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Abstract 

Structures of octahydrido silconium dication (SiH8
2+) and nonahydrido silconium trication (SiH9

3+) were found 

to be calculationally viable minima at the MP2/cc-pVTZ level and CCSD(T)/cc-pVTZ levels. Their structure has 

three and four two-electron three-center (2e-3c) bonds, respectively. The protonation of SiH7+ to form the 

dication was found to be slightly endothermic by 4.1 kcal/mol at the CCSD(T)/cc-PVTZ//CCSD(T)/cc-PVTZ + ZPE 

level. Further protonation to form the trication was found to be highly endothermic by 162.2 kcal/mol. The 

deprotonation barriers of the ions were also computed. 
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Introduction 

 

Higher coordinate1 multicharged main group compounds are of substantial interest both theoretically2-6 and 

experimentally.7 Schmidbaur et al. have prepared a variety of monopositively charged higher coordinate gold 

complexes of main group elements.7 They have also prepared dipositively charged carbon {[(C6H5)3PAu]6C}2+,8 

nitrogen {[(C6H5)3PAu]5N}2+,9 phosphorus {[(C6H5)3PAu]5P}2+,10 sulfur {[(C6H5)3PAu]4S}2+,11 and oxygen 

{[(o-CH3C6H4)3PAu]4O}2+,12 and determined their X-ray structures. These represent isolobal analogs of CH6
2+, 

NH5
2+, PH5

2+, SH4
2+ and OH4

2+, respectively. 

Cao et al.13 reported the first spectroscopic observation of SiH7
+. Their IR data suggest that SiH7

+ is a 

symmetric complex (H2…SiH3
+…H2) with two two-electron three-center (2e-3c) bonds and with two two-

electron two-center (2e-2c) bonds.  This is in contrast to the species CH7
+, which has been concluded, from 

both IR spectrum14 and calculations,15 to have a structure consisting of a H2 subunit weakly bound to one of 

the hydrogen atoms of the 2e-3c bond (CH5
+. H2).  Hu et al.16 have also reported the calculated structures and 

Infrared spectrum of parent heptacoordiate siliconium ion, SiH7
+. A similar structure has also been reported 

for GaH7
+.17 

 

   
           SiH7

+    CH5
+. H2 

 

Scheme 1.  Structures of SiH7
+ and CH5

+. H2. 

 

In continuation of our study of hypercoordinate compounds, we have now extended our theoretical 

investigations to the next higher homologues of SiH7
+ i.e. SiH8

2+ and SiH9
3+ ions at the MP2/cc-pVTZ and 

CCSD(T)/cc-pVTZ levels. 

 

Results and Discussion 
 

Structures of 1 and 2 were optimized in the gas phase at the MP2/cc-pVTZ and CCSD(T)/cc-PVTZ levels. 

CCSD(T)/cc-PVTZ level structures are discussed throughout unless otherwise stated. Structure 1 was found to 

be a viable minimum (Figure 1) on the potential energy surface (PES) of SiH8
2+ at the both MP2/cc-pVTZ and 

CCSD(T)/cc-PVTZ levels. Computed energies are given in Table 1. Structure 1 contains three 2e-3c bonds 

involving the silicon atom and thee hydrogen molecules and two 2e-2c bond involving the silicon atom and a 

hydrogen molecule. The ion can be considered as a complex between SiH4
2+ (protonated silicenium dication)18 

and two hydrogen molecules (Scheme 2). The Si-H bond distance (1.995 Å) of the axial 2e-3c bond units is 

considerably longer than that of the equatorial unit (1.842 Å).  The possible stability of the eight-coordinate 

SiH8
2+ is due to the fact that the silicon can undergo sp3d hybridization. In comparison, the eight-coordinate 

CH8
2+ ion was found not be a minimum on the PES. The dication dissociated into CH6

2+ and H2 upon 
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optimization. This is because, unlike silicon, carbon is unable to undergo sp3d hybridization. Computed 

vibrational frequencies of the structure 1 are given in Table 2. 

 

Table 1.  Energies (-au), ZPE and relative energies (kcal/mol) of ions 1-4 

Structure  

no. 
MP2/cc-pVTZ 

ZPE 

(kcal/mol) 
NIMAGb 

rel. energya 

(kcal/mol) 

CCSD(T)/cc-

pVTZ 

rel. energyb 

(kcal/mol) 

SiH7
+

 -292.82964 32.5 0 -4.8 -292.87141 -4.1 

1 -292.82986 37.4 0 0.0 -292.87264 0.0 

2 -292.57167 38.9 0 163.5 -292.61650 162.2 

3TS -292.71363 34.7 1 68.3   

4TS -292.54590 36.2 1 177.0   

a Relative energy at MP2/cc-pVTZ//cc-pVTZ + ZPE level;  b at the CCSD(T)/cc-pVTZ//CCSD(T)/cc-pVTZ + ZPE level. 

 

Table 2.  Calculated frequenciesa (cm-1) and IR intensities (km/mol) of 1 

MP2/cc-pVTZ CCSD(T)/cc-pVTZ 

frequency intensity frequency intensity 

306 0 281 0 

335 0 309 0 

383 11 366 0 

388 0 385 45 

437 3 438 19 

501 142 504 47 

618 0 613 7 

639 112 633 68 

733 32 695 7 

800 28 768 4 

850 0 786 0 

859 69 790 88 

869 0 847 0 

902 27 898 22 

996 2 975 1 

1079 60 1025 68 

2307 16 2253 26 

2398 142 2345 225 

3779 295 3702 280 

4005 721 3924 695 

4042 6 3959 6 

a Computed frequencies were not scaled. 

 

Protonation of SiH7
+ to form 1 was found to be endothermic by 4.8 kcal/mol at the MP2/cc-

pVTZ//MP2/cc-pVTZ + ZPE level (4.1 kcal/mol at the CCSD(T)/cc-PVTZ//CCSD(T)/cc-PVTZ + ZPE level). 
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Transition structure, 3TS (Figure 1) for the deprotonation of 1 was also located. The structure 3TS lies 68.3 

kcal/mol higher in energy than structure 1. Thus the trication has also a high barrier for deprotonation. 

 

 
           1 

 
Scheme 2.  Formation of SiH8

2+ and CH6
2+. 

             
   1 C2v           2 C2v 

 
       3TS C2v 

Figure 1.  MP2/cc-pVTZ (CCSD(T)/cc-pVTZ) optimized structures of 1, 2 and 3TS. 
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MP2/cc-pVTZ and CCSD(T)/cc-PVTZ optimizations show that the nine-coordinate siliconium structure 2 is 

also a minimum on the potential energy surface of SiH9
3+. Tricationic structure 2 (Figure 1) contains four 2e-3c 

bonds involving the silicon atom and four hydrogen molecules and a 2e-2c bond involving the silicon atom and 

a hydrogen atom. The Si-H bond distances (1.946 and 1.884 Å) of the axial 2e-3c bond units are slightly longer 

than those of the equatorial units (1.915 and 1.836 Å). Charge-charge repulsions in the trications are 

substantial. However, the bonding interactions are strong enough to counter charge-charge repulsions 

rendering them remarkably stable. Dissociation of 2 into 1 and H+ was calculated to be very exothermic by 

163.5 kcal/mol at the MP2/cc-pVTZ//MP2/cc-pVTZ + ZPE level (162.2 kcal/mol at the CCSD(T)/cc-

PVTZ//CCSD(T)/cc-PVTZ + ZPE level). The transition structure 4TS for the dissociation lies just 13.5 kcal/mol 

higher in energy than structure 2. This shows that the trication 2, if formed will dissociate spontaneously into 1 

and H+. Potential energy surface of 1 and 2 calculated MP2/cc-pVTZ//MP2/cc-pVTZ + ZPE level is depicted in 

Figure 2. 

 

 
 

Figure 2.  Potential energy surface of 1 and 2. 

 

We also searched for any minimum-energy structures of decacoordinate siliconium ion, SiH10
4+. At the 

MP2/cc-pVTZ level no minimum could be found on the PES of SiH10
4+  (including a structure with five 2e-3c 

bonds as shown in Scheme 3). Thus in SiH10
4+ charge-charge repulsion may have reached its prohibitive limit. 

 

 
 

Scheme 3.  Possible structure of SiH10
4+. 
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Conclusions 
 

The present calculational study at the MP2/cc-pVTZ and CCSD(T)/cc-pVTZ levels shows that the octahydrido-

silconium dication (SiH8
2+) 1 and nonahydridosilconium trication (SiH9

3+) 2 are viable energy minima. 

Structures 1 and 2 were found to stabilized by three and four 2e-3c bonds, respectively. The protonation of 

SiH7
+ to form 1 was calculated to be slightly endothermic by about 5 kcal/mol. Charge-charge repulsions in 

these di- and tri-cations are substantial. However, the bonding interactions are strong enough to counter 

charge-charge repulsions rendering them remarkably stable. 

 

Experimental Section 
 

Calculations 

Geometry optimizations and frequency calculations were carried out with the Gaussian 09 program.19 

Vibrational frequencies at the MP2/cc-pVTZ//MP2/cc-pVTZ level were used to characterize stationary points 

as minima (NIMAG (number of imaginary frequency) = 0 or transition state NIMAG = 1) and to compute zero 

point vibrational energies (ZPE), which were scaled by a factor of 0.96.20 CCSD(T)/cc-pVTZ optimizations and 

frequency calculations calculations have been performed with the CFOUR program.21,22  
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