsP}?*,1° sulfur {[(CeHs)3sPAulsS}*,*t and oxygen
{[(0-CH3CeH4)3PAU]40}**,2? and determined their X-ray structures. These represent isolobal analogs of CHg?*,
NHs?*, PHs?*, SH4?* and OH4?*, respectively.

Cao et al.®® reported the first spectroscopic observation of SiH;*. Their IR data suggest that SiH;* is a
symmetric complex (Hz--SiHs*---H;) with two two-electron three-center (2e-3c) bonds and with two two-
electron two-center (2e-2c) bonds. This is in contrast to the species CH7*, which has been concluded, from
both IR spectrum* and calculations,> to have a structure consisting of a H, subunit weakly bound to one of
the hydrogen atoms of the 2e-3c bond (CHs*. H,). Hu et al.'® have also reported the calculated structures and
Infrared spectrum of parent heptacoordiate siliconium ion, SiH7*. A similar structure has also been reported
for GaH7*.Y’

H g+ \ + H
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H i H\\\y o H
H H
SiH7* CHs*. H,

Scheme 1. Structures of SiH;" and CHs*. H..

In continuation of our study of hypercoordinate compounds, we have now extended our theoretical
investigations to the next higher homologues of SiH;* i.e. SiHg?* and SiHs3* ions at the MP2/cc-pVTZ and
CCSD(T)/cc-pVTZ levels.

Results and Discussion

Structures of 1 and 2 were optimized in the gas phase at the MP2/cc-pVTZ and CCSD(T)/cc-PVTZ levels.
CCSD(T)/cc-PVTZ level structures are discussed throughout unless otherwise stated. Structure 1 was found to
be a viable minimum (Figure 1) on the potential energy surface (PES) of SiHg?* at the both MP2/cc-pVTZ and
CCSD(T)/cc-PVTZ levels. Computed energies are given in Table 1. Structure 1 contains three 2e-3c bonds
involving the silicon atom and thee hydrogen molecules and two 2e-2c bond involving the silicon atom and a
hydrogen molecule. The ion can be considered as a complex between SiH4?* (protonated silicenium dication)*®
and two hydrogen molecules (Scheme 2). The Si-H bond distance (1.995 A) of the axial 2e-3c bond units is
considerably longer than that of the equatorial unit (1.842 A). The possible stability of the eight-coordinate
SiHg?* is due to the fact that the silicon can undergo sp3d hybridization. In comparison, the eight-coordinate
CHs?* ion was found not be a minimum on the PES. The dication dissociated into CHe¢?* and H, upon
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optimization. This is because, unlike silicon, carbon is unable to undergo sp3d hybridization. Computed

vibrational frequencies of the structure 1 are given in Table 2.

Table 1. Energies (-au), ZPE and relative energies (kcal/mol) of ions 1-4

Structure ZPE rel. energy? CCSD(T)/cc- rel. energy®
MP2/cc-pVTZ NIMAGP
no. (kcal/mol) (kcal/mol) pVTZ (kcal/mol)
SiH7* -292.82964 32,5 0 -4.8 -292.87141 -4.1
1 -292.82986 37.4 0 0.0 -292.87264 0.0
2 -292.57167 38.9 0 163.5 -292.61650 162.2
31s -292.71363 34.7 1 68.3
4rs -292.54590 36.2 1 177.0

2 Relative energy at MP2/cc-pVTZ//cc-pVTZ + ZPE level; ° at the CCSD(T)/cc-pVTZ//CCSD(T)/cc-pVTZ + ZPE level.

Table 2. Calculated frequencies? (cm™) and IR intensities (km/mol) of 1

MP2/cc-pVTZ CCSD(T)/cc-pVTZ
frequency intensity frequency intensity

306 0 281 0
335 0 309 0
383 11 366 0
388 0 385 45
437 3 438 19
501 142 504 47
618 0 613 7
639 112 633 68
733 32 695 7
800 28 768 4
850 0 786 0
859 69 790 88
869 0 847 0
902 27 898 22
996 2 975 1
1079 60 1025 68
2307 16 2253 26
2398 142 2345 225
3779 295 3702 280
4005 721 3924 695
4042 6 3959 6

@ Computed frequencies were not scaled.

Protonation of SiH;* to form 1 was found to be endothermic by 4.8 kcal/mol at the MP2/cc-
pVTZ//MP2/cc-pVTZ + ZPE level (4.1 kcal/mol at the CCSD(T)/cc-PVTZ//CCSD(T)/cc-PVTZ + ZPE level).
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Transition structure, 3rs (Figure 1) for the deprotonation of 1 was also located. The structure 3rs lies 68.3

kcal/mol higher in energy than structure 1. Thus the trication has also a high barrier for deprotonation.
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Figure 1. MP2/cc-pVTZ (CCSD(T)/cc-pVTZ) optimized structures of 1, 2 and 3rs,

2+

Sit’
.

H
H :
H/”o,,2+,'l‘_-"" H, H\l i
/ SiT

I O
1 P
& g
1495 i ll (11.99(;35)
(1.501) g .
o 4: R e = "0331
P = < o b os
» % = 2 0 1.828 J
J\a s 'l (0.836)
J1933 J ) s
1946 8§ 0589
!
0.813\J
(0.819)
2 CZV
f 2.336 ,“
L) ‘ P
‘ ”’,
' ’
'y 4
LT
1.518
|
iy 9
'
] “
|
E SN
371s Cov

©ARKAT USA, Inc

Page 93



Arkivoc 2018, ii, 90-96 Rasul, G. et al.

MP2/cc-pVTZ and CCSD(T)/cc-PVTZ optimizations show that the nine-coordinate siliconium structure 2 is
also a minimum on the potential energy surface of SiH¢>*. Tricationic structure 2 (Figure 1) contains four 2e-3c
bonds involving the silicon atom and four hydrogen molecules and a 2e-2c bond involving the silicon atom and
a hydrogen atom. The Si-H bond distances (1.946 and 1.884 A) of the axial 2e-3c bond units are slightly longer
than those of the equatorial units (1.915 and 1.836 A). Charge-charge repulsions in the trications are
substantial. However, the bonding interactions are strong enough to counter charge-charge repulsions
rendering them remarkably stable. Dissociation of 2 into 1 and H* was calculated to be very exothermic by
163.5 kcal/mol at the MP2/cc-pVTZ//MP2/cc-pVTZ + ZPE level (162.2 kcal/mol at the CCSD(T)/cc-
PVTZ//CCSD(T)/cc-PVTZ + ZPE level). The transition structure 4rs for the dissociation lies just 13.5 kcal/mol
higher in energy than structure 2. This shows that the trication 2, if formed will dissociate spontaneously into 1
and H*. Potential energy surface of 1 and 2 calculated MP2/cc-pVTZ//MP2/cc-pVTZ + ZPE level is depicted in
Figure 2.
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Figure 2. Potential energy surface of 1 and 2.
We also searched for any minimum-energy structures of decacoordinate siliconium ion, SiHio**. At the

MP2/cc-pVTZ level no minimum could be found on the PES of SiH10** (including a structure with five 2e-3c
bonds as shown in Scheme 3). Thus in SiH10** charge-charge repulsion may have reached its prohibitive limit.

Scheme 3. Possible structure of SiHio*".
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Conclusions

The present calculational study at the MP2/cc-pVTZ and CCSD(T)/cc-pVTZ levels shows that the octahydrido-
silconium dication (SiHg?*) 1 and nonahydridosilconium trication (SiHo**) 2 are viable energy minima.
Structures 1 and 2 were found to stabilized by three and four 2e-3c bonds, respectively. The protonation of
SiH;* to form 1 was calculated to be slightly endothermic by about 5 kcal/mol. Charge-charge repulsions in
these di- and tri-cations are substantial. However, the bonding interactions are strong enough to counter
charge-charge repulsions rendering them remarkably stable.

Experimental Section

Calculations

Geometry optimizations and frequency calculations were carried out with the Gaussian 09 program.®®
Vibrational frequencies at the MP2/cc-pVTZ//MP2/cc-pVTZ level were used to characterize stationary points
as minima (NIMAG (number of imaginary frequency) = 0 or transition state NIMAG = 1) and to compute zero
point vibrational energies (ZPE), which were scaled by a factor of 0.96.2° CCSD(T)/cc-pVTZ optimizations and
frequency calculations calculations have been performed with the CFOUR program.?%22
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